Student Handbook

This Student Handbook can
help you answer these questions.

What if I Need More Practice?

Extra Practice

The Extra Practice section provides additional problems for each lesson so you have ample opportunity to practice new skills.

What if I Need to Check a Homework Answer?

Selected Answers and Solutions

The answers to odd-numbered problems are included in Selected Answers and Solutions.

What if I Forget a Vocabulary Word?

Glossary/Glosario

The English-Spanish Glossary provides definitions and page numbers of important or difficult words used throughout the textbook.

What if I Need to Find Something Quickly?

Index

The Index alphabetically lists the subjects covered throughout the entire textbook and the pages on which each subject can be found.

What if I Forget a Formula?

Formulas and Measures,

Symbols and Properties
Inside the back cover of your math book is a list of
Formulas and Symbols that are used in the book.

Extra Practice

CHAPTIER 1 Tools of Eanaty

Refer to the figure. (Lesson 1-1)

1. How many planes are shown in this figure?
2. Name the intersection
 of plane $A D E$ with plane P.
3. Name two noncoplanar lines that do not intersect.

Find the measurement of each segment. Assume that each figure is not drawn to scale. (Lesson 1-2)
4. $\overline{N Q}$
5. $\overline{B D}$

6. Find x and $A B$ if B is between A and $C, A B=3 x$, $B C=14$, and $A C=41$. (Lesson 1-2)
7. PLAYGROUND The pivot or midpoint of a seesaw on a playground is 13.5 feet from the swing set. If the swing set is 8 feet from the edge of the seesaw when the seesaw is level, how long is the seesaw. (Lesson 1-3)
8. Find the coordinates of M if $N(1.5,2.5)$ is the midpoint of $\overline{M P}$ and P has coordinates $(6,9)$ (Lesson 1-3)

Copy the diagram shown, and extend each ray. Classify each angle as right, acute, or obtuse. Then use a protractor to measure the angle to the nearest degree. (Lesson 1-4)
9. $\angle A F C$
10. $\angle D F B$
11. $\angle C F D$

12. SPORTS When a ball is bounced on a smooth surface, the angles formed by the path of the ball are congruent. If the path of a ball forms a 53° angle with the floor, find $m \angle A B C$. (Lesson 1-5)

Determine whether each statement can be assumed from the figure. Explain. (Lesson 1-5)

13. $\angle R T Q$ and $\angle M T N$ are vertical angles.
14. $\overrightarrow{P T}$ is perpendicular to $\overrightarrow{T M}$

Find the perimeter or circumference and area of each figure. Round to the nearest tenth, if necessary. (Lesson 1-6)
15.

16.

17. PLANNING Tim is responsible for renting tables for an awards banquet. He needs 20 tables, and he can choose between circular tables with a diameter of 5.5 feet and square tables with a side length of 5 feet. Which option should Tim choose so that the tables cover the smallest area? (Lesson 1-6)

Find the surface area and volume of each solid to the nearest tenth. (Lesson 1-7)
18.

19.

20. FISH Sarah has a fish tank with the dimensions shown. (Lesson 1-7)
a. What is the surface area of the fish tank?
b. If Sarah fills the tank to a depth of 17 inches, what will be the volume of the water in the tank?

1. Determine whether the statement below is true or false. If false, provide a counterexample.
(Lesson 2-1)
If $\overline{A B}$ is perpendicular to $\overleftrightarrow{C D}$, then exactly two right angles are formed.

Use the following statements to write a compound statement for each conjunction or disjunction. Then find its truth value. Explain your reasoning. (Lesson 2-2)
p : A prism has two bases.
q : A pyramid has two bases.
r : A sphere has no bases.
2. $p \wedge r$
3. $q \vee \sim r$

COMMUNITY SERVICE Refer to the Venn diagram that represents the organizations served by the students in a service club.
(Lesson 2-2)
Community Service

4. How many students volunteer in both organizations?
5. How many students volunteer for only one organization?
6. How many students are in the club?

Determine the truth value of each conditional statement. If true, explain your reasoning. If false, give a counterexample. (Lesson 2-3)
7. If a number is divisible by 6 , then it is divisible by 3 .
8. If $x^{4}=16$, then $x=2$.
9. GRADES Draw a valid conclusion from the statement below, if possible. Then state whether your conclusion was drawn using the Law of Detachment or the Law of Syllogism. If no valid conclusion can be drawn, write no valid conclusion and explain your reasoning. (Lesson 2-4)
If Amy scores above a 90 on her chemistry test, she will make an A. If she makes an A, her parents will take her to the theater. Amy scored a 93 on her chemistry test.

Determine whether each conclusion is based on inductive or deductive reasoning. (Lesson 2-4)
10. Andrew's mom makes spaghetti for dinner on Mondays. Today is Monday. He concludes that his mom will make spaghetti for dinner.
11. If Beth turns in her report early, she receives extra credit. Beth turned in her report early. She concludes that she will receive extra credit.

Determine whether each statement is always, sometimes, or never true. Explain you reasoning. (Lesson 2-5)
12. If planes \mathcal{A} and \mathcal{B} intersect, then their intersection is a line.
13. If point A lies in plane P, then $\overleftrightarrow{A B}$ lies in plane P.
14. Lines p and q intersect in points M and N.
15. PHYSICS The formula for pressure under water is $P=\rho g h$, where ρ is the density of water, g is gravity, and h is the height of the water. Given the water pressure, prove that you can calculate the height of the water using $h=\frac{P}{\rho g}$. (Lesson 2-6)
16. PROOF Write a two-column proof to verify that if $\overline{M N} \cong \overline{Q P}$, then $x=7$. (Lesson 2-6)

17. PROOF Prove the following. (Lesson 2-7)

Given: $\overline{A C} \cong \overline{B D}$
Prove: $\overline{A E} \cong \overline{B E}$

Find the measure of each numbered angle, and name the theorems that justify your work. (Lesson 2-8)
18. $\angle 2$ and $\angle 3$ are
19. $\angle 6 \cong \angle 7$ supplementary; $m \angle 2=149$

20. PROOF Given that $\angle B E C$ is a right angle, prove that $\angle A E B$ and $\angle C E D$ are complementary. (Lesson 2-8)

G-APCE Paralle and Perpendicular Lines

Classify the relationship between each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles. (Lesson 3-1)

1. $\angle 5$ and $\angle 7$
2. $\angle 2$ and $\angle 6$
3. $\angle 6$ and $\angle 7$
4. $\angle 4$ and $\angle 8$

5. FENCES Find the measures of $\angle 2, \angle 3$, and $\angle 4$ of the fence shown. (Lesson 3-2)

Find the value of the variables in each figure. Explain your reasoning. (Lesson 3-2)
6.

7.

8. JOBS Katie mows lawns in the summer to earn extra money. She started with 3 lawns, and she now mows 12 lawns in her fourth summer. (Lesson 3-3)
a. Graph the line that models the growth of Katie's business over time.
b. What is the slope of the graph? What does it represent?
c. Assuming that the business continues to grow at the same rate, how many lawns should Katie plan to mow during her sixth summer?

Determine whether $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are parallel, perpendicular, or neither. Graph each line to verify your answer. (Lesson 3-3)
9. $A(-4,-2), B(0,4), C(-2,-4), D(4,5)$
10. $A(0,-3), B(3,9), C(-4,0), D(8,3)$

Graph the line that satisfies each condition. (Lesson 3-3)
11. slope $=-\frac{1}{2}$, passes through $W(4,5)$
12. passes through $M(-3,-5)$, perpendicular to $\overleftrightarrow{N P}$ with $N(-3,2)$ and $P(9,4)$

Write an equation in point-slope form of the line having the given slope that contains the given point. Then graph the line. (Lesson 3-4)
13. $m=-\frac{4}{5},(10,-14) \quad$ 14. $m=5,(-1,-3)$

Write an equation of the line through each pair of points in slope-intercept form. (Lesson 3-4)
15. $(4,0)$ and $(-3,-7)$
16. $(-1,8)$ and $(5,-4)$
17. MOVIES Wade watches movies online through an online movie rental company. His current plan costs $\$ 7.99$ per month with an additional charge of $\$ 2.39$ per movie. He is considering switching to a plan that costs $\$ 14.99$ per month with an additional charge of $\$ 1.49$ per movie. (Lesson 3-4)
a. Write an equation to represent the total monthly cost for each plan.
b. Graph the equations.
c. If Wade watches an average of 10 movies per month, should he keep his current plan or change to the other plan? Explain.

Given the following information, determine which lines, if any, are parallel. State the postulate or theorem that justifies your answer. (Lesson 3-5)
18. $m \angle 4+m \angle 7=180$
19. $\angle 1 \cong \angle 4$
20. $m \angle 6=90$

21. PROOF Write a two-column proof. (Lesson 3-5)

Given: $\angle 1$ and $\angle 8$ are supplementary.
Prove: $\ell \| m$

Find the distance from P to $\boldsymbol{\ell}$. (Lesson 3-6)
22. Line ℓ contains points $(0,3)$ and $(-4,-9)$. Point P has coordinates $(-6,-5)$.
23. Line ℓ contains points $(-5,6)$ and $(1,-6)$. Point P has coordinates $(6,4)$.

Find the distance between each pair of parallel lines with the given equations. (Lesson 3-6)
24. $y=-4 x-6$
$y=-4 x+11$
25. $y=\frac{1}{2} x+\frac{7}{2}$
$y=\frac{1}{2} x+1$

Classify each triangle as acute, equiangular, obtuse, or right, and as equilateral, isosceles, or scalene. (Lesson 4-1)

1. $\triangle A B C$
2. $\triangle B C D$
3. $\triangle B D F$

4. BICYCLING In the bicycle shown, $m \angle C=60$ and $m \angle D=105$. Find $m \angle B$. (Lesson 4-2)

Find each measure. (Lesson 4-2)
5. $m \angle 1$
6. $m \angle 2$
7. $m \angle 3$

In the figure, $\triangle A B C \cong \triangle D E F$.
Find each value. (Lesson 4-3)
8. x
9. y
10. z

Determine whether $\triangle P Q R \cong \triangle X Y Z$.
Explain. (Lesson 4-4)
11. $P(-4,2), Q(2,2), R(2,8)$;
$X(-1,-3), Y(5,-3), Z(5,4)$
12. $P(-2,4), Q(-7,3), R(0,9)$;
$X(3,6), Y(2,1), Z(8,8)$
13. PROOF Write a two-column proof. (Lesson 4-4)

Given: $\overline{A B} \cong \overline{D E}$,

$$
\begin{aligned}
& \overline{A C} \cong \overline{D F}, \\
& \overline{A B} \| \overline{D E}
\end{aligned}
$$

Prove: $\triangle A B C \cong \triangle D E F$

14. PROOF Write a paragraph proof. (Lesson 4-5)

Given: $m \angle P R Q=90$

$$
m \angle R P T=90
$$ $\angle Q \cong \angle T$

Prove: $\triangle Q R P \cong \triangle T P R$

15. NATURE What is the approximate width of the creek shown below? Explain your reasoning. (Lesson 4-5)

Find each measure. (Lesson 4-6)
16. $m \angle B D A$
17. $B D$
18. $m \angle B C D$

19. Identify the type of congruence transformation shown as a reflection, translation, or rotation. (Lesson 4-7)

Graph each pair of triangles with the given vertices. Then, identify the transformation, and verify that it is a congruence transformation. (Lesson 4-7)
20. $A(2,2), B(4,-1), C(1,-2)$;
$M(-4,-1), N(-1,-2), P(-2,2)$
21. $A(-1,-1), B(-1,-4), C(2,-4)$;
$M(-1,1), N(-4,1), P(-4,4)$
22. CAMPUS The gym at Alex's school is located 70 feet south and 90 feet west of the main building. The vocational building is located 120 feet south and 200 feet east of the main building. Show that the triangle formed by these three buildings is scalene. Explain your reasoning. (Lesson 4-8)

CHAPTER 5 Reationships in Triangles

1. OFFICE DESIGN The copy machine C, filing cabinet F, and supply shelves S are positioned in an office as shown. Copy the diagram, and find the location for the center of a work table so that it is the same distance from all three points. (Lesson 5-1)

Point T is the incenter of $\triangle M N P$. Find each measure below. Round to the nearest tenth, if necessary. (Lesson 5-1)

In $\triangle A B C, C H=70 \frac{2}{3}, A G=85$, and $D H=20 \frac{1}{3}$.
Find each length. (Lesson 5-2)
5. FH
6. $B D$
7. AH

Find the indicated point of concurrency for each triangle with the given vertices. (Lesson 5-2)
8. centroid; $A(-4,-5), B(-1,2), C(2,-4)$
9. orthocenter; $M(-9,-2), N(1,8), P(9,-8)$

List the angles and sides of each triangle in order from smallest to largest. (Lesson 5-3)
10. R

11.

12. MAPS Three cities lie in a triangle as shown. Which two cities are the farthest apart? (Lesson 5-3)

Write an indirect proof of each statement.
(Lesson 5-4)
13. If $-7+6 x<11$, then $x<3$.
14. If $5-2 x<-13$, then $x>9$.
15. JOBS Nate worked for 6 hours today with two breaks. Use indirect reasoning to show that he worked for longer than two hours without a break at some point during his shift. (Lesson 5-4)
16. Write an indirect proof of the statement below. (Lesson 5-4)

A triangle can have at most one obtuse angle.
17. Is it possible to form a triangle with side lengths 3 centimeters, 8 centimeters, and 11 centimeters? If not, explain why not. (Lesson 5-5)

Find the range for the measure of the third side of a triangle given the measures of two sides. (Lesson 5-5)
18. $9 \mathrm{ft}, 16 \mathrm{ft}$
19. $1.7 \mathrm{~m}, 2.9 \mathrm{~m}$
20. Determine the possible values of x. (Lesson 5-5)

21. SNOWSHOEING Two groups of friends leave the same cabin to go snowshoeing. Group A goes 2.5 miles due north and then turns 79° east of north and travels an additional 2.5 miles. Group B goes 2.5 miles due south and then turns 86° east of south and travels an additional 2.5 miles. Who is now closer to the cabin? Use a diagram to explain your reasoning. (Lesson 5-6)

Find the range of values containing x. (Lesson 5-6)
22.

23.

24. PROOF Write a two-column proof. (Lesson 5-6) Given: $\overline{A B} \cong \overline{C D}$, $m \angle C D B>m \angle B A C$ $m \angle B D A>m \angle C A D$
Prove: $A C>D B$

Find the value of x in each diagram. (Lesson 6-1)
1.

Use parallelogram $A B C D$ to find each measure.
(Lesson 6-2)
3. $m \angle A$
4. $A D$

5. AUTO REPAIR A scissor jack is used to lift part of a car to make repairs. $A B C D$ is a parallelogram. As the jack is raised, $m \angle A$ and $m \angle C$ increase. Explain what must happen to $m \angle B$ and $m \angle D$. (Lesson 6-2)

Find the value of each variable in each parallelogram. (Lesson 6-2)
6.

7.

Determine whether each quadrilateral is a parallelogram. Justify your answer. (Lesson 6-3)
8.

9.

10. DESIGN Valerie is using the design shown for the front of a sweater. If all of the blocks of color are congruent parallelograms, write a two-column proof to show that $A C E G$ is a parallelogram. (Lesson 6-3)

11. Graph the quadrilateral with vertices $A(0,3)$, $B(10,4), C(6,-1)$, and $D(-4,-2)$. Determine whether $A B C D$ is a parallelogram. Justify your answer. (Lesson 6-3)
12. SNOW Four boys are throwing snowballs, such that their positions are the vertices of a rectangle as shown. If Carl is 100 feet from Ben, and Abe and Ben throw snowballs along the diagonals at the same time and the snowballs collide in mid air, how far had the snowballs traveled at the time of collision?
(Lesson 6-4)

Quadrilateral MNPQ is a rectangle. (Lesson 6-4)

13. If $m \angle M N Q=3 x+3$ and $m \angle Q N P=10 x-4$, find $m \angle M Q N$.
14. If $M C=4.5 x-2.5$ and $N C=4 x+1.5$, find $Q N$.
15. PROOF Write a proof to show that the four smaller triangles formed by the diagonals of a rectangle are isosceles. (Lesson 6-4)

Quadrilateral $A B C D$ is a rhombus. Find each value or measure. (Lesson 6-5)
16. $m \angle D B C$
17. $D C$

18. Determine whether $\square W X Y Z$ with verticies $W(-2,0), X(1,1), Y(2,-2), Z(-1,-3)$ is a rhombus, a rectangle, or a square. List all that apply. Explain. (Lesson 6-5)

Find each measure. (Lesson 6-6)
19. $m \angle A$

20. $M R$

Find the measures of the angles or sides in each triangle. (Lesson 7-1)

1. The ratios of the measures of the three angles is $4: 5: 11$.
2. The ratio of the three sides is $5: 3: 6$ and the perimeter is 98 centimeters.
3. FAMILY Shawn surveyed his homeroom class to find out how many of his classmates have at least 1 sibling. Of the 32 people in his homeroom, 25 have at least one sibling. (Lesson 7-1)
a. If there are 470 students in Shawn's school, write a proportion that could be used to predict the number of students in the school who have at least one sibling.
b. What is the number of students in Shawn's school with at least one sibling?

Determine whether each pair of figures is similar. If so, write the similarity statement and scale factor. If not, explain your reasoning. (Lesson 7-2)
4.

5.

Each pair of polygons is similar. Find the value of x. (Lesson 7-2)
6.

7.

Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning. (Lesson 7-3)
8.

9.

10. HEIGHT When Rachel stands next to her cousin, Rachel's shadow is 2 feet long and her cousin's shadow is 1 foot long. If Rachel is 5 feet 6 inches tall, how tall is her cousin? (Lesson 7-3)

Refer to the figure shown. (Lesson 7-4)
11. If $P N=4, N M=1$, and $P Q=5$, find $P R$.
12. If $P R=13, P Q=9$, and
 $N M=3$, find $P N$.
$\overline{D E}, \overline{E F}$, and $\overline{F D}$ are midsegments of $\triangle A B C$. Find the value of x. (Lesson 7-4)
13. A

14.

Find x. (Lesson 7-5)
15.

16.

17. FOOSBALL Jason wants to determine if his foosball table is a dilation of his school's soccer field. The dimension of the table are 30 inches by $55 \frac{1}{2}$ inches, and the dimensions of the field are 60 yards by 110 yards. Is the table a dilation? Explain. (Lesson 7-6)

Graph the original figure and its dilated image. Then verify that the dilation is a similarity transformation. (Lesson 7-6)
18. $A(0,-2), B(-1,3), C(3,-2)$; $X(0,-6), Y(-3,9), Z(9,-6)$
19. $D(-6,6), E(6,2), F(-2,-4)$; $M(-3,3), N(3,1), P(-1,-2)$
20. ARCHITECTURE The blueprint below is a scale drawing of a proposed structure. (Lesson 7-7)

a. What are the approximate dimensions of the family room? Round to the nearest 0.5 foot, if necessary.
b. What are the approximate dimensions of the dining room? Round to the nearest 0.5 foot, if necessary.

Find the geometric mean between each pair of numbers. (Lesson 8-1)

1. 7 and 12
2. 8 and 36

Find x, y, and z. (Lesson 8-1)

Find x. (Lesson 8-2)
5.

6.

Determine whether each set of numbers can be the measures of the sides of a triangle. If so, classify the triangle as acute, obtuse, or right. Justify your answer. (Lesson 8-2)
7. $24,32,41$
8. $17.5,60,62.5$

Find \boldsymbol{x}. (Lesson 8-3)
9.

10.

11.

12.

Find x. Round to the nearest tenth, if necessary. (Lesson 8-4)
13.

14.

15. SKATEBOARDING Lindsey is building a skateboard ramp. She wants the ramp to be 1 foot tall at the end and she wants it to make a 15° angle with the ground. What length of board should she buy for the ramp itself? Round to the nearest foot. (Lesson 8-4)

16. BUILDINGS Kara is standing about 50 feet from the base of her apartment building, looking up at it with an angle of elevation of 75°. What is the approximate height of Kara's building?
(Lesson 8-5)
17. ROLLER COASTERS Evan is looking down the hill of a roller coaster from a height of 75 feet with an angle of depression of about 70°. What is the approximate horizontal distance from the top of the hill to the bottom of the hill? (Lesson 8-5)
18. MOVIES Kim is sitting in the row behind her friend Somi at the movies. Kim is looking at the screen with an angle of elevation of about 27° and Somi's angle of elevation is about 29°. If there are 3 feet between each row of seats, about how tall is the movie screen? (Lesson 8-5)

Solve each triangle. Round angle measures to the nearest degree and side measures to the nearest tenth. (Lesson 8-6)
19.

20.

21.

22.

Copy the vectors to find each sum or difference.
(Lesson 8-7)
23. $\vec{a}-\vec{b}$
24. $\vec{a}+\vec{c}$

25. SWIMMING Kendall is swimming due south at 4.5 feet per second. The current of the river is moving with a velocity of 2 feet per second due east. Find Kendall's resultant speed and direction. (Lesson 8-7)

Graph each figure and its image under the given reflection. (Lesson 9-1)

1. $\triangle A B C$ with vertices $A(-1,-4), B(-5,3)$, and $C(0,5)$ in the line $y=x$
2. quadrilateral $W X Y Z$ with vertices $W(-3,-2)$, $X(-4,1), Y(1,4)$, and $Z(2,-2)$ in the y-axis
3. CAMPING Jin and Tom plan to hike to the rock bridge one day, return to camp, and then hike to the falls on the next day. Where along the trail should they place their camp in order to minimize the distance they must hike? (Lesson 9-1)

Graph each figure and its image along the given vector. (Lesson 9-2)
4. $\triangle X Y Z$ with vertices $X(-2,-1), Y(1,3)$, and $Z(4,-2) ;\langle-4,2\rangle$
5. trapezoid $M N P Q$ with vertices $M(-4,-3)$, $N(-2,2), P(1,2)$, and $Q(3,-3) ;\langle 3,-1\rangle$
6. MAPS Caleb's house and several places he visits are shown on the grid. (Lesson 9-2)

a. If Caleb leaves his house and goes one block west and four blocks north, what is his new location?
b. Write a translation vector that will take Caleb from the library to the movies.

Graph each figure and its image after the specified rotation about the origin. (Lesson 9-3)
7. $\triangle P Q R$ with vertices $P(-1,-2), Q(-5,-4)$, and $R(-3,-6) ; 90^{\circ}$
8. parallelogram $W X Y Z$ with vertices $W(-3,3)$, $X(-2,7), Y(4,5)$ and $Z(3,1) ; 180^{\circ}$
9. CLOCKS Anna looks at a clock at 11:05. When she looks at the clock for a second time during the same hour, the minute hand has rotated 270°. At what time does Anna look at the clock for the second time? (Lesson 9-3)

Graph each figure with the given vertices and its image after the indicated glide reflection. (Lesson 9-4)
10. $\triangle D E F: D(-5,1), E(-3,5), F(0,3)$

Translation: along $\langle-4,3\rangle$; Reflection: in x-axis
11. $\triangle M N P: M(2,5), N(6,2), P(8,6)$

Translation: along $\langle 2,4\rangle$; Reflection: in $y=x$
Graph each figure with the given vertices and its image after the indicated composition of transformations. (Lesson 9-4)
12. $\overline{X Y}: X(7,9)$ and $Y(2,1)$

Rotation: 90°; Translation: $\langle-5,-2\rangle$
13. $\overline{A B}: A(-4,-6)$ and $B(-2,5)$

Reflection: in x-axis; Rotation: 270°
ALPHABET Determine whether each letter below has line symmetry, rotational symmetry, both, or neither. Draw all lines of symmetry and state their number. Then determine the center of rotational symmetry and state the order and magnitude of rotational symmetry. (Lesson 9-5)
14.

15.

State whether the figure has plane symmetry, axis symmetry, both, or neither. (Lesson 9-5)

17.

18. NATURE The diameter of a snowflake is 2 millimeters. If the diameter appears to be 3 centimeters when viewed under a microscope, what magnification setting (scale factor) was used? (Lesson 9-6)

Find the image of each polygon with the given vertices after a dilation centered at the origin with the given scale factor. (Lesson 9-6)
19. $A(-5,-4), B(-2,-3), C(-1,-6)$,
$D(-4,-8) ; k=\frac{1}{2}$
20. $X(2,4), Y(4,0), Z(5,5) ; k=1.5$

GHAPTER10 Gircles

The diameter of the smaller circle centered at A is 3 inches, and the diameter of the larger circle centered at A is 9 inches. The diameter of $\odot D$ is 11 inches. Find each measure. (Lesson 10-1)

1. $B C$
2. $C D$

3. DECORATIONS To decorate for homecoming, Brittany estimates that she will need to purchase enough streamers to go around the school's circular fountain twice. If the diameter of the fountain is 88 inches, about how many feet of streamers should she buy? (Lesson 10-1)

Use $\odot C$ to find the length of each arc. Round to the nearest hundredth. (Lesson 10-2)
4. $\overparen{X Y}$ if the radius is 5 feet
5. $\overparen{Y Z}$ if the diameter is 8 meters

6. TRANSPORTATION The graph shows the results of a survey in which students at a high school were asked how they get to school. (Lesson 10-2)

> How Students Get to School

a. Find $m \overparen{C D}$.
b. Find $m \overparen{B C}$.

Find the value of \boldsymbol{x}. (Lesson 10-3)

8.

In $\odot M, M Z=12$ and $W Y=20$. Find each measure. Round to the nearest hundredth. (Lesson 10-3)
9. $C M$
10. XC

Find each measure. (Lesson 10-4)
11. $m \angle N$
12. $m \angle B$

13. Find x. Assume that segments that appear to be tangent are tangent. (Lesson 10-5)

14. Quadrilateral $A B C D$ is circumscribed about $\odot H$. Find m. (Lesson 10-5)

Find each measure. Assume that segments that appear to be tangent are tangent. (Lesson 10-6)
15. $m \widehat{X Y Z}$
16. $\overparen{M P}$

Find x to the nearest tenth. Assume that segments that appear to be tangent are tangent. (Lesson 10-7)
17.

18.

19. CELL PHONES A cell phone tower covers a circular area with a radius of 15 miles. (Lesson 10-8)
a. If the tower is located at the origin, write an equation for this circular area of coverage.
b. Will a person 11 miles west and 12 miles south of the tower have coverage? Explain.
20. Write an equation of a circle that contains points $A(-1,5), B(-5,9)$, and $C(-9,5)$. Then graph the equation. (Lesson 10-8)

CAD ER Areas of Polygons and Circles

Find the perimeter and area of each figure. Round to the nearest tenth if necessary. (Lesson 11-1)
1.

2.

3. The height of a parallelogram is three times its base. If the area of the parallelogram is 108 square meters, find its base and height. (Lesson 11-1)
4. The height of a triangle is three feet less than its base. If the area of the triangle is 275 square feet, find its base and height. (Lesson 11-1)

Find the area of each trapezoid, rhombus, or kite. (Lesson 11-2)
5.

6.

7.

8. MODELS Joni is designing a mural for the side of a building. The wall is 15 feet high and 50 feet long. If she covers the wall with a kite as shown, what is the area of the kite? (Lesson 11-2)

9. A trapezoid has a height of 12 inches, a base length of 9 inches, and an area of 150 square inches. What is the length of the other base? (Lesson 11-2)

Find the indicated measure. Round to the nearest tenth. (Lesson 11-3)
10. The area of a circle is 201 square meters. Find the radius.
11. Find the diameter of a circle with an area of 79 square feet.

Find the area of each shaded sector. Round to the nearest tenth if necessary. (Lesson 11-3)
12.

13.

14. GRAPHS Len created a circle graph using the survey results shown in the table. (Lesson 11-3)

Preferred Type of Exercise	
Treadmill	62%
Stationary Bike	8%
Swimming	7%
Aerobics	12%
Other	11%

a. What is the angle measure of the sector representing swimming?
b. If the graph has a 3 -inch diameter, what is the area of the sector representing treadmill?

Find the area of each regular polygon. Round to the nearest tenth if necessary. (Lesson 11-4)
15.

16.

17.

Find the area of each figure. Round to the nearest tenth if necessary. (Lesson 11-4)
18. 9 cm
21 cm

19.

For each pair of similar figures, find the area of the green figure. (Lesson 11-5)
20.

$A=696 \mathrm{~mm}^{2}$

For each pair of similar figures, use the given areas to find the scale factor from the blue to the green figure. Then find x. (Lesson 11-5)
22.

23.

$A=86.4 \mathrm{~cm}^{2} \quad A=60 \mathrm{~cm}^{2}$
24. MODELS Anna is making a model of her house. The area of the model's living space is 70 square inches. If the area of the actual living space is 1750 square feet, how many feet are represented by each inch of the model? (Lesson 11-5)

G-AP-ER-2 Extending Surface Area and Volume

Use isometric dot paper to sketch each prism.
(Lesson 12-1)

1. triangular prism 4 units high, with two sides of the base that are 3 units long and 4 units long
2. rectangular prism 1 unit high, 5 units wide, and 3 units long
3. Use isometric dot paper and the orthographic drawing to sketch the solid. (Lesson 12-1)

top view

left view

front view back view

Find the lateral and surface area of each solid. Round to the nearest tenth. (Lesson 12-2)
4.

5.

6. MANUFACTURING An office has recycling barrels that are cylindrical with cardboard sides and plastic lids and bases. Each barrel is 3 feet tall with a diameter of 30 inches. How many square feet of cardboard are used to make each barrel? (Lesson 12-2)

Find the lateral and surface area of each regular pyramid or cone. Round to the nearest tenth if necessary. (Lesson 12-3)

8.

Find the volume of each solid. Round to the nearest tenth if necessary. (Lesson 12-4)
9.

10.

11. ADVERTISING A company advertises that their juice boxes contain 20% more juice than their competitor's. If the base dimensions of the boxes
 are the same, how much taller are the larger boxes? (Lesson 12-4)

Find the volume of each solid. Round to the nearest tenth if necessary. (Lesson 12-5)
12.

13.

Find the surface area and volume of each sphere or hemisphere. Round to the nearest tenth. (Lesson 12-6)
14.

15.

16. SPORTS The diameter of a tennis ball is 2.7 inches, and the diameter of a baseball is 2.9 inches. How many times as great is the volume of the baseball as the volume of the tennis ball? (Lesson 12-6)

Name each of the following on sphere \mathfrak{A}. (Lesson 12-7)

17. a triangle
18. two segments on the same great circle

Determine whether each pair of solids is similar, congruent, or neither. If the solids are similar, state the scale factor. (Lesson 12-8)
19.

20.

$G=A D-E-3$ Probability and Measurement

1. FITNESS Laura wants to go to a fitness class tomorrow. She can choose a 5:00 or a 7:30 class and spin or water aerobics. Represent the sample space for the situation by making an organized list, a table, and a tree diagram. (Lesson 13-1)
2. SCHOOL UNIFORMS Susan has a school uniform that consists of a polo shirt, an oxford shirt, a skirt, and a pair of pants. She also has a sweater than she can wear if she chooses. Draw a tree diagram to represent the sample space for Susan's uniform. (Lesson 13-1)
3. CONSTRUCTION Bert's family is building a house in a new neighborhood, and they must choose one option listed below for each feature. What is the number of possible outcomes for the situation? (Lesson 13-1)

Feature	Options
floor plan	Elevation 1, Elevation 2
counters	formica, granite
cabinets	French antique glazed, oak, cherry
basement	unfinished, partially finished, finished
garage	none, one car, two car

4. DIVING At a swim meet, the order of the divers is randomly selected. If there are 12 divers, what is the probability that Danielle, Nora, and Li will dive first, second, and third, respectively? (Lesson 13-2)
5. NUMBERS Charlie's phone number is 555-3703. If he places each of the digits in a bowl and randomly selects one number at a time without replacement, what is the probability that he will choose his phone number? (Lesson 13-2)
6. RAFFLES Participants in a raffle received tickets 1101 through 1125. If four winners are chosen, what is the probability that the winning tickets are 1103, 1111, 1118, and 1122? (Lesson 13-2)
7. Point X is chosen at random on $\overline{A E}$. Find the probability that X is on $\overline{C E}$. (Lesson 13-3)

Find the probability that a point chosen at random lies in the shaded region. (Lesson 13-3)
8.

9.

10.

11. FOOTBALL Wes made 92% of his point after touchdown attempts last season. Design and conduct a simulation using a random number generator that can be used to estimate the probability that he will make his next point after touchdown attempt. (Lesson 13-4)

BASKETBALL For each field goal attempt in basketball, a player can earn 0,2 , or 3 points. The probability that a certain player will score 0 points on an attempt is 45%, 2 points is 40%, and 3 points is $\mathbf{1 5 \%}$. (Lesson 13-4)
12. Calculate the expected value for one attempt.
13. Design a simulation using a geometric probability model and estimate the player's average value per field goal attempt.
14. Compare the values for Exercises 12 and 13.
15. A die is rolled twice. What is the probability that the first number rolled is a 3 and the second number rolled is a 5? (Lesson 13-5)
16. Three cards are randomly chosen from a deck of 52 cards without replacement. What is the probability that they will all be red? (Lesson 13-5)
17. A spinner numbered 1 through 6 is spun. Find the probability that the number spun is a 3 given that it was less than 4 . (Lesson 13-5)

BOOKS The table shows the number and type of books that Sarah owns. Find each probability.
(Lesson 13-6)

Medium	Classic	Mystery	Biography
print	29	8	32
audio	3	6	10
electronic	8	3	43

18. A randomly chosen title is a print or audio book.
19. A randomly chosen title is not a biography.
20. DOGS The table shows the ages and genders of the dogs at an animal shelter. What is the probability that a randomly chosen dog is a female or over 5 years old? (Lesson 13-6)

Age	Male	Female
under 1 year	6	5
$1-5$ years	8	7
$6-10$ years	4	6
over 10 years	3	5

Selected Answers and Solutions

Go to Hotmath.com for step-by-step solutions of most odd-numbered exercises free of charge.

CHAPTER 0
 Preparing for Geometry

Lesson 0-1
$\begin{array}{llllll}\text { 1. } \mathrm{cm} & \text { 3. } \mathrm{kg} & \text { 5. } \mathrm{mL} & 7.10 & \text { 9. } 10,000 & 11.0 .18\end{array}$
$\begin{array}{llllll}13.2 .5 & 15.24 & 17.0 .370 & 19.4 & 21.5 & 23.16\end{array}$
25. $208 \quad 27.9050$

Lesson 0-2

1. $20 \quad 3.12 .1$
2. 16
7.12
3. 5.4
4. 22.47
13.1.125 15.5.4
17.15
5. 367.9 g
21.735 .8 g

Lesson 0-3

1. $\frac{1}{3}$ or $33 \% \quad$ 3. $\frac{2}{3}$ or $67 \% \quad$ 5. $\frac{1}{3}$ or $33 \% \quad$ 7. $\frac{13}{28}$ or about $46 \% \quad$ 9. $\frac{11}{14}$ or about $79 \% \quad$ 11. $\frac{9}{70}$ or about 13% 13. $\frac{9}{28}$ or about $32 \% \quad$ 15. $\frac{1}{28}$ or about $3.6 \% \quad$ 17. $\frac{13}{28}$ or about $46 \% \quad$ 19. $\frac{13}{14}$ or about $93 \% \quad$ 21. $\frac{1}{10}$ or $10 \% ; \frac{1}{8}$ or $12.5 \% \quad$ 23. Sample answer: Assign each friend a different colored marble: red, blue, or green. Place all the marbles in a bag and without looking, select a marble from the bag. Whoever's marble is chosen gets to go first.

Lesson 0-4
1.3 3. -2
5. -1
7. -26
9. 26
11.15

Lesson 0-5

1. -8
2. 15
3. -72
4. $-\frac{15}{2}$
5. $\frac{7}{2}$
6. -15
7. -7
8. -7
9. -1
19.60
10. -4
23.4
11. 15
27.21
12. -2
13. $-\frac{29}{2}$
14. $-6 \quad 35.1$

Lesson 0-6

1. $\{x \mid x<13\} \quad$ 3. $\{y \mid y<5\} \quad$ 5. $\{t \mid t>-42\} \quad$ 7. $\{d \mid d \leq 4\}$
2. $\{k \mid k \geq-3\}$
3. $\{z \mid z<-2\}$
4. $\{m \mid m<29\}$
5. $\{b \mid b \geq-16\}$
6. $\{z \mid z>-2\}$
7. $\{b \mid b \leq 10\}$
8. $\{q \mid q \geq 2\}$
9. $\left\{w \left\lvert\, w \geq-\frac{7}{3}\right.\right\}$

Lesson 0-7

1. $(-2,3)$
2. $(2,2)$
3. $(-3,1)$
4. $(4,1)$
5. $(-1,-1)$
6. $(3,0)$
7. $(2,-4)$
8. $(-4,2)$ 17. none
9. IV
10. I
11. III

25.

27.

29.

Lesson 0-8

1. $(2,0) \quad$ 3. no solution \quad 5. $(2,-5) \quad$ 7. $\left(-\frac{4}{3}, 3\right)$
2. $(4,1)$ 11. elimination, no solution 13. elimination or substitution, $(3,0)$ 15. elimination or substitution, $(-6,4)$

Lesson 0-9
$\begin{array}{llllll}\text { 1. } 4 \sqrt{2} & \text { 3. } 10 \sqrt{5} & 5.6 & 7.7 x\left|y^{3}\right| \sqrt{2 x} & \text { 9. } \frac{9}{7} & 11 . \frac{3 \sqrt{14}}{4}\end{array}$
13. $\frac{p \sqrt{30 p}}{9}$ 15. $\frac{20+8 \sqrt{3}}{13} \quad$ 17. $\frac{\sqrt{3}}{4} \quad$ 19. $\frac{6 \sqrt{5}+3 \sqrt{10}}{2}$

CHAPTER 1
 Tools of Geometry

Chapter 1 Get Ready
1.

3.

5. e5 $7.6 \frac{29}{36}$
9. $5 \frac{2}{15}$
11.81
13. 153
15.6

Lesson 1-1
$\begin{array}{lll}\text { 1. Sample answer: } m & \text { 3. } \mathcal{B} & \text { 5. plane }\end{array}$
7. Sample answer:
9. Sample answer:

A, H, and B
11. Yes; points B, D, and F lie in plane $B D F$.
13. Sample answer: n and q
15. R
(17) Sample answer: Points A, B, and C are contained in plane \mathcal{R}. Since point P is not contained in plane \mathcal{R}, it is not coplanar with points A, B, and C.
19. points A and $P \quad$ 21. Yes; line n intersects line q when the lines are extended. 23. intersecting lines
25. two planes intersecting in a line
27. point
29. line 31. intersecting planes
33. Sample answer:

37. Sample answer:

41. edges
43. Sample answer: M and N
(45) The planes appear to be parallel. Since they do not have any lines in common, they do not intersect.
47. No; V does not lie in the same plane.
(49) a. The intersection between the signs and the pole is represented by a point. b. The two planes intersect in a line.

51a. Sample answer:

51b.

51c. Sample answer: They get closer together.
53. Sample answer: The airplanes are in different horizontal planes.
55) a. There are four ways to choose three points: FGH, FGK, GHK, and FHK. Only one way, FGH, has three points collinear. So, the probability is $\frac{1}{4}$.
b. There is exactly one plane through any three noncollinear points and infinitely many planes through three collinear points. Therefore, the probability that the three points chosen are coplanar is 1 .
57. Sample answer:

59. 4 61. Sample answer: A table is a finite plane. It is not possible to have a real-life object that is an infinite plane because all real-life objects have boundaries.
63. H
69. $\frac{\sqrt{2}}{2}$
71. $\frac{\left|a^{3}\right| \sqrt{6}}{9}$
73. $4 \sqrt{15}-8 \sqrt{3}$
75.

77. Sample answer: 424.5 g
79. Sample answer:
1.1 kg
81. >
83. $<$
85. >

Lesson 1-2

1. 5.7 cm or 57 mm
2. $1 \frac{7}{8}$ in
(7)

3. 3.8 in.
$\begin{aligned} B D & =4 x & & \text { Given } \\ 12 & =4 x & & \text { Substitution }\end{aligned}$
$\frac{12}{4}=\frac{4 x}{4} \quad \begin{aligned} & \text { Divide each side } \\ & \text { by } 4 .\end{aligned}$
$3=x \quad$ Simplify.
$B C=2 x \quad$ Given
$=2(3) \quad x=3$
$=6 \quad$ Simplify.
4. $\overline{A G} \cong \overline{F G}, \overline{B G} \cong \overline{E G}, \overline{C G} \cong \overline{D G} \quad 11.38 \mathrm{~mm}$
5. $\frac{15}{16}$ in.
15.1 .1 cm
17.1.5 in.
6. 4.2 cm
7. $c=18$;
$Y Z=72$
8. $a=4 ; Y Z=20$
9. $n=4 \frac{1}{3} ; Y Z=1 \frac{2}{3}$
(27) Yes; $K J=4 \mathrm{in}$. and $H L=4 \mathrm{in}$. Since the segments have the same measure, they are congruent.
10. no 31. yes
(33) Sample answer: All the segments that have one slash are congruent: $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{D E} \cong$ $\overline{D G} \cong \overline{B G} \cong \overline{C G}, \overline{A C} \cong \overline{E C}$. All segments with two slashes are congruent: $\overline{A H} \cong \overline{H G} \cong \overline{G F} \cong \overline{F E}$, $\overline{A G} \cong \overline{H F} \cong \overline{G E}$. All segments with three slashes are congruent: $\overline{B H} \cong \overline{D F}$.
11. Sample answer: $\overline{B D} \cong \overline{C E} ; \overline{B D} \cong \overline{P Q} ; \overline{Y Z} \cong \overline{J K}$;
$\overline{P Q} \cong \overline{R S} ; \overline{G K} \cong \overline{K L} \quad$ 37. If point B is between points A and C, and you know $A B$ and $B C$, add $A B$ and $B C$ to find $A C$. If you know $A B$ and $A C$, subtract $A B$ from
$A C$ to find $B C$. 39. $J K=12, K L=16$ 41. Sample answer: Having a standard of measure is important so that there is a reference point against which other measures can be compared and evaluated. 43. D 45. D
12. Sample answer: plane $C D F$
13. points C, B, and F

51a. about 2.1 s
51b. about 9.7 in.
53. $\{p \mid p>9\}$
55. $\{x \mid x \leq-13\}$
57.12
59.5 .5
61. $\sqrt{185}$

Lesson 1-3
1.8
(3) $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad$ Distance Formula $=\sqrt{(2-4)^{2}+(-3-9)^{2}} \quad\left(x_{1}, y_{1}\right)=(4,9)$ and $=\sqrt{(-2)^{2}+(-12)^{2}} \quad$ Subtract. $=\sqrt{4+144}$ or $\sqrt{148} \quad$ Simplify.
The distance between the time capsules is $\sqrt{148}$ or about 12.2 units.
5. $\sqrt{58}$ or about 7.6 units \quad 7. $-3 \quad$ 9. $(4,-5.5)$
(11) Let G be $\left(x_{1}, y_{1}\right)$ and J be $\left(x_{2}, y_{2}\right)$ in the Midpoint Formula.
$F\left(\frac{x_{1}+6}{2}, \frac{y_{1}+(-2)}{2}\right)=F(1,3.5) \quad\left(x_{2}, y_{2}\right)=(6,-2)$
Write two equations to find the coordinates of G.
$\frac{x_{1}+6}{2}=1 \quad$ Midpoint Formula $\quad \frac{y_{1}+(-2)}{2}=3.5$ $x_{1}+6=2 \quad$ Multiply each side by 2. $\quad y_{1}+(-2)=7$ $x_{1}=-4 \quad$ Simplify.
$y_{1}=9$
The coordinates of G are $(-4,9)$.
$\begin{array}{llll}13.5 & 15.9 & 17.12 & \text { 19. } \sqrt{89} \text { or about } 9.4 \text { units }\end{array}$
21. $\sqrt{58}$ or about 7.6 units 23. $\sqrt{208}$ or about 14.4 units 25. $\sqrt{65}$ or about 8.1 units 27. $\sqrt{53}$ or about 7.3 units 29. $\sqrt{18}$ or about 4.2 units
$31.4 .5 \mathrm{mi} \quad 33.6 \quad 35 .-4.5 \quad 37.3$
(39) $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \quad$ Midpoint Formula
$=M\left(\frac{22+15}{2}, \frac{4+7}{2}\right) \quad\left(x_{1}, y_{1}\right)=(22,4)$ and
$\left(x_{2}, y_{2}\right)=(15,7)$
$=M\left(\frac{37}{2}, \frac{11}{2}\right) \quad$ Simplify.
$=M(18.5,5.5) \quad$ Simplify.
The coordinates of the midpoint are $(18.5,5.5)$.
41. $(-6.5,-3)$
43. $(-4.2,-10.4)$
45. $\left(-\frac{1}{2}, \frac{1}{2}\right)$
47. $A(1,6)$
49. $C(16,-4)$
51. $C(-12,13.25)$
53.58
55. 4.5
(57) a. If the center of the court is the origin, the player in the first is half of the length of the court or 47 feet to the right and half of the width of the court or 25 feet down. Since you go to the right, the x-coordinate is positive, and since you go down, the y-coordinate is negative. The ordered pair is $(47,-25)$. b. The distance that the ball travels is the distance between $(0,0)$ and $(47,-25)$.
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad$ Distance Formula
$d=\sqrt{(47-0)^{2}+(-25-0)^{2}} \quad\left(x_{1}, y_{1}\right)=(0,0)$,
$d=\sqrt{2834}$
$\left(x_{2}, y_{2}\right)=(47,-25)$
$d \approx 53.2$
Simplify.
Use a calculator.
The distance between the two players is about 53.2 feet.
59. $=$ AVERAGE (B2, D2) 61. $(-5,0),(7,0)$
63. $\left(-1 \frac{1}{2},-1\right)$
65. ± 5
(67) a. Sample answer:

d. $A C=\frac{1}{2} A B \quad$ Definition of midpoint
$A C=\frac{1}{2} x \quad A B=x$
$A D=\frac{1}{2} A C \quad$ Definition of midpoint
$A D=\frac{1}{2}\left(\frac{1}{2} x\right) \quad$ Substitution
$A D=\frac{1}{4} x \quad$ Simplify.
e. Look for a pattern.

Number of Midpoints	Length of Smallest Segment			
1	$\frac{1}{2} x$	$	$	$\frac{1}{2} \cdot \frac{1}{2} x=\frac{1}{2(2)} x$
:---:				
2				
3				
4				
n				

Sample answer:
If n midpoints are found, then the smallest segment will have a measure of $\frac{1}{2^{n}} x$.
69. Sample answer: Sometimes; when the point $\left(x_{1}, y_{1}\right)$ has coordinates $(0,0)$.
71. Sample answer:

Draw $\overline{A B}$. Next, draw a construction line and place
point C on it. From point C, strike 6 arcs in succession of length $A B$. On the sixth $\overline{A B}$ length, perform a segment bisector two times to create a $\frac{1}{4} A B$ length. Label the endpoint D. 73.C 75. C 77. $2 \frac{1}{8}$ in.
79.

81. $4 x+38 \leq 75 ; 9.25 \mathrm{lb}$ or less
83.15 .5
85. $2 \frac{1}{3}$
87.4

Lesson 1-4

1. $U \quad$ 3. $\angle X Y U, \angle U Y X \quad$ 5. acute; $40 \quad$ 7. right; $90 \quad 9.156$ 11a. 45; When joined together, the angles form a right angle, which measures 90 . If the two angles that form this right angle are congruent, then the measure of each angle is $90 \div 2$ or 45 . The angle of the cut is an acute angle. 11b. The joint is the angle bisector of the
$\xrightarrow{\text { frame angle }}$
2. $P \quad$ 15. M
3. $\overrightarrow{N V}, \overrightarrow{N M}$
4. $\overrightarrow{R P}$, $\overrightarrow{R Q} \quad$ 21. $\angle T P Q \quad$ 23. $\angle T P N, \angle N P T, \angle T P M, \angle M P T$
5. $\angle 4$ 27. S, Q
(29) Sample answer: $\angle M P R$ and $\angle P R Q$ share points P and R.
31.90, right 33.45 , acute 35.135 , obtuse
(37) $m \angle A B E=m \angle E B F \quad$ Definition of $\cong \angle s$
$2 n+7=4 n-13 \quad$ Substitution
$7=2 n-13 \quad$ Subtract $2 n$ from each side.
$20=2 n \quad$ Add 13 to each side.
$10=n \quad$ Divide each side by 2.

$$
\begin{aligned}
m \angle A B E & =2 n+7 & & \text { Given } \\
& =2(10)+7 & & n=10 \\
& =20+7 \text { or } 27 & & \text { Simplify }
\end{aligned}
$$

$\begin{array}{llll}39.16 & 41.47 & \text { 43a. about } 50 & \text { 43b. about } 140\end{array}$
43c. about 20 43d. 0
45. acute

(47) a. $m \angle 1 \approx 110$; since $110>90$, the angle is obtuse. b. $m \angle 2 \approx 85$; since $85<90$, the angle is acute. c. about 15; If the original path of the light is extended, the measure of the angle the original path makes with the refracted path represents the number of degrees the path of the light changed. The sum of the measure of this angle and the measure of $\angle 3$ is 180 . The measure of $\angle 3$ is $360-(110+85)$ or 165 , so the measure of the angle the original path makes with the refracted path is $180-165$ or 15 . 49. The two angles formed are acute angles. Sample answer: With my compass at point A, I drew an arc in the interior of the angle. With the same compass setting, I drew an arc from point C that intersected the arc from point A. From the vertex, I drew $\overrightarrow{B D}$. I used the same compass setting to draw the intersecting arcs, so $\overrightarrow{B D}$ divides $\angle A B C$ so that the measurement of $\angle A B D$ and $\angle D B C$ are equal. Therefore, $\overrightarrow{B D}$ bisects $\angle A B C$. 51. Sometimes; sample answer: For example,
if you add an angle measure of 4 and an angle measure of 6 , you will have an angle measure of 10 , which is still acute. But if you add angles with measure of 50 and 60, you will have an obtuse angle with a measure of 110.
53. Sample answer: To measure an acute angle, you can fold the corner of the paper so that the edges meet. This would bisect the angle, allowing you to determine whether the angle was between 0° and 45° or between 45° and 90°. If the paper is folded two more times in the same manner and cut off this corner of the paper, the fold lines would form the increments of a homemade protractor that starts at 0° on one side and progresses in $90 \div 8$ or 11.25° increments, ending at the adjacent side, which would indicate 90°. You can estimate halfway between each fold line, which would give you an accuracy of $11.25^{\circ} \div 2$ or about 6°. The actual measure of the angle shown is 52°. An estimate between 46° and 58° would be acceptable. 55. Sample answer: Leticia's survey does not represent the entire student body because she did not take a random sample; she only took a sample of students from one major.
57.E 59.8.25
61.15 .81
63. 10.07
65. $x=11 ; S T=22$
$67.4 .5 \quad 69.56$
71.14.75
73. 24.8
75. $17 \frac{1}{3}$

Lesson 1-5

1. $\angle Z V Y, \angle W V U \quad$ 3a. vertical 3 3b. 15

(5) If $x \perp y$, then $m \angle 2=90$ and $m \angle 3=90$. $m \angle 2=3 a-27$ Given $90=3 a-27 \quad$ Substitution $117=3 a \quad$ Add 27 to each side. $39=a \quad$ Divide each side by 3.
$m \angle 3=2 b+14$ Given
$90=2 b+14 \quad$ Substitution
$76=2 b \quad$ Subtract 14 from each side.
$38=b \quad$ Divide each side by 3.
7. Yes: they share a common side and vertex, so they are adjacent. Since $m \angle E D B+m \angle B D A+m \angle A D C=$ $90, \angle E D B$ and $\angle B D A$ cannot be complementary or supplementary. 9. Sample answer: $\angle B F C$,
$\angle D F E$ 11. $\angle F D G, \angle G D E$ 13. Sample answer: $\angle C B F$, $\angle A B F$ 15. $\angle G D E$ 17. $\angle C A E \quad 19.65$
(21) $2 x+25=3 x-10$

$$
\begin{aligned}
& 25=x-10 \\
& 35=x
\end{aligned}
$$

$$
3 x-10+y=180 \quad \text { Def. of supplementary } \measuredangle s
$$

$$
3(35)-10+y=180 \quad \text { Substitution }
$$

$$
105-10+y=180 \quad \text { Multiply. }
$$

$$
95+y=180 \quad \text { Simplify. }
$$

$$
y=85 \quad \text { Subtract } 95 \text { from each side. }
$$

$\begin{array}{lll}\text { 23. } x=48 ; y=21 & \text { 25. } m \angle F=63 ; m \angle E=117 \quad 27.40\end{array}$
(29) If $\angle K N M$ is a right angle, then $m \angle K N M=90$. $m \angle K N L+m \angle L N M=m \angle K N M \quad$ Sum of parts $=$ whole $6 x-4+4 x+24=90 \quad$ Substitution $10 x+20=90$ Combine like terms. $10 x=70$ Subtract 20 from each side. $x=7 \quad$ Divide each side by 10 .
31.92 33.53; $37 \quad$ 35. $a=8 ; b=54 \quad$ 37. Yes; the angles form a linear pair. 39 . No; the measures of each angle are unknown. 41. No; the angles are not adjacent.
43. Sample answer: $\angle 1$ and $\angle 3$
(45) $\angle 1$ and $\angle 3$ are vertical angles, so they are congruent; $m \angle 3=m \angle 1=110 . \angle 1$ and $\angle 4$ are a linear pair, so they are supplementary.

$$
\begin{array}{rll}
m \angle 4+m \angle 1 & =180 & \text { Def. of supplementary } \stackrel{\text { s }}{ } \\
m \angle 4+110 & =180 \quad & \text { Substitution } \\
m \angle 4 & =70 & \text { Subtract } 110 \text { from each side. }
\end{array}
$$

47. Sample answer: Yes; if the wing is not rotated at all, then all of the angles are right angles, which are neither acute nor obtuse. 49. Yes; angles that are right or obtuse do not have complements because their measures are greater than or equal to 90.
51 a . Line a is perpendicular to plane $\mathscr{P} . \quad 51 \mathrm{~b}$. Line m is in plane P. 51c. Any plane containing line a is perpendicular to plane \mathcal{P}. 53. C 55. J 57.125, obtuse 59.90, right $61 .\left(-3 \frac{1}{2}, 1\right) \quad 63.81 .5 \mathrm{~cm} \quad 65 . \overline{F G} \cong$ $\overline{H J} \cong \overline{J K} \cong \overline{F L}, \overline{G H} \cong \overline{L K} ; \angle F \cong \angle J, \angle G \cong \angle H \cong \angle K \cong$ $\angle L \quad$ 67. $\overline{W X} \cong \overline{X Y} \cong \overline{Y Z} \cong \overline{Z W} ; \angle W \cong \angle Y, \angle X \cong \angle Z$

Lesson 1-6

1. pentagon; concave; irregular 3. octagon; regular
2. hexagon; irregular $7 . \approx 40.2 \mathrm{~cm}$; $\approx 128.7 \mathrm{~cm}^{2}$ 9. C
3. triangle; convex; regular
(13) The polygon has 8 sides, so it is an octagon. All of the lines containing the sides of the polygon will pass through the interior of the octagon, so it is concave. Since the polygon is not convex, it is irregular.
4. hendecagon; concave; irregular $17.7 .8 \mathrm{~m} ; \approx 3.1 \mathrm{~m}^{2}$
5. 26 in.; 42.3 in 2
(21) $c^{2}=a^{2}+b^{2}$

Pythagorean Theorem
$c^{2}=6.5^{2}+4.5^{2}$
$a=6.5, b=4.5$
$c^{2}=62.5$ or ≈ 7.9
Simplify.

$$
\begin{array}{rlrl}
P & =a+b+c & A & =\frac{1}{2} b h \\
& \approx 6.5+4.5+7.9 & & =\frac{1}{2}(4.5)(6.5) \\
& \approx 18.9 \mathrm{~cm} & & \approx 14.6 \mathrm{~cm}^{2}
\end{array}
$$

23. $\approx 2.55 \mathrm{in}$.
24. triangle; $P=5+\sqrt{32}$
25. quadrilateral or square;
$+\sqrt{17} \approx 14.78$ units; $P=20$ units;
$A=10$ units 2

$$
A=25 \text { units }^{2}
$$

29a. $14 \mathrm{ft} \quad$ 29b. $12 \mathrm{ft}^{2} \quad$ 29c. The perimeter doubles; the area quadruples. The perimeter of a rectangle with dimensions 6 ft and 8 ft is 28 ft , which is twice the
perimeter of the original figure since $2 \cdot 14 \mathrm{ft}=28 \mathrm{ft}$.
The area of a rectangle with dimensions 6 ft and 8 ft is $48 \mathrm{ft}^{2}$, which is four times the area of the original figure, since $4 \cdot 12 \mathrm{ft}^{2}=48 \mathrm{ft}^{2}$. 29d. The perimeter is halved; the area is divided by 4 . The perimeter of a rectangle with dimensions 1.5 ft and 2 ft is 7 ft , which is half the perimeter of the original figure, since $\frac{1}{2} \cdot 14 \mathrm{ft}=$ 7 ft . The area of a rectangle with dimensions 1.5 ft and 2 ft is $3 \mathrm{ft}^{2}$, which is $\frac{1}{4}$ the area of the original figure, since $\frac{1}{4} \cdot 12 \mathrm{ft}^{2}=3 \mathrm{ft}^{2} . \quad 31.60 \mathrm{yd}, 6 \mathrm{yd}$
(33) $C=\pi d$
Circumference

$$
=\pi(8)
$$

$$
\approx 25.1 \quad \text { Simplify }
$$

$$
\begin{aligned}
C & =\pi d \\
& =\pi(10) \\
& \approx 31.4
\end{aligned}
$$

minimum circumference: 25.1 in.;
maximum circumference: 31.4 in .

$$
\begin{aligned}
A & =\pi r^{2} & & \text { Area of a circle } \\
& =\pi(4)^{2} & & r=4 \\
& \approx 50.3 & & \text { Simplify. } \\
A & =\pi r^{2} & & \text { Circumference } \\
& =\pi(5)^{2} & & r=5 \\
& \approx 78.5 & & \text { Simplify. }
\end{aligned}
$$

minimum area: 50.3 in 2; maximum area: 78.5 in 2
$35.21 .2 \mathrm{~m} \quad 37.2 \pi \sqrt{32}$ or about 35.5 units $\quad 39.12 \sqrt{6}$ or about 29.4 in. 41.108 in.; 729 in 2

43a-b. Sample answer:

Object	\boldsymbol{d} $(\mathbf{c m})$	\boldsymbol{C} $(\mathbf{c m})$	\boldsymbol{c} \boldsymbol{d}
1	3	9.4	3.13
2	9	28.3	3.14
3	4.2	13.2	3.14
4	12	37.7	3.14
5	4.5	14.1	3.13
6	2	6.3	3.15
7	8	25.1	3.14
8	0.7	2.2	3.14
9	1.5	4.7	3.13
10	2.8	8.8	3.14

43c. Sample answer:

43d. Sample answer: $C=3.14 d$; the equation represents a formula for approximating the circumference of a circle. The slope represents an approximation for pi. 45.290 .93 units 2 47. Sample answer: The pentagon is convex, since no points of the lines drawn on the edges are in the interior. The pentagon is regular
 since all of the angles and sides were constructed with the same measurement, making them congruent to each other. 49. Sample answer: If a convex polygon is equiangular but not also equilateral, then it is not a regular polygon. Likewise, if a polygon is equiangular and equilateral, but not
convex, then it is not a regular polygon. 51. F
53. C 55. No; we do not know anything about these measures. 57. Yes; they form a linear pair. 59. elimination; $x=-3, y=-1 \quad$ 61. substitution; $x=-4, y=-2.5 \quad 63.24 \quad 65.169 .6$
Lesson 1-7

1. not a polyhedron; cylinder
(3) $T=P H+2 B \quad$ Surface area of a prism

$$
\begin{aligned}
& =(14)(3)+2(12) \quad P=14 \mathrm{~cm}, h=3 \mathrm{~cm}, B=12 \mathrm{~cm}^{2} \\
& =66 \mathrm{~cm}^{2} \\
V & \quad \text { Simplify. } \\
& =B H
\end{aligned} \quad \text { Volume of a prism }
$$

5a. ≈ 27.2 in $^{3} 5$ b. 13.6π or about 42.7 in 2
7. pyramid; a polyhedron 9. rectangular prism; a polyhedron 11. cylinder; not a polyhedron
13. not a polyhedron; cone 15. not a polyhedron; sphere 17. a polyhedron; pentagonal pyramid; base: $J H G F D$; faces: JHGFD, $\triangle J E H, \triangle H E G, \triangle G E F, \triangle F E D$, $\triangle E D$; edges: $\overline{H G}, \overline{G F}, \overline{F D}, \overline{D J}, \overline{J H}, \overline{E J}, \overline{E H}, \overline{E G}, \overline{E F}, \overline{E D}$; vertices: $J, H, G, F, D, E \quad 19.121 .5 \mathrm{~m}^{2} ; 91.1 \mathrm{~m}^{3}$
(21) $T=P H+2 B$

$$
V=B H
$$

$$
=(24)(5)+2(24) \quad=(24)(5)
$$

$$
=168 \mathrm{~cm}^{2} \quad=120 \mathrm{~cm}^{3}
$$

23. 150π or about $471.2 \mathrm{~mm}^{2} ; 250 \pi$ or about $785.4 \mathrm{~mm}^{3}$
(25) a. $V=\pi r^{2} h \quad$ Volume of a cylinder

$$
\begin{array}{ll}
=\pi\left(7 \frac{3}{4}\right)^{2}\left(11 \frac{3}{4}\right) & r=7 \frac{3}{4} \text { in., } h=11 \frac{3}{4} \mathrm{in} . \\
\approx 2217.1 \mathrm{in}^{3} & \text { Simplify. }
\end{array}
$$

b. $T=2 \pi r h+2 \pi r^{2} \quad$ Surface area of a cylinder

$$
\begin{array}{ll}
=2 \pi\left(7 \frac{3}{4}\right)\left(11 \frac{3}{4}\right)+2 \pi\left(7 \frac{3}{4}\right)^{2} & r=7 \frac{3}{4} \text { in., } h=11 \frac{3}{4} \mathrm{in} . \\
\approx 949.5 \mathrm{in}^{2} & \text { Simplify. }
\end{array}
$$

27.3 in. 29. 1212 in $^{2} ; 1776$ in $^{3} \quad 31 \mathrm{a} .96$ in 2

31b. 113.1 in 2 31c. prism: 2 cans; cylinder: 3 cans 31d. 2.18 in.; if the height is 10 in ., then the surface area of the rectangular cake is $152 \mathrm{in}^{2}$. To find the radius of a cylindrical cake with the same height, solve the equation $152=\pi r^{2}+20 \pi r$. The solutions are $r=-22.18$ or $r=2.18$. Using a radius of 2.18 in . gives surface area of about $152 \mathrm{in}^{2}$.
(33) $1 \mathrm{ft}^{3}=(12 \mathrm{in} \text {. })^{3}=1728 \mathrm{in}^{3}$

$$
4320 \mathrm{in}^{3} \cdot \frac{1 \mathrm{ft}^{3}}{1728 \mathrm{in}^{3}}=2.5 \mathrm{ft}^{3}
$$

35. The volume of the original prism is $4752 \mathrm{~cm}^{3}$. The volume of the new prism is $38,016 \mathrm{~cm}^{3}$. The volume increased by a factor of 8 when each dimension was doubled. 37. Neither; sample answer: the surface area is twice the sum of the areas of the top, front, and left side of the prism or $2(5 \cdot 3+5 \cdot 4+3 \cdot 4)$, which is $94 \mathrm{in}^{2}$. 39a. cone 39b. cylinder
36. $27 \mathrm{~mm}^{3}$ 43.55.2 45.F 47. quadrilateral; convex; regular 49. dodecagon; concave; irregular 51.10 53. The intersection of a plane and a line not in the plane is a point. 55. Two lines intersect in one point.

37.

Chapter 1 Study Guide and Review

1. plane 3. perpendicular \quad 5. point P 7. point W
2. line
3. $x=6, X P=27$
4. yes
$15.1 .5 \mathrm{mi} \quad 17.10$
5. $(16,-6.5)$
6. $(-27,16)$
7. G
8. $\overrightarrow{C A}$ and $\overrightarrow{C H}$
9. Sample answer: $\angle A$ and $\angle B$ are right, $\angle E$ and $\angle C$ are obtuse, and $\angle D$ is acute.
10. Sample answer: $\angle Q W P$ and $\angle X W V$ 31. 66 33. dodecagon, concave, irregular 35. Option $1=12,000 \mathrm{ft}^{2}$, Option $2=$ $12,100 \mathrm{ft}^{2}$, Option $3 \approx 15,393.8 \mathrm{ft}^{2}$. Option 3 provides the greatest area. 37. hexagonal prism. Bases: $A B C D E F$ and GHJKLM; Faces: $\square A B H G, \square B C J H$, $\square C D K J, \square D E L K, \square E F M L, \square F A G M$; Edges: $\overline{A B}, \overline{B C}$, $\overline{C D}, \overline{D E}, \overline{E F}, \overline{F A}, \overline{G H}, \overline{H J}, \overline{J K}, \overline{K L}, \overline{L M}, \overline{M G}, \overline{A G}, \overline{B H}, \overline{C J}$, $\overline{D K}, \overline{E L}, \overline{F M}$; Vertices: $A, B, C, D, E, F, G, H, J, K, L, M$ 39. $384 \mathrm{in}^{2} ; 384 \mathrm{in}^{3} \quad 41.72 \mathrm{~m}^{2}, 36 \mathrm{~m}^{3} \quad 43 . \approx 23.6 \mathrm{in}^{2}$, $\approx 7.1 \mathrm{in}^{3}$

CHAPTER 2
 Reasoning and Proof

Chapter 2 Get Ready
$\begin{array}{llllll}1.31 & 3.14 & 5.12 & \text { 7. } x^{2}+3 & \text { 9. }-7 & 11.10 .8\end{array}$
13. $4 x=52 ; \$ 13 \quad$ 15. $\angle C X D, \angle D X E \quad 17.38$

Lesson 2-1

1. Each cost is $\$ 2.25$ more than the previous cost; $\$ 11.25$. 3. In each figure, the shading moves to the next point clockwise.

(5) 3 ,

Beginning with the third element, each element in the pattern is the sum of the previous two elements. So, the next element will be $15+9$ or 24 .
7. The product of two even numbers is an even number.
9. The set of points in a plane equidistant from point A is a circle.

11a. Wireless Subscribership by Year

11b. Sample answer: About 372,000,000 Americans will have wireless subscriptions in 2012.
(13)

If a ray intersects a segment at its midpoint and forms adjacent angles that are not right angles, then the ray is not perpendicular to the segment. 15. Each element in the pattern is three more than the previous element; 18.
17. Each element has an additional two as part of the number; 22222. 19. Each element is one half the previous element; $\frac{1}{16}$. 21. Each percentage is 7\% less than the previous percentage; 79\%. 23. Each meeting is two months after the previous meeting; July.
25. \square In each figure, the shading moves to
 the next area of the figure counter clockwise.
27.

The shading of the lower triangle in the upper right quadrant of the first figure moves clockwise through each set of triangles from one figure to the next.
29. Sample answer: It is drier in the west and hotter in the south than other parts of the country, so less water would be readily available.
(31) First, list examples: $1 \cdot 3=3,3 \cdot 5=15,7 \cdot 9=63$, $11 \cdot 11=121$. All the products are odd numbers. So, a conjecture about the product of two odd numbers is that the product is an odd number.
33. They are equal. 35. The points equidistant from A and B form the perpendicular bisector of $\overline{A B}$. 37. The area of the rectangle is two times the area of the square.
39a. Hockey Participation by Year

39b. Sample answer: More people over the age of 7 will play hockey in the future. The number of people playing hockey increases each year, so the graph suggests that even more people will play hockey in subsequent years. 41. False; sample answer: Suppose $x=2$, then $-x=-2$.
43. False; sample answer:

45. False; sample answer: The length could be 4 m and the width could be $5 \mathrm{~m} .47 \mathrm{a} .1,4,9,16$ 47b. Sample answer: Start by adding 3 to 1 to get the second number, 4 . Continue adding the next odd number to the previous number to get the next number in the sequence. 47c. Sample answer: Each figure is the previous figure with an additional row and column of points added, which is 2 (position number) -1 . One is subtracted since 2 (position number) counts the corner point twice. 2 (position number) -1 is always an odd number.

47d. 25, 36

49a. 1, 5, 12, 22 49b. Sample answer: Start by adding 4 to 1 to get the second number, 5 . Increase the amount added to the previous number by 3 each time to get the next number in sequence. So, add $4+$ 3 or 7 to 5 to get 12, and add $4+3+3$ or 10 to 12 to get 22. 49c. Sample answer: The second figure is the previous figure with 4 points added to make a pentagon. The third figure is the previous figure with 7 more points added, which is 3 more than the last number of points added. The fourth figure is the previous figure with 10 points added, which is 3 more than the last number of points added.
49d. 35, 51

51) a. For each even number from 10 to 20, write the number as the sum of two primes. Sample answer: $10=5+5,12=5+7,14=7+7,16=5+11$, $18=7+11,20=7+13$ b. The number 3 can be written as $0+3$ and as $1+2$. Since neither 0 nor 1 is a prime number, 3 cannot be written as the sum of two primes. So, the conjecture is false.
53. In the sequence of perimeters, each measure is twice the previous measure. Therefore, doubling the
side length of a regular hexagon appears to also double its perimeter. In the sequence of areas, each measure is four times the previous measure.
Therefore, doubling the side length of a regular hexagon appears to quadruple its area.
55. Jack; 2 is an even prime number.
57. Sample answer: False; if the two points create a straight angle that includes the third point, then the conjecture is true. If the two points do not create a straight angle with the third point, then the
conjecture is false.
59.B 61.G
$63.132 \mathrm{~m}^{2} ; 60 \mathrm{~m}^{3}$
$65.54 \mathrm{~cm}^{2} ; 27 \mathrm{~cm}^{3}$
67. 26.69
69. plane
71.18
73.8

Lesson 2-2

1. A week has seven days, and there are 60 minutes in an hour. p and r is true, because p is true and r is true.
(3) $q \vee r$: There are 20 hours in a day, or there are 60 minutes in an hour. A disjunction is true if at least one of the statements is true. So, $q \vee r$ is true because r is true. It does not matter that q is false.
2. A week has seven days, or there are 60 minutes in an hour. $p \vee r$ is true, because p is true and r is true.
3. | \boldsymbol{p} | \boldsymbol{q} | $\sim \boldsymbol{q}$ | $\boldsymbol{p} \vee \sim \boldsymbol{q}$ |
| :---: | :---: | :---: | :---: |
| T | T | F | T |
| T | F | T | T |
| F | T | F | F |
| F | F | T | T |
4.

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{\sim p}$	$\boldsymbol{\sim q}$	$\boldsymbol{\sim p} \boldsymbol{\sim} \boldsymbol{\sim q}$
T	T	F	F	F
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

11. $\overrightarrow{D B}$ is the angle bisector of $\angle A D C$, and $\overline{A D} \cong \overline{D C}$. p and r is true because p is true and r is true.
12. $\overrightarrow{A D} \cong \overrightarrow{D C}$ or $\overrightarrow{D B}$ is not the angle bisector of $\angle A D C . r$ or $\sim p$ is true because r is true and $\sim p$ is false. 15. $\overrightarrow{D B}$ is not the angle bisector of $\angle A D C$, or $\overrightarrow{A D} \not \equiv$ $\overline{D C} . \sim p$ or $\sim r$ is false because $\sim p$ is false and $\sim r$ is false. 17. Springfield is the capital of Illinois, and Illinois shares a border with Kentucky. $p \wedge r$ is true because p is true and r is true. 19. Illinois does not share a border with Kentucky, or Illinois is to the west of Missouri. $\sim r \vee s$ is false because $\sim r$ is false and s is false. 21. Springfield is not the capital of Illinois, and Illinois does not share a border with Kentucky. $\sim p \wedge$ $\sim r$ is false because $\sim p$ is false and $\sim r$ is false.
13.

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{\sim} \boldsymbol{p}$	$\boldsymbol{\sim} \boldsymbol{p} \boldsymbol{\wedge} \boldsymbol{q}$
T	T	F	F
T	F	F	F
F	T	T	T
F	F	T	F

\boldsymbol{p}	\boldsymbol{r}	$\boldsymbol{p} \boldsymbol{\wedge} \boldsymbol{r}$
T	T	T
T	F	F
F	T	F
F	F	F

27. | p | r | $p \vee r$ |
| :---: | :---: | :---: |
| T | T | T |

T	T	T
T	F	T
F	T	T
F	F	F

29.

\boldsymbol{p}	\boldsymbol{r}	$\boldsymbol{\sim} \boldsymbol{p}$	$\boldsymbol{\sim} \boldsymbol{p} \boldsymbol{\wedge} \boldsymbol{r}$
T	T	F	F
T	F	F	F
F	T	T	T
F	F	T	F

(31) a. The students who dive are represented by the intersection of the two sets and the nonintersecting portion of the Dive region. So, there are $3+4$ or 7 students who dive. b. The students who participate in swimming or diving or both are represented by the union of the sets. There are $19+3+4$ or 26 students who swim, dive, or do both. c. The students who swim and dive are represented by the intersection of the two sets. There are 3 students who both swim and dive.
$\begin{array}{lllll}33 a .50 & \text { 33b. } 40 & \text { 33c. } 110 & \text { 33d. } 20 & \text { 33e. These teens }\end{array}$ do not use any of the listed electronics.

Make columns with the headings $p, q, \sim q, r, \sim q \vee r$, and $p \wedge(\sim q \vee r)$. List the possible combinations of truth values for p, q, and r. Use the truth values of q to find the truth values of $\sim q$. Use the truth values for each part of $\sim q \vee r$ to find the truth value of the compound statement. Then use the truth values for each part of $p \wedge(\sim q \vee r)$ to find the truth value of the compound statement.

\boldsymbol{p}	\boldsymbol{q}	$\sim \boldsymbol{q}$	\boldsymbol{r}	$\sim \boldsymbol{q} \vee \boldsymbol{r}$	$\boldsymbol{p} \wedge(\sim \boldsymbol{q} \vee \boldsymbol{r})$
T	T	F	T	T	T
T	F	T	T	T	T
T	T	F	F	F	F
T	F	T	F	T	T
F	T	F	T	T	F
F	F	T	T	T	F
F	T	F	F	F	F
F	F	T	F	T	F

If p and r are true, and q is true or false, then $p \wedge(\sim q \vee r)$ is true.

37. | \boldsymbol{p} | \boldsymbol{q} | $\sim \boldsymbol{q}$ | \boldsymbol{r} | $\sim \boldsymbol{r}$ | $\sim \boldsymbol{q} \wedge \sim \boldsymbol{r}$ | $\boldsymbol{p} \vee(\sim \boldsymbol{q} \wedge \sim \boldsymbol{r})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | F | T | F | F | T |
| T | F | T | T | F | F | T |
| T | T | F | F | T | F | T |
| T | F | T | F | T | T | T |
| F | T | F | T | F | F | F |
| F | F | T | T | F | F | F |
| F | T | F | F | T | F | F |
| F | F | T | F | T | T | T |

true

39. | \boldsymbol{p} | $\sim \boldsymbol{p}$ | \boldsymbol{q} | \boldsymbol{r} | $\boldsymbol{\sim}$ | $(\sim \boldsymbol{p} \vee \boldsymbol{q})$ | $(\sim \boldsymbol{p} \vee \boldsymbol{q}) \vee \sim \boldsymbol{r}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | F | T | T | F | T | T |
| T | F | F | T | F | F | F |
| T | F | T | F | T | T | T |
| T | F | F | F | T | F | T |
| F | T | T | T | F | T | T |
| F | T | F | T | F | T | T |
| F | T | T | F | T | T | T |
| F | T | F | F | T | T | T |

If r is true or false, then $(\sim p \vee q) \vee \sim r$ is true.
41. Never; integers are rational numbers, not irrational. 43. There exists at least one square that is not a rectangle. 45. No students have classes in C-wing. 47. Every segment has a midpoint.
49. Sample answer: A triangle has three sides, and a square has four sides. Both are true, so the compound statement is true. $51.22 \mathrm{in}^{2}$; The area of a triangle is $\frac{1}{2} b h$. The base of the triangle is 11 inches and the height of the triangle is 4 inches, so the area of the triangle is $\frac{1}{2}(11)(4)$ or $22 \mathrm{in}^{2}$. 53. A 55 . triangular prism; bases: $\triangle M N O, \triangle P Q R$; faces: $\triangle M N O, \triangle P Q R$, OMPR, ONQR, PQNM; edges: $\overline{M N}, \overline{N O}, \overline{O M}, \overline{P Q}$, $\overline{Q R}, \overline{P R}, \overline{N Q}, \overline{M P}, \overline{O R}$; vertices: M, N, O, P, Q, and R 57. triangular pyramid; base: $\triangle H J K$; faces: $\triangle H J K$, $\triangle H L K, \triangle K L J, \triangle H L J$; edges: $\overline{H K}, \overline{K J}, \overline{H J}, \overline{H L}, \overline{K L}, \overline{J L}$; vertices: H, K, J, and L 59. $-1 \quad$ 61. $-7 \quad$ 63. 25 $65.14 \quad 67.10$

Lesson 2-3

1. H: today is Friday; C: tomorrow is Saturday.
2. H: two angles are supplementary; C : the sum of the measures of the angles is 180.
(5) hypothesis: You are sixteen years old. conclusion: You are eligible to drive. statement in if-then form: If you are sixteen years old, then you are eligible to drive.
3. If the angle is acute, then its measure is between 0 and 90. 9a. If moisture in the air condenses and falls, then it rains. 9b. If a cumulonimbus cloud has supercooled moisture, then hail forms. 9c. If the temperature is freezing in all or most of the atmosphere, then precipitation falls as snow. 11. False; Charlotte, Michigan; The hypothesis of the conditional is true, but the conclusion is false. The counterexample shows that the conditional statement is false. 13. False; the animal could be a leopard. The hypothesis of the conditional is true, but the conclusion is false. This counterexample shows that the conditional statement is false. 15. True; the hypothesis is false, since pigs cannot fly. A conditional with a false hypothesis is always true, so this conditional statement is true. 17. If a number is a whole number, then it is an integer. Converse: If a number is an integer, then it is a whole number. False; sample answer: -3. Inverse: If a number is not a whole number, then it is not an integer. False: sample answer: -3 . Contrapositive: If a number
is not an integer, then it is not a whole number; true. 19. H: you lead; C: I will follow. 21. H: two angles are vertical; C: they are congruent. 23. H: there is no struggle; C: there is no progress. $\mathbf{2 5 . H}$: a convex polygon has five sides; C : it is a pentagon. 27. If you were at the party, then you received a gift. 29. If a figure is a circle, then the area is πr^{2}. 31. If an angle is right, then the angle measures 90 degrees. 33. If the museum is the Andy Warhol Museum, then most of the collection is Andy Warhol's artwork.
(35) To show that a conditional is false, you need only to find one counterexample. 9 is an odd number, but not divisible by 5 . The hypothesis of the conditional is true, but the conclusion is false. So, this counterexample shows that the conditional statement is false.
4. False; the angle drawn is an acute angle whose measure is
 not 45. The hypothesis of the conditional is true, but the conclusion is false. This counterexample shows that the conditional statement is false. 39. True; when this hypothesis is true, the conclusion is also true, since an angle and its complement's sum is 90 . So, the conditional statement is true. 41. True; the hypothesis is false, since red and blue paint make purple paint. A conditional with a false hypothesis is always true, so this conditional statement is true. 43. False; the animal could be a falcon. The hypothesis of the conditional is true, but the conclusion is false. This counterexample shows that the conditional statement is false.
5. False; these lines intersect, but do not form right angles. The hypothesis of the conditional is true, but the conclusion is false. This counterexample shows that
 the conditional statement is false.
6. Converse: If you live in Illinois, then you live in Chicago. False: You can live in Springfield. Inverse: If you do not live in Chicago, then you do not live in Illinois. False: You can live in Springfield.
Contrapositive: If you do not live in Illinois, then you do not live in Chicago; true. 49. Converse: If two angles are congruent, then they have the same measure; true. Inverse: If two angles do not have the same measure, then the angles are not congruent; true. Contrapositive: If two angles are not congruent, then they do not have the same measure; true. 51. If segments are congruent, then they have the same length. Converse: If segments have the same length, then they are congruent; true. Inverse: If segments are not congruent, then they do not have the same length; true. Contrapositive: If segments do not have the same length, then they are not congruent; true. 53. If an animal has stripes, then it is a zebra; false: a tiger has stripes.
55 The inverse is formed by negating both the hypothesis and the conclusion of the conditional. Inverse: If an animal does not have stripes, then it is not a zebra. This is a true statement.

57a. Sample answer: If a compound is an acid, it contains hydrogen. If a compound is a base, it contains hydroxide. If a compound is a hydrocarbon, it contains only hydrogen and carbon. 57b. Sample answer: If a compound contains hydrogen, it is an acid. False; a hydrocarbon contains hydrogen. If a compound contains hydroxide, it is a base; true. If a compound contains only hydrogen and carbon, it is a hydrocarbon; true.
59) The blue area of the Venn diagram includes nonlinear functions but not quadratic functions. So, if a function is nonlinear, it may or may not be a quadratic function. Therefore, the conditional is false.
61. True; the deciduous area and the evergreen area have no common areas, so a deciduous tree cannot be evergreen. 63. Sample answer: Kiri; when the hypothesis of a conditional is false, the conditional is always true. 65. True; since the conclusion is false, the converse of the statement must be true. The converse and inverse are logically equivalent, so the inverse is also true. 67. The hypothesis q of the inverse statement is I received a detention. The conclusion p of the inverse statement is I did not arrive at school on time. So the conditional A is $p \rightarrow q$: If I did not arrive at school on time, then I recieved a detention. So the converse of statement A is $\sim p \rightarrow \sim q$: If I did arrive at school on time, then I did not receive a detention. The contrapositve of Statement A is $\sim q \rightarrow \sim p$: If I did not receive a detention, then I arrived at school on time. 69. A 71.0.00462
73.

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{p} and \boldsymbol{q}
T	T	T
T	F	F
F	T	F
F	F	F

75.

\boldsymbol{p}	\boldsymbol{q}	$\sim \boldsymbol{p}$	$\sim \boldsymbol{p} \wedge \boldsymbol{q}$
T	T	F	F
T	F	F	F
F	T	T	T
F	F	T	F

77. H, J, and K are noncollinear.

78. R, S, and T are collinear.
79. $\overline{B C} \cong \overline{C D}, \overline{B E} \cong \overline{E D}$, $\overline{B A} \cong \overline{D A} \quad 83$. about 9000 kg 85. Divide each side by 8. 87. Multiply each side by 3 .

Lesson 2-4

(1)

Olivia is basing her conclusion on facts provided to her by her high school, not on a pattern of observations, so she is using deductive reasoning.
3. valid; Law of Detachment 5. Invalid: Bayview could be inside or outside the public beach's circle.

Beaches

7. C 9. No valid conclusion; $\angle 1$ and $\angle 2$ do not have to be vertical in order to be congruent. 11. inductive reasoning 13. deductive reasoning
15. inductive reasoning
(17) The given statement Figure $A B C D$ has four right angles satisfies the conclusion of the true conditional. However, having a true conditional and a true conclusion does not make the hypothesis true. The figure could be a rectangle. So, the conclusion is invalid.
19. Invalid; your battery could be dead because it was old. 21. valid; Law of Detachment
23. Valid; Monday is outside of the days when the temperature drops below $32^{\circ} \mathrm{F}$, so it cannot be inside the days when it snows circle either, so the conclusion is valid.

25. Invalid; Sabrina could be inside just the nurses' circle or inside the intersection of the circles, so the conclusion is invalid.

(27) The given statement Ms. Rodriguez has just purchased a vehicle that has four-wheel drive satisfies the conclusion of the true conditional. However, having a true conditional and a true conclusion does not make the hypothesis true. Ms. Rodriguez's car might be in the Four-wheel-drive section of the diagram that is not a sport-utility vehicle. So, the conclusion is invalid.

29. no valid conclusion 31. no valid conclusion
33. If two lines are not parallel, then they intersect in a point. 35. Figure $A B C D$ has all sides congruent; Law of Detachment.
(37) You can reword the first given statement: If you are a ballet dancer, then you like classical music. Statement (1): If you are a ballet dancer, then you like classical music. Statement (2): If you like classical music, then you enjoy the opera. Since the conclusion of Statement (1) is the hypothesis of Statement (2), you can apply the Law of Syllogism. A valid conclusion: If you are a ballet dancer, then you enjoy the opera.
39. No valid conclusion; knowing a conclusion is true, does not imply the hypothesis will be true.

41a.

41b. Sample answer: About 91; inductive; a pattern was used to reach the conclusion. 41c. Sample answer: The player with 240 at bats got more hits; deductive; the facts provided in the table were used to reach the conclusion. 43. Law of Detachment: $[(p \rightarrow q) \wedge p] \rightarrow q$; Law of Syllogism: $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$
45. Jonah's statement can be restated as, "Jonah is in group B and Janeka is in group B." In order for this compound statement to be true, both parts of the statement must be true. If Jonah was in group A, he would not be able to say that he is in group B, since students in group A must always tell the truth.
Therefore the statement that Jonah is in group B is true. For the compound statement to be false, the statement that Janeka is in group B must be false. Therefore, Jonah is in group B and Janeka is in group A. 47. D 49. $\frac{26}{11}$ 51a. If you live in Hawaii or Arizona then you do not observe Daylight Savings Time.
51b. If you do not observe Daylight Savings Time, then you live in Hawaii or Arizona; true.
53.

\boldsymbol{p}	$\boldsymbol{\sim} \boldsymbol{p}$	\boldsymbol{q}	$\boldsymbol{\sim} \boldsymbol{q}$	$\boldsymbol{\sim} \boldsymbol{p}$ or $\boldsymbol{\sim q}$
T	F	T	F	F
T	F	F	T	T
F	T	T	F	T
F	T	F	T	T

55.

\boldsymbol{y}	$\boldsymbol{\sim y}$	\boldsymbol{z}	$\boldsymbol{\sim y}$ or \boldsymbol{z}
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	T

57. 18 59. Yes; the symbol denotes that $\angle D A B$ is a right angle. 61. Yes; the sum of their measures is $m \angle A D C$, which is 90. 63. No; we do not know $m \angle A B C$.
58. The left side and front side have a common edge line r. Planes P and Q only intersect along line r. Postulate 2.7, which states if two planes intersect, then their intersection is a line. 3. The front bottom edge of the figure is line n which contains points D, C, and E. Postulate 2.3 , which states a line contains at least two points. 5. Points D and E, which are on line n, lie in plane Q. Postulate 2.5 , which states that if two points lie in a plane, then the entire line containing those points lies in that plane.
(7) Postulate 2.7 states that if two planes intersect, then their intersection is a line. However, if three planes intersect, then their intersection may be a line or a point. So, the statement is sometimes true.
59. Always; Postulate 2.1 states through any two points, there is exactly one line. 11. Postulate 2.3; a line contains at least two points. 13. Postulate 2.4; a plane contains at least three noncollinear points. 15 . Since C is the midpoint of $\overline{A E}$ and $\overline{D B}, C A=C E=\frac{1}{2} A E$ and $C D=C B=\frac{1}{2} D B$ by the definition of midpoint. We are given $\overline{A E} \cong \overline{D B}$, so $A E=D B$ by the definition of congruent segments. By the multiplication property, $\frac{1}{2} D B=\frac{1}{2} A E$. So, by substitution, $A C=C B$. 17. The edges of the sides of the bottom layer of the cake intersect. Plane \mathcal{P} and Q of this cake intersect only once in line m. Postulate 2.7; if two planes intersect, then their intersection is a line. 19. The top edge of the bottom layer of the cake is a straight line n. Points C, D, and K lie along this edge, so they lie along line n. Postulate 2.3; a line contains at least two points.
(21) The bottom right part of the cake is a side. The side contains points K, E, F, and G and forms a plane. Postulate 2.2, which states that through any three noncollinear points, there is exactly one plane, shows that this is true.
60. The top edges of the bottom layer form intersecting lines. Lines $f i$ and g of this cake intersect only once at point J. Postulate 2.6; if two lines intersect, then their intersection is exactly one point. 25. Never; Postulate 2.1 states through any two points, there is exactly one line. 27. Always; Postulate 2.5 states if two points lie in a plane, then the entire line containing those points lies in that plane. 29. Sometimes; the points must be noncollinear.
61. Given: L is the midpoint of $\overline{J K}$.

Prove: $\overline{\overline{J K}}$ intersects $\overline{M K}$ at $K \cdot \overline{M K} \cong \overline{J L}$
Prove: $\overline{L K} \cong \overline{M K}$
Proof: We are given that L is the midpoint of $\overline{J K}$ and $\overline{M K} \cong \overline{J L}$. By the Midpoint Theorem, $\overline{J L} \cong \overline{L K}$. By the Transitive Property of Equality, $\overline{L K} \cong \overline{M K}$.
33a. Southside Blvd.; sample answer: Since there is a line between any two points, and Southside Blvd. is the line between point A and point B, it is the shortest route between the two. 33b. I-295
(35) Points E, F, and G lie along the same line.

Postulate 2.3 states that a line contains at least two points.
37. Postulate 2.1; through any two points, there is exactly one line. 39. Postulate 2.4; a plane contains at least three noncollinear points. 41. Postulate 2.7; if two planes intersect, then their intersection is a line. 43a. A

43b.

Number of Computers	Number of Connections
2	1
3	3
4	6
5	10
6	15

43c. $n-1$
43d. $\frac{n(n-1)}{2}$
45. Lisa is correct. Sample answer: The proof should begin with the given, which is that $\overline{A B}$ is congruent to $\overline{B D}$ and A, B, and D are collinear. Therefore, Lisa began the proof correctly. 47a. Plane Q is perpendicular to plane \mathcal{P}.

47b. Line a is
perpendicular to plane P. 49. Sometimes; three coplanar lines may have $0,1,2$, or 3 points of intersection, as shown in the figures below.
Postulates 2.1-2.5 were used. Through points A and B there is exactly one line, n, satisfying Postulate 2.1. For the noncollinear points A, B, and C there is exactly one plane, \mathcal{P},
 satisfying Postulate 2.2 . Line n contains points A and B, satisfying Postulate 2.3. Plane \mathcal{P} contains the noncollinear points A, B, and C, satisfying Postulate 2.4. Line n, containing points A and B, lies entirely in plane \mathcal{P}, satisfying Postulate 2.5. 51. A 53. H 55. no conclusion 57. If people are happy, then they rarely correct their faults. 59. True; M is on $\overline{A B}$ and $A M+M B=A B$, so $p \wedge q$ is true. $\quad \mathbf{6 1 . 1 9 m ; 2 0 m}$ of edging 63.5.5 65.2, -2

Lesson 2-6

1. Trans. Prop. 3. Sym. Prop.
2. Given: $\frac{y+2}{3}=3$

Prove: $y=7$

Proof:

Statements (Reasons)
a. $\frac{y+2}{3}=3$ (Given)
b. $3\left(\frac{y+2}{3}\right)=3$ (3) (Mult. Prop.)
c. $y+2=9$ (Subst.)
d. $y=7$ (Subt. Prop.)
7. Given: $\overline{A B} \cong \overline{C D}$

Prove: $x=7$
Proof:
Statements (Reasons)

1. $\overline{A B} \cong \overline{C D}$ (Given)
2. $A B=C D$ (Def. of congruent segments)
3. $4 x-6=22$ (Subst. Prop.)
4. $4 x=28$ (Add. Prop.)
5. $x=7$ (Div. Prop.)
6. Subt. Prop.
(11)

$4 x-5$	$=x+12$		Original equation
$4 x-5+5$	$=x+12+5$		Addition Property of Equality
$4 x$	$=x+17$		Simplify.

If $4 x-5=x+12$, then $4 x=x+17$ by the
Addition Property of Equality.
13. Dist. Prop. 15. Trans. Prop.
17. Given: $\frac{8-3 x}{4}=32$

Prove: $x=-40$
Proof:
Statements (Reasons)
a. $\frac{8-3 x}{4}=32$ (Given)
b. $4\left(\frac{8-3 x}{4}\right)=4$ (32) (Mult. Prop.)
c. $8-3 x=128$ (Subst.)
d. $-3 x=120$ (Subt. Prop.)
e. $x=-40$ (Div. Prop.)
19. Given: $-\frac{1}{3} n=12$

Prove: $n=-36$
Proof:
Statements (Reasons)

1. $-\frac{1}{3} n=12$ (Given)
2. $-3\left(-\frac{1}{3} n\right)=-3(12)$ (Mult. Prop.)
3. $n=-36$ (Subst.)
(21) a. Use properties of equality to justify each step in solving the equation for a.
Given: $d=v t+\frac{1}{2} a t^{2}$
Prove: $a=\frac{2 d-2 v t}{t^{2}}$

Proof:

Statements (Reasons)

1. $d=v t+\frac{1}{2} a t^{2}$ (Given)
2. $d-v t=v t-v t+\frac{1}{2} a t^{2}$ (Subtraction Property)
3. $d-v t=\frac{1}{2} a t^{2}$ (Substitution)
4. $2(d-v t)=2\left(\frac{1}{2} a t^{2}\right)$ (Multiplication Property)
5. $2(d-v t)=a t^{2}$ (Substitution)
6. $2 d-2 v t=a t^{2}$ (Distributive Property)
7. $\frac{2 d-2 v t}{t^{2}}=\frac{a t^{2}}{t^{2}}$ (Division Property)
8. $\frac{2 d-2 v t}{t^{2}}=a$ (Substitution)
9. $a=\frac{2 d-2 v t}{t^{2}}$ (Symmetric Property)
b. $a=\frac{2 d-2 v t}{t^{2}} \quad$ Given

$$
\begin{array}{ll}
=\frac{2(2850)-2(50)(30)}{30^{2}} & d=2850, t=30, v=50 \\
=3 & \text { Simplify. }
\end{array}
$$

The acceleration of the object is $3 \mathrm{ft} / \mathrm{s}^{2}$. The Substitution Property of Equality justifies this calculation.
23. Given: $\overline{D F} \cong \overline{E G}$

Prove: $x=10$
Proof:
Statements (Reasons)

1. $\overline{D F} \cong \overline{E G}$ (Given)
2. $D F=E G$ (Def. of \cong segs)
3. $11=2 x-9$ (Subst.)
4. $20=2 x$ (Add. Prop.)
5. $10=x$ (Div. Prop.)
6. $x=10$ (Symm. Prop.)
(25) Use properties of equality and the definition of congruent angles to justify each step in proving $x=100$.
Given: $\angle Y \cong \angle Z$
Prove: $x=100$
Proof:
Statements (Reasons)
7. $\angle Y \cong \angle Z$ (Given)
8. $m \angle Y=m \angle Z$ (Definition of $\cong \angle s$)
9. $x+10=2 x-90$ (Substitution)
10. $10=x-90$ (Subtraction Property)
11. $100=x$ (Addition Property)
12. $x=100$ (Symmetric Property)

27a. Given: $V=\frac{P}{I}$
Prove: $\frac{V}{2}=\frac{P}{2 I}$
Proof:
Statements (Reasons)

1. $V=\frac{P}{I}$ (Given)
2. $\frac{1}{2} \cdot V=\frac{1}{2} \cdot \frac{P}{I}$ (Mult. Prop.)
3. $\frac{V}{2}=\frac{P}{2 I}$ (Mult. Prop.)

27b. Given: $V=\frac{P}{I}$
Prove: $2 V=\frac{2 P}{I}$
Proof:
Statements (Reasons)

1. $V=\frac{P}{I}$ (Given)
2. $2 \cdot V=2 \cdot \frac{P}{I}$ (Mult. Prop)
3. $2 V=\frac{2 P}{I}$ (Mult. Prop.)
4. Given: $c^{2}=a^{2}+b^{2}$

Prove: $a=\sqrt{c^{2}-b^{2}}$
Proof:
Statements (Reasons)

1. $a^{2}+b^{2}=c^{2}$ (Given)
2. $a^{2}+b^{2}-b^{2}=c^{2}-b^{2}$ (Subt. Prop.)
3. $a^{2}=c^{2}-b^{2}$ (Subs.)
4. $a= \pm \sqrt{c^{2}-b^{2}}$ (Sq. Root Prop.)
5. $a=\sqrt{c^{2}-b^{2}}$ (Length cannot be negative.)
(31) The relation "is taller than" is not an equivalence relation because it fails the Reflexive and Symmetric properties. You cannot be taller than yourself (reflexive); if you are taller than your friend, then it does not imply that your friend is taller than you (symmetric).
6. The relation " \neq " is not an equivalence relation because it fails the Reflexive Property, since $a \neq a$ is not true. 35. The relation " \approx " is not an equivalence relation because it fails the Reflexive Property, since $a \approx a$ is not true.
7. Given: $A P=2 x+3, P B=\frac{3 x+1}{2}, A B=10.5$ Prove: $\frac{A P}{A B}=\frac{2}{3}$
Proof:
Statements (Reasons)
8. $A P=2 x+3, P B=\frac{3 x+1}{2}$, $A B=10.5$ (Given)
9. $A P+P B=A B$ (Def. of a segment)
10. $2 x+3+\frac{3 x+1}{2}=10.5$ (Subt.)
11. $2 \cdot\left(2 x+3+\frac{3 x+1}{2}\right)=2 \cdot 10.5$ (Mult. Prop.)
12. $2 \cdot\left(2 x+3+\frac{3 x+1}{2}\right)=21$ (Subst.)
13. $2 \cdot 2 x+2 \cdot 3+2 \cdot \frac{3 x+1}{2}=21$ (Dist. Prop.)
14. $4 x+6+3 x+1=21$ (Mult. Prop.)
15. $7 x+7=21$ (Add. Prop.)
16. $7 x+7-7=21-7$ (Subt. Prop.)
17. $7 x=14$ (Subs.)
18. $x=2$ (Div. Prop.)
19. $A P=2(2)+3$ (Subst.)
20. $A P=4+3$ (Mult. Prop.)
21. $A P=7$ (Add. Prop.)
22. $\frac{A P}{A B}=\frac{7}{10.5}$ (Subst.)
23. $\frac{A P}{A B}=0 . \overline{6}$ (Div. Prop.)
24. $\frac{2}{3}=0 . \overline{6}$ (Div. Prop.)
25. $\frac{A P}{A B}=\frac{2}{3}$ (Trans. Prop.)
26. Sometimes; sample answer: If $a^{2}=1$ and $a=1$, then $b=\sqrt{1}$ or 1 . The statement is also true if $a=-1$, then $b=1$. If $b=1$, then $\sqrt{b}=1$ since the square root of a number is nonnegative. Therefore, the statement is sometimes true. 41. Sample answer: Depending on the purpose of the proof, one format may be preferable
to another. For example, when writing an informal proof, you could use a paragraph proof to quickly convey your reasoning. When writing a more formal proof, a two-column proof may be preferable so that the justifications for each step are organized and easy to follow. 43. 83° 45. E 47. Never; the sum of the measure of two supplementary angles is 180 , so two obtuse angles can never be supplementary. 49. Yes, by the Law of Detachment. 51. $(4,-3) \quad 53 .(1,2)$
27. $(-1,-1)$
57.2 .4 cm

Lesson 2-7

1. Given: $\overline{L K} \cong \overline{N M}, \overline{K J} \cong \overline{M J}$

Prove: $\overline{L J} \cong \overline{N J}$
Proof:
Statements (Reasons)
a. $\overline{L K} \cong \overline{N M}, \overline{K J} \cong \overline{M J}$ (Given)
b. $L K=N M, K J=M J$ (Def. of \cong segs. $)$
c. $L K+K J=N M+M J$ (Add. Prop.)
d. $L J=L K+K J ; N J=N M+M J$ (Seg. Add. Post.)
e. $L J=N J$ (Subst.)
f. $\overline{L J} \cong \overline{N J}$ (Def. of \cong segs.)
(3) Use the definition of congruent segments and the Substitution Property of Equality.
Given: $\overline{A R} \cong \overline{C R} ; \overline{D R} \cong \overline{B R}$
Prove: $A R+D R \cong C R+B R$
Proof:

Statements (Reasons)

1. $\overline{A R} \cong \overline{C R}, \overline{D R} \cong \overline{B R}$ (Given)
2. $A R=C R, D R=B R$ (Definition of \cong segments)
3. $A R+D R=A R+B R$ (Addition Property)
4. $A R+D R=C R+B R$ (Substitution Property)
5. Given: $\overline{A B} \cong \overline{C D}, A B+C D=E F$

Prove: $2 A B=E F$
Proof:
Statements (Reasons)

1. $\overline{A B} \cong \overline{C D}, A B+C D=E F$ (Given)
2. $A B=C D$ (Def. of \cong segs.)
3. $A B+A B=E F$ (Subst.)
4. $2 A B=E F$ (Subst.)
(7) Use the Reflexive Property of Equality and the definition of congruent segments.
Given: $\overline{A B}$
Prove: $\overline{A B} \cong \overline{A B}$
Proof:
Statements (Reasons)
5. $\overline{A B}$ (Given)
6. $\overline{A B}=\underline{A B}$ (Reflexive Property)
7. $\overline{A B} \cong \overline{A B}$ (Definition of \cong segments)
8. Given: $\overline{S C} \cong \overline{H R}$ and $\overline{H R} \cong \overline{A B}$

Prove: $\overline{S C} \cong \overline{A B}$
Proof:
Statements (Reasons)

1. $\overline{S C} \cong \overline{H R}$ and $\overline{H R} \cong \overline{A B}$ (Given)
2. $S C=H R$ and $H R=A B$ (Def. of \cong segs.)
3. $S C=A B$ (Trans. Prop.)
4. $\overline{S C} \cong \overline{A B}$ (Def. of \cong segs.)
5. Given: E is the midpoint of $\overline{D F}$ and $\overline{C D} \cong \overline{F G}$.

Prove: $\overline{C E} \cong \overline{E G}$
Proof:
Statements (Reasons)

1. E is the midpoint of $\overline{D F}$ and $\overline{C D} \cong \overline{F G}$. (Given)
2. $D E=E F$ (Def. of midpoint)
3. $C D=F G$ (Def. of \cong segs.)
4. $C D+D E=E F+F G$ (Add. Prop.)
5. $C E=C D+D E$ and $E G=E F+F G$
(Seg. Add. Post.)
6. $C E=E G$ (Subst.)
7. $\overline{C E} \cong \overline{E G}$ (Def. of \cong segs.)

13a. Given: $\overline{A C} \cong \overline{G I}, \overline{F E} \cong \overline{L K}, A C+C F+F E=G I+$ $I L+L K$
Prove: $\overline{C F} \cong \overline{I L}$
Proof:
Statements (Reasons)

1. $\overline{A C} \cong \overline{G I}, \overline{F E} \cong \overline{L K}, A C+C F+F E=G I+I L+$ LK (Given)
2. $A C+C F+F E=A C+I L+L K$ (Subst.)
3. $A C-A C+C F+F E=A C-A C+I L+L K$
(Subt. Prop.)
4. $C F+F E=I L+L K$ (Subst.)
5. $C F+F E=I L+F E$ (Subs.)
6. $C F+F E-F E=I L+F E-F E$ (Subt. Prop.)
7. $C F=I L$ (Subst.)
8. $\overline{C F} \cong \overline{I L}$ (Def. of \cong segs.)

13b. Sample answer: I measured $\overline{C F}$ and $\overline{I L}$, and both were 1.5 inches long, so the two segments are congruent.
(15) a. Use the definition of midpoint and the segment addition postulate to prove.
Given: $\overline{S H} \cong \overline{T F} ; P$ is the midpoint of $\overline{S H}$ and $\overline{T F}$.
Prove: $\overline{S P} \cong \overline{T P}$
Proof:

Statements (Reasons)

1. $\overline{S H} \cong \overline{T F}, P$ is the midpoint of $\overline{S H}, P$ is the midpoint of $\overline{T F}$. (Given)
2. $S H=T F$ (Definition of \cong segments)
3. $S P=P H, T P=P F$ (Definition of midpoint)
4. $S H=S P+P H, T F=T P+P F$ (Segment

Addition Postulate)
5. $S P+P H=T P+P F$ (Substitution)
6. $S P+S P=T P+T P$ (Substitution)
7. $2 S P=2 T P$ (Substitution)
8. $S P=T P$ (Division Property)
9. $\overline{S P} \cong \overline{T P}$ (Definition of \cong segments)
b. $S P=\frac{1}{2} S H \quad$ Definition of midpoint

$$
=\frac{1}{2}(127.3) \text { or } 63.54 \quad \text { Substitution }
$$

Since $\overline{T F} \cong \overline{S H}$, then $F P=S P=63.54$.
Since $\triangle S P F$ is a right triangle, use the Pythagorean Theorem to find $S F$, the distance from first base to second base.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} & & \text { Pythagorean Theorem } \\
S F^{2} & =S P^{2}+F P^{2} & & \text { Substitution } \\
S F^{2} & =63.54^{2}+63.54^{2} & & \text { Substitution }
\end{aligned}
$$

$S F^{2} \approx 8074.6632$
$S F \approx 90$

Simplify.
Take the positive square root of each side.

The distance from first base to second base is about 90 feet.
17. Neither; since $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{B F}$, then $\overline{A B} \cong \overline{B F}$ by the Transitive Property of Congruence.
19. No; congruence refers to segments. Segments cannot be added, only the measures of segments.
21.

23. D $\quad 25.18$
27. Given: $A C=D F, A B=D E$

Prove: $B C=E F$
Proof:
Statements (Reasons)

1. $A C=D F, A B=D E$ (Given)
2. $A C=A B+B C ; D F=D E+E F$ (Seg. Add. Post.)
3. $A B+B C=D E+E F$ (Subst.)
4. $B C=E F$ (Subt. Prop.)
$\begin{array}{llll}\text { 29. 60, 30, 90, 60, 120, } 60 & 31.9 \sqrt{2} & 33.3 y^{4} \sqrt{5 x} & 35.8\end{array}$
Lesson 2-8
(1) $m \angle 1=90$ because $\angle 1$ is a right angle.

$$
\begin{aligned}
m \angle 2+m \angle 3 & =90 & & \text { Complement Theoren } \\
26+m \angle 3 & =90 & & m \angle 2=26 \\
26+m \angle 3-26 & =90-26 & & \text { Subtraction Property } \\
m \angle 3 & =64 & & \text { Substitution }
\end{aligned}
$$

3. $m \angle 4=114, m \angle 5=66$; Suppl. Thm.
4. Given: $\angle 2 \cong \angle 6$

Prove: $\angle 4 \cong \angle 8$
Proof:
Statements (Reasons)

1. $\angle 2 \cong \angle 6$ (Given)
2. $m \angle 2+m \angle 4=180, m \angle 6+m \angle 8=180$
(Suppl. Thm.)
3. $m \angle 2+m \angle 8=180$ (Subst.)
4. $m \angle 2-m \angle 2+m \angle 4=180-m \angle 2, m \angle 2-m \angle 2+$ $m \angle 8=180-m \angle 2$ (Subt. Prop.)
5. $m \angle 4=180-m \angle 2, m \angle 8=180-m \angle 2$ (Subt. Prop.)
6. $m \angle 4=m \angle 8$ (Subst.)
7. $\angle 4 \cong \angle 8$ (Def. $\cong \angle$ s $)$
8. Given: $\angle 4 \cong \angle 7$

Prove: $\angle 5 \cong \angle 6$
Proof:
Statements (Reasons)

1. $\angle 4 \cong \angle 7$ (Given)
2. $\angle 4 \cong \angle 5$ and $\angle 6 \cong \angle 7$ (Vert. \&s Thm.)
3. $\angle 7 \cong \angle 5$ (Subst.)
4. $\angle 5 \cong \angle 6$ (Subst.)
5. $m \angle 3=62, m \angle 1=m \angle 4=45$ (\cong Comp. and Suppl.

Thm.) 11. $m \angle 9=156, m \angle 10=24$ (\cong Suppl. Thm.)
(13)

$$
\begin{aligned}
m \angle 6+m \angle 7 & =180 & & \text { Supplement Thm. } \\
2 x-21+3 x-34 & =180 & & \text { Substitution } \\
5 x-55 & =180 & & \text { Substitution } \\
5 x-55+55 & =180+55 & & \text { Addition Property } \\
5 x & =235 & & \text { Substitution }
\end{aligned}
$$

$$
\begin{aligned}
\frac{5 x}{5} & =\frac{235}{5} & & \text { Division Property } \\
x & =47 & & \text { Substitution }
\end{aligned}
$$

$m \angle 6=2 x-21 \quad$ Given
$m \angle 6=2(47)-21$ or 73 Substitution
$m \angle 7=3 x-34 \quad$ Given
$m \angle 7=3(47)-34$ or 107 Substitution
$\angle 8 \cong \angle 6 \quad$ Vertical Angles Theorem
$m \angle 8=m \angle 6 \quad$ Definition of $\cong \angle s$
$=73$ Substitution
15. Given: $\angle 5 \cong \angle 6$

Prove: $\angle 4$ and $\angle 6$ are supplementary.
Proof:
Statements (Reasons)

1. $\angle 5 \cong \angle 6$ (Given)
2. $m \angle 5=m \angle 6$ (Def. of $\cong \angle s)$
3. $\angle 4$ and $\angle 5$ are supplementary. (Def. of linear pairs)
4. $m \angle 4+m \angle 5=180$ (Def. of $\angle s)$
5. $m \angle 4+m \angle 6=180$ (Subst.)
6. $\angle 4$ and $\angle 6$ are supplementary. (Def. of $\angle \leqslant$)
7. Given: $\angle A B C$ is a right angle.

Prove: $\angle 1$ and $\angle 2$ are complementary angles.
Proof:

Statements (Reasons)

1. $\angle A B C$ is a right angle. (Given)
2. $m \angle A B C=90$ (Def. of rt. $\angle s$)
3. $m \angle A B C=m \angle 1+m \angle 2$ (\angle Add. Post.)
4. $90=m \angle 1+m \angle 2$ (Subst.)
5. $\angle 1$ and $\angle 2$ are complementary angles. (Def. of comp. \&s)
6. Given: $\angle 1 \cong \angle 2, \angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 3$
Proof:

Statements (Reasons)

1. $\angle 1 \cong \angle 2, \angle 2 \cong \angle 3$ (Given)
2. $m \angle 1=m \angle 2, m \angle 2=m \angle 3$ (Def. of $\cong \angle s)$
3. $m \angle 1=m \angle 3$ (Trans. Prop.)
4. $\angle 1 \cong \angle 3$ (Def. of $\cong \angle s)$
5. Given: $\angle 1 \cong \angle 4$

Prove: $\angle 2 \cong \angle 3$
Proof:
Statements (Reasons)

1. $\angle 1 \cong \angle 4$ (Given)
2. $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$ (Vert. \measuredangle s are \cong.)
3. $\angle 1 \cong \angle 3$ (Trans. Prop.)
4. $\angle 2 \cong \angle 3$ (Subst.)
5. Given: $\angle 1$ and $\angle 2$ are rt. $\angle \mathrm{s}$.

Prove: $\angle 1 \cong \angle 2$
Proof:

Statements (Reasons)

1. $\angle 1$ and $\angle 2$ are rt. $\angle s$. (Given)
2. $m \angle 1=90, m \angle 2=90$ (Def. of rt. $\angle s$)
3. $m \angle 1=m \angle 2$ (Subst.)
4. $\angle 1 \cong \angle 2$ (Def. of $\cong \angle s$)
5. Given: $\angle 1 \cong \angle 2, \angle 1$ and $\angle 2$ are supplementary.
Prove: $\angle 1$ and $\angle 2$ are rt. \angle s.
Proof:
Statements (Reasons)

6. $\angle 1 \cong \angle 2, \angle 1$ and $\angle 2$ are supplementary. (Given)
7. $m \angle 1+m \angle 2=180$ (Def. of supp. $\stackrel{\text { B }}{ }$)
8. $m \angle 1=m \angle 2($ Def. of $\cong \angle s)$
9. $m \angle 1+m \angle 1=180$ (Subst.)
10. $2(m \angle 1)=180$ (Subst.)
11. $m \angle 1=90$ (Div. Prop.)
12. $m \angle 2=90$ (Subst. (steps 3, 6))
13. $\angle 1$ and $\angle 2$ are rt. $\angle \mathrm{s}$. (Def. of rt. $\stackrel{\text { s }}{ }$)
14. Since the path of the pendulum forms a right angle, $\angle A B C$ is a right angle, or measures $90 . \overrightarrow{B R}$ divides $\angle A B C$ into $\angle A B R$ and $\angle C B R$. By the Angle Addition Postulate, $m \angle A B R+m \angle C B R=m \angle A B C$, and, using substitution, $m \angle A B R+m \angle C B R=90$. Substituting again, $m \angle 1+m \angle 2=90$. We are given that $m \angle 1$ is 45°, so, substituting, $45+m \angle 2=90$. Using the Subtraction Property, $45-45+m \angle 2=90-45$, or $m \angle 2=45$. Since $m \angle 1$ and $m \angle 2$ are equal, $\overrightarrow{B R}$ is the bisector of $\angle A B C$ by the definition of angle bisector.
(29) To prove lines ℓ and m are perpendicular, show that $\angle 1, \angle 3$, and $\angle 4$ are right $\stackrel{\Delta}{ }$.
Given: $\angle 2$ is a right angle.
Prove: $\ell \perp m$
Proof:

Statements (Reasons)

1. $\angle 2$ is a right angle. (Given)
2. $m \angle 2=90$ (Definition of a rt. \angle)
3. $\angle 2 \cong \angle 3$ (Vert. \angle s are \cong.)
4. $m \angle 3=90$ (Substitution)
5. $m \angle 1+m \angle 2=180$ (Supplement Theorem)
6. $m \angle 1+90=180$ (Substitution)
7. $m \angle 1+90-90=180-90$ (Subtraction

Property)
8. $m \angle 1=90$ (Substitution)
9. $\angle 1 \cong \angle 4$ (Vertical \angle are \cong.)
10. $\angle 4 \cong \angle 1$ (Symmetric Property)
11. $m \angle 4=m \angle 1$ (Definition of $\cong \angle s$)
12. $m \angle 4=90$ (Substitution)
13. $\ell \perp m(\perp$ lines intersect to form four r. $\& s$.
31. Given: $\overrightarrow{X Z}$ bisects $\angle W X Y$, and $m \angle W X Z=45$.

Prove: $\angle W X Y$ is a right angle.
Proof:
Statements (Reasons)

1. $\overline{X Z}$ bisects $\angle W X Y$ and $m \angle W X Z=45$. (Given)
2. $\angle W X Z \cong \angle Z X Y$ (Def. of \angle bisector)
3. $m \angle W X Z=m \angle Z X Y$ (Def. of $\cong \angle s)$
4. $m \angle Z X Y=45$ (Subst.)
5. $m \angle W X Y=m \angle W X Z+m \angle Z X Y$ (\angle Add. Post.)
6. $m \angle W X Y=45+45$ (Subst.)
7. $m \angle W X Y=90$ (Subst.)
8. $\angle W X Y$ is a right angle. (Def. of rt. $₫$)
9. Each of these theorems uses the words "or to congruent angles" indicating that this case of the theorem must also be proven true. The other proofs only
addressed the "to the same angle" case of the theorem.

Given: $\angle A B C \cong \angle D E F, \angle G H I$ is complementary to $\angle A B C, \angle J K L$ is complementary to $\angle D E F$.
Prove: $\angle G H I \cong \angle J K L$
Proof:

Statements (Reasons)

1. $\angle A B C \cong \angle D E F, \angle G H I$ is complementary to $\angle A B C, \angle J K L$ is complementary to $\angle D E F$. (Given)
2. $m \angle A B C+m \angle G H I=90, \angle D E F+\angle J K L=90$
(Def. of compl. \measuredangle)
3. $m \angle A B C+m \angle J K L=90$ (Subst.)
4. $90=m \angle A B C+m \angle J K L$ (Symm. Prop.)
5. $m \angle A B C+m \angle G H I=m \angle A B C+m \angle J K L$
(Trans. Prop.)
6. $m \angle A B C-m \angle A B C+m \angle G H I=m \angle A B C-$ $m \angle A B C+m \angle J K L$ (Subt.)
7. $m \angle G H I=m \angle J K L$ (Subst.)
8. $\angle G H I \cong \angle J K L$ (Def. of $\cong \angle s)$

Given: $\angle A B C \cong \angle D E F, \angle G H I$ is supplementary to $\angle A B C, \angle J K L$ is supplementary to $\angle D E F$.
Prove: $\angle G H I \cong \angle J K L$
Proof:

Statements (Reasons)

1. $\angle A B C \cong \angle D E F, \angle G H I$ is supplementary to $\angle A B C, \angle J K L$ is supplementary to $\angle D E F$. (Given) 2. $m \angle A B C+m \angle G H I=180, m \angle D E F+m \angle J K L=$ 180 (Def. of suppl. $\angle \mathrm{s}$)
2. $m \angle A B C+m \angle J K L=180$ (Subst.)
3. $180=m \angle A B C+m \angle J K L$ (Symm. Property)
4. $m \angle A B C+m \angle G H I=m \angle A B C+m \angle J K L$
(Trans. Prop.)
5. $m \angle A B C-m \angle A B C+m \angle G H I=m \angle A B C-$ $m \angle A B C+m \angle J K L$ (Subt.)
6. $m \angle G H I=m \angle J K L$ (Subst.)
7. $\angle G H I \cong \angle J K L$ (Def. of $\cong \measuredangle s)$
8. Sample answer: Since protractors have the scale for both acute and obtuse angles along the top, the supplement is the measure of the given angle on the other scale. 37. A 39. B 41. Subtratcion Prop.
9. Substitution 45. true 47. true 49. line $n \quad 51$. point W 53. Yes; it intersects both m and n when all three lines are extended.

Chapter 2 Study Guide and Review

$\begin{array}{lllll}\text { 1. false; theorem } & \text { 3. true } & \text { 5. true } & \text { 7. true } & 9 . \text { false; }\end{array}$ negation 11. false; two nonadjacent supplementary angles 13. Sample answer: Dogs or other pets may threaten or chase wildlife that might not be present in his local park. 15. A plane contains at least three
noncollinear points and the sum of the measures of two complementary angles is not 180; true.
$\begin{array}{lllll}17 a . ~ & 18 & 17 b .14 & 17 c .22 & \text { 19. true }\end{array}$ 21. $P Q R S$ is a parallelogram; Law of Detachment. 23. valid; Law of Detachment $\mathbf{2 5}$. Sometimes; if the three points are collinear, they will be contained in multiple planes, but if they are noncollinear, they will be contained in only one plane. 27. Sometimes; if the angles are adjacent, they will form a right angle, but if they are not adjacent, they will not. 29. Symmetric
31. Distributive Property 33. Transitive Property
35. Statements (Reasons)

1. $P Q=R S, P Q=5 x+9, R S=x-31$ (Given)
2. $5 x+9=x-31$ (Subst.)
3. $4 x=9=-31$ (Subt.)
4. $4 x=-40$ (Subt. Prop.)
5. $x=-10$ (Div. Prop.)
6. Statements (Reasons)
7. X is the midpoint of $\overline{W X}$ and $\overline{V Z}$. (Given)
8. $\overline{W X} \cong \overline{Y X}, \overline{V X} \cong \overline{Z X}$ (Def. of midpoint)
9. $W X=Y X, V X=Z X($ Def. of $\cong)$
10. $V X=V W=W X, Z X=Z Y+Y X$ (Seg. Add.

Post.)
5. $V W+W X=Z Y+Y X$ (Subs.)
6. $V W=Z Y$ (Subt. Prop.)
39. Segment Addition Postulate 41.127
43. Statements (Reasons)

1. $\angle 1 \cong \angle 4, \angle 2 \cong \angle 3$ (Given)
2. $m \angle 1=m \angle 4, m \angle 2=m \angle 3$ (Def. of \cong)
3. $m \angle 1+m \angle 2=m \angle 3+m \angle 4$ (Add. Prop.)
4. $m \angle 1+m \angle 2=m \angle A F C, m \angle 3+m \angle 4=m \angle E F C$ (\angle Add. Post.)
5. $m \angle A F C=m \angle E F C$ (Subst.)
6. $\angle A F C=\angle E F C($ Def. of $\cong)$

CHAPTER 3
 Parallel and Perpendicular LInes

Chapter 3 Get Ready
1.4 3. Yes, points C and D lie in plane $C B D$.
5.142 7.90
9. -1
11. $\frac{1}{3}$

Lesson 3-1

1. TUV 3 3. $\overline{Y X}, \overline{T U}, \overline{Z W}$

(5) Angle $\angle 1$ and $\angle 8$ are nonadjacent exterior angles that lie on opposite sides of the transversal. So, they are alternate exterior angles.
7. alternate interior 9 . line n; corresponding
11. line m; consecutive interior $13 . \overline{C L}, \overline{E N}, \overline{B K}, \overline{A J}$
(15) The segments that do not intersect $\overline{B C}$ and are not in the same plane as $\overline{B C}$ are skew to $\overline{B C}$. Any of the following are skew to $\overline{B C}: \overline{E N}, \overline{A J}, \overline{D M}, \overline{N M}$, $\overline{N J}, \overline{J K}$, or $\overline{M L}$.
17. $\overline{K L}, \overline{C L}, \overline{B K}, \overline{M L}, \overline{D M}, \overline{N M}, \overline{K J}$ 19. $\overline{J K}$ 21. line s; corresponding 23. line t; alternate interior 25. line t; alternate exterior 27. line t; consecutive interior
29. line s; alternate exterior
31. line a; vertical
33. line c; alternate interior
35. line f; corresponding

37a. Sample answer: Since the lines are coplanar and they cannot touch, they are parallel. 37b. Line q is a transversal of lines p and m. 39. skew 41. parallel
43. intersecting
(45) a. The treads, or the upper horizontal parts of the stairs, are parallel. b. The treads of the two steps at the top of the incline lie in the same plane. So, they are coplanar. c. The treads of the steps on the incline of the escalator do not intersect and are not parallel to the treads of the steps on the bottom of the conveyor. So, they are skew.
47a.

47b. parallel 47c. skew 49. Sometimes; $\overleftrightarrow{A B}$ intersects $\overleftrightarrow{E F}$ depending on where the planes intersect. 51. B 53. $(0,4),(-6,0) \quad$ 55. $m \angle 9=86$, $m \angle 10=94 \quad$ 57. $m \angle 19=140, m \angle 20=40$
$59.3 .75 \quad 61.90 \quad 63.45$

Lesson 3-2

1. 94; Corresponding Angle Postulate 3. 86; Corresponding Angle Postulate and Supplement Angle Theorem 5.79; Vertical Angle Theorem, Consecutive Interior Angles Theorem 7. $m \angle 2=93$, $m \angle 3=87, m \angle 4=87 \quad$ 9. $x=114$ by the Alternate Exterior Angles Theorem 11.62; Corresponding Angles Postulate 13.118; Def. of Supplementary Angles 15.38; Corresponding Angles Postulate 17. 142; Supplement Angles Theorem 19.38; Alternate Exterior Angles Postulate
(21) If the radiation rays form parallel lines, then $\angle 1$ and $\angle 3$ are corresponding angles. So, according to the Corresponding Angles Postulate, $\angle 1$ and $\angle 3$ are congruent.
2. Supplementary; since $\angle 3$ and $\angle 5$ are a linear pair, they are supplementary. $\angle 4$ and $\angle 5$ are congruent because they are alternate exterior angles, so $\angle 3$ is supplementary to $\angle 4$.

$$
\begin{aligned}
& \text { (25) } \begin{aligned}
& 3 x-15=105 \quad \text { Corresponding Angles Postulate } \\
& 3 x=120 \quad \text { Add } 15 \text { to each side. } \\
& x=40 \quad \text { Divide each side by } 3 . \\
&(3 x-15)+(y+25)=180 \quad \text { Supplement Theorem } \\
& 105+y+25=180 \quad \text { Substitution }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
y+130 & =180 & & \text { Simplify. } \\
y & =50 & & \text { Subtract } 130 \text { from each side. }
\end{aligned}
$$

So, $x=40$ by the Corresponding Angles Postulate; $y=50$ by the Supplement Theorem.
27. $x=42$ by the Consecutive Interior Angles Theorem; $y=14$ by the Consecutive Interior Angles Theorem
29. $x=60$ by the Consecutive Interior Angles Theorem; $y=10$ by the Supplement Theorem 31. Congruent; Alternate Interior Angles 33. Congruent; vertical angles are congruent.
35. Given: $\ell \| m$

Prove: $\angle 1 \cong \angle 8$ $\angle 2 \cong \angle 7$
Proof:
Statements (Reasons)

1. $\ell \| m$ (Given)
2. $\angle 1 \cong \angle 5$, $\angle 2 \cong \angle 6$ (Corr. $\& s$ Post.)
3. $\angle 5 \cong \angle 8$, $\angle 6 \cong \angle 7$
(Vertical \& Thm.)
4. $\angle 1 \cong \angle 8$, $\angle 2 \cong \angle 7$
(Trans. Prop.)
5. Given: $m \| n, t \perp m$

Prove: $t \perp n$
Proof:
Statements (Reasons)

1. $m \| n, t \perp m$ (Given)
2. $\angle 1$ is a right angle.
(Def. of \perp)
3. $m \angle 1=90$ (Def. of rt. $\angle \stackrel{s}{ }$)
4. $\angle 1 \cong \angle 2$ (Corr. \angle Post.)
5. $m \angle 1=m \angle 2$ (Def. of $\cong \angle s)$

6. $m \angle 2=90$ (Subst.)
7. $\angle 2$ is a right angle. (Def. of rt. $\stackrel{\boxed{ }}{ }$)
8. $t \perp n$ (Def. of \perp lines)
(39) Draw a line parallel to the two given lines and label angles $1,2,3$, and 4 . So, $x=m \angle 2+m \angle 3$.

$m \angle 1=105$ because vertical angles are congruent and their measures are equal. $\angle 1$ and $\angle 2$ are supplementary by the Consecutive Interior Angles Theorem.

$$
\begin{aligned}
m \angle 1+m \angle 2 & =180 & & \text { Definition of supplementary angles } \\
105+m \angle 2 & =180 & & \text { Substitution } \\
m \angle 2 & =75 & & \text { Subtract } 105 \text { from each side. }
\end{aligned}
$$

$m \angle 4=125$ because vertical angles are congruent
and their measures are equal. $\angle 3$ and $\angle 4$ are supplementary by the Consecutive Interior Angles Theorem.

$$
\begin{aligned}
m \angle 3+m \angle 4 & =180 \quad \text { Definition of supplementary angles } \\
m \angle 3+125 & =180 \quad \text { Substitution } \\
m \angle 3 & =55 \quad \text { Subtract } 125 \text { from each side. } \\
m \angle 2+m \angle 3 & =x \quad \text { Angle Addition Postulate } \\
75+55 & =x \quad \text { Substitution } \\
130 & =x \quad \text { Simplify. }
\end{aligned}
$$

41a. Sample answer for m and n :

41b. Sample answer:

$\boldsymbol{m} \angle \mathbf{1}$	$\boldsymbol{m} \angle \mathbf{2}$	$\boldsymbol{m} \angle \mathbf{3}$	$\boldsymbol{m} \angle \mathbf{4}$
60	120	60	120
45	135	45	135
70	110	70	110
90	90	90	90
25	155	25	155

41c. Sample answer: Angles on the exterior of a pair of parallel lines located on the same side of the transversal are supplementary. 41d. Inductive; a pattern was used to make a conjecture.
41e. Given: parallel lines m and n cut by transversal t
Prove: $\angle 1$ and $\angle 4$
are supplementary.

Proof:

Statements (Reasons)

1. Lines m and n are parallel and cut by transversal t. (Given)
2. $m \angle 1+m \angle 2=180$ (Suppl. Thm.)
3. $\angle 2 \cong \angle 4$ (Corr. $\angle s$ are \cong.)
4. $m \angle 2=m \angle 4$ (Def. of congruence)
5. $m \angle 1+m \angle 4=180$ (Subst.)
6. $\angle 1$ and $\angle 4$ are supplementary. (Definition of supplementary angles)
7. In both theorems, a pair of angles is formed when two parallel lines are cut by a transversal. However, in the Alternate Interior Angles Theorem, each pair of alternate interior angles that is formed are congruent, whereas in the Consecutive Interior Angles Theorem, each pair of angles formed is supplementary.
8. $x=171$ or $x=155 ; y=3$ or $y=5 \quad$ 47. $\mathrm{C} \quad$ 49. I and II 51. Skew lines; the planes are flying in different directions and at different altitudes.
9. $m \angle 6=43, m \angle 7=90$
$55.15 \quad 57 . \frac{7}{3}$
59.1
10. $-\frac{3}{5}$

Lesson 3-3

1. $-1 \quad 3 . \frac{6}{5}$
(5) slope of $\overleftrightarrow{W X}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Slope formula

$$
\begin{array}{ll}
=\frac{5-4}{4-2} & \left(x_{1}, y_{1}\right)=(2,4),\left(x_{2}, y_{2}\right)=(4,5) \\
=\frac{1}{2} & \text { Simplify. }
\end{array}
$$

slope of $\overleftrightarrow{Y Z}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Slope formula

$$
\begin{aligned}
& =\frac{-7-1}{8-4} & & \begin{array}{l}
\left(x_{1}, y_{1}\right)=(4,1), \\
\left(x_{2}, y_{2}\right)=(8,-7)
\end{array} \\
& =\frac{-8}{4} \text { or }-2 & & \text { Simplify. }
\end{aligned}
$$

Since the product of the slopes is $-1, \overleftrightarrow{W X}$ is perpendicular to $\overleftrightarrow{Y Z}$.

7. parallel

9.

11.

(13) Substitute $(-3,1)$ for $\left(x_{1}, y_{1}\right)$ and $(4,-2)$ for $\left(x_{2}, y_{2}\right)$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & \text { Slope formula } \\
& =\frac{-2-1}{4-(-3)} & & \text { Substitution } \\
& =-\frac{3}{7} & & \text { Simplify. }
\end{aligned}
$$

15.8 17. undefined $19.1 \quad 21.0 \quad$ 23. undefined 25. $-\frac{1}{6}$

27a.

27b. $\$ 41.50$
27c. $\$ 84$
31. perpendicular

35.

37.

39.

41. Line 2
(43) slope of Line $1=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Slope formula

$$
\begin{array}{ll}
=\frac{0-(-4)}{7-(-9)} & \left(x_{1}, y_{1}\right)=(-9,-4), \\
\left(x_{2}, y_{2}\right)=(7,0) \\
=\frac{4}{16} & \text { Subtract. } \\
=\frac{1}{4} & \text { Simplify. }
\end{array}
$$

slope of Line $2=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Slope formula

$$
\begin{array}{ll}
=\frac{4-1}{7-0} & \left(x_{1}, y_{1}\right)=(0,1), \\
\left.=\frac{3}{7}, y_{2}\right)=(7,4) \\
& \text { Subtract. }
\end{array}
$$

Since $\frac{1}{4}<\frac{3}{7}$, the slope of Line 2 is steeper than the slope of Line 1 .
45a. the bald eagle

45b.

45c. 1189 bald eagles; 494 gray wolves
47. $y=-8$

49. $y=0$

(51) a.
$\left.\begin{array}{|c|c|c|}\hline \text { Time } \\ \text { (hours) }\end{array} \begin{array}{c}\text { Distance } \\ \text { Walking } \\ \text { (miles) }\end{array} \begin{array}{c}\text { Distance } \\ \text { Riding Bikes } \\ \text { (miles) }\end{array}\right\}$
b. Use the table from part a to create a graph with time on the horizontal axis and distance on the vertical axis.

c. their speed d. Sample answer: Yes, they can make it if they ride their bikes. If they walk, it takes over two hours to go eight miles, so they wouldn't be home in time and they wouldn't get to spend any
time in the store. If they ride their bikes, they can travel there in 24 minutes. If they spend 30 minutes in the store and spend 24 minutes riding home, the total amount of time they will use is $24+30+$ $24=78$ minutes, which is 1 hour and 18 minutes.
53. Terrell; Hale subtracted the x-coordinates in the wrong order. 55. The Sears Tower has a vertical or undefined and the Leaning Tower of Pisa has a positive slope. 57. Sample answer: $(4,-3)$ and $(5,-5)$ lie along the same line as point X and Y. The slope between all of the points is -2 . To find additional points, you can take any point on the line and subtract 2 from the y-coordinate and add 1 to the x-coordinate.
59. 2:5 61. C
63.123
65.57
67. $A B C, A B Q, P Q R$, $C D S, A P U, D E T \quad$ 69. valid $\quad 71.6 \quad$ 73. $y=-2 x+3$

Lesson 3-4

1. $y=4 x-3$

2. $y+3=\frac{1}{4}(x+2)$

3. $y=-5 x-2$

4. $y=-\frac{3}{4} x+4$

5. $y=9 x+2$

6. $y=-\frac{2}{3} x+5$

7. $y=\frac{5}{4} x-1$
8. $y=\frac{9}{7} x-\frac{19}{7}$
9. $y=4 x+9$
(19)
$y-y_{1}=m\left(x-x_{1}\right) \quad$ Point-slope form
$y-11=2(x-3) \quad m=2,\left(x_{1}, y_{1}\right)=(3,11)$ $y=2 x+5 \quad$ Simplify.
Graph the given point $(3,11)$. Use the slope 2 or $\frac{2}{1}$ to find another point 2 units up and 1 unit to the right.

10. $y-9=-7(x-1)$

11. $y+6=-\frac{4}{5}(x+3)$

$\begin{array}{ll}\text { 25. } y=-4 & \text { 27. } x=-3\end{array}$
12. $y=-\frac{3}{4} x+3$
13. $y=-\frac{10}{3} x+\frac{38}{3}$
14. $y=\frac{3}{2} x-\frac{1}{2}$
15. $y=\frac{2}{3} x-2$
16. $y=-2 x-18$
17. $y=-\frac{2}{3} x+6$
(41) a. For each person, the cost increases $\$ 5.50$. So, the rate of change, or slope, is 5.5 . The y-intercept represents the cost when there are 0 people, or $\$ 400$. Let y represent the total cost and x represent the number of people who attend the party.

$$
\begin{array}{ll}
y=m x+b & \text { Slope-intercept form } \\
y=5.5 x+400 & m=5.5, b=400
\end{array}
$$

b. Let the x-axis represent the number of people and the y-axis represent the total cost.

c. If $\frac{2}{3}$ of the class attends, then $\frac{2}{3} \cdot 285$ or 190 people attend.

$$
\begin{aligned}
y & =5.5 x+400 & & \text { Write the equation. } \\
& =5.5(190)+400 & & x=190 \\
& =1045+400 & & \text { Multiply. } \\
& =1445 & & \text { Simplify. }
\end{aligned}
$$

The party will cost $\$ 1445$.
d. $y=5.5 x+400$ Write the equation.

$$
\begin{aligned}
2000 & =5.5 x+400 & & y=2000 \\
1600 & =5.5 x & & \text { Subtract. } \\
y & =290.9 & & \text { Simplify. }
\end{aligned}
$$

If they raise $\$ 2000,290$ people can attend the party.
43. $p \quad$ 45. n, p, or r 47. perpendicular 49. neither
51) First, find the slope of the line through $(3,2)$ and $(-7,2)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Slope formula

$$
=\frac{2-2}{-7-3} \quad\left(x_{1}, y_{1}\right)=(3,2),\left(x_{2}, y_{2}\right)=(-7,2)
$$

$$
=\frac{0}{-10} \quad \text { Subtract. }
$$

$$
=0 \quad \text { Simplify }
$$

Since the slope of the line is 0 , it is a horizontal line. A line is perpendicular to a horizontal line if it is vertical, so find the vertical line through the point $(-8,12)$. The line through the point $(-8,12)$ perpendicular to the line through $(3,2)$ and $(-7,2)$ is $x=-8$.
53. $C=15(x-1)+40$ or $C=15 x+25 \quad 55.14$
57. Sample answer: $y=2 x-1$,
$y=-\frac{1}{2} x-\frac{17}{2} \quad$ 59. Sample answer: When given the slope and y-intercept, the slope-intercept form is easier to use. When given two points, the point-slope form is easier to use. When given the slope and a point, the point-slope form is easier to use.
$\begin{array}{lll}\text { 61. H } & \text { 63. } \mathrm{E} & 65.2 \\ \text { 67. } x=3, y \approx 26.33\end{array}$
69. Gas-O-Rama is also a quarter mile from Lacy's home; the two gas stations are half a mile apart.
71. consecutive interior 73. alternate exterior

Lesson 3-5

1. $j \| \mathcal{K}_{\text {; }}$ Converse of Corresponding Angles Postulate
(3) Angle 3 and $\angle 10$ are alternate exterior angles of lines ℓ and m. Since $\angle 3 \cong \angle 10, \ell \| m$ by the Alternate Exterior Angles Converse Theorem.
2. 20 7. Yes; Sample answer: Since the alternate exterior angles are congruent, the backrest and footrest are parallel. 9. $u \| v$; Alternate Exterior \&s Converse 11. $r \| s$; Consecutive Interior \&s Converse
3. $u \| v$; Alternate Interior $\angle s$ Converse 15. $r \| s$; Corresponding s Converse 17.22; Conv. Corr. $\& s$ Post.
(19) The angles are consecutive interior angles. For lines m and n to be parallel, consecutive interior angles must be supplementary, according to the Consecutive Interior Angles Converse Theorem.

$$
\begin{aligned}
(7 x-2)+(10-3 x) & =180 & & \text { Definition of supp. } \stackrel{\leftrightarrow}{ } \\
4 x+8 & =180 & & \text { Simplify. } \\
4 x & =172 & & \text { Subtract } 8 \text { from each side. } \\
x & =43 & & \text { Divide each side by } 4 .
\end{aligned}
$$

21. 36; Alt. Ext. \&s Conv.

23a. $\angle 1$ and $\angle 2$ are supplementary. 23b. Def. of linear pair 23c. $\angle 2$ and $\angle 3$ are supplementary; Suppl. Thm.

23d. \cong Suppl. Thm. 23e. Converse of Corr. \&s Post.
25. Given: $\angle 1 \cong \angle 3, \overline{A C} \| \overline{B D}$

Prove: $\overline{A B} \| \overline{C D}$
Proof:
Statements (Reasons)

1. $\angle 1 \cong \angle 3, \overline{A C} \| \overline{B D}$ (Given)

2. $\angle 2 \cong \angle 3$ (Corr. \angle s Post.)
3. $\angle 1 \cong \angle 2$ (Trans. Prop.)
4. $\overline{A B} \| \overline{C D}$ (If alternate $\angle s$ are \cong, then lines are $\|$.)
5. Given: $\angle A B C \cong \angle A D C, m \angle A+m \angle A B C=180$ Prove: $\overline{A B} \| \overline{C D}$
Proof:
Statements (Reasons)
6. $\angle A B C \cong \angle A D C$,
$m \angle A+m \angle A B C=180$
(Given)
7. $m \angle A B C=m \angle A D C$
(Def. of $\cong \measuredangle$)

8. $m \angle A+m \angle A D C=180$
(Substitution)
9. $\angle A$ and $\angle A D C$ are supplementary.
(Def. of supplementary $\angle s$)
10. $\overline{A B} \| \overline{C D}$ (If consec. int. \&s are supplementary, then lines are $\|$.)
29) The Converse of the Perpendicular Transversal Theorem states that two lines perpendicular to the same line are parallel. Since the slots, or the bottom of each rectangular opening, are perpendicular to each of the sides, the slots are parallel. Since any pair of slots is perpendicular to the sides, they are also parallel.
31. Given: $\angle 1 \cong \angle 2$

Prove: $\ell \| m$
Proof:
Statements (Reasons)

1. $\angle 1 \cong \angle 2$ (Given)
2. $\angle 2 \cong \angle 3$ (Vertical \angle are \cong)
3. $\angle 1 \cong \angle 3$ (Transitive Prop.)

4. $\ell \| m$ (If corr \measuredangle are \cong, then
lines are $\|$.)
5. $r \| s$; Sample answer: The corresponding angles are congruent. Since the angles are equal, the lines are parallel. $35 . r \| s$; Sample answer: The alternate exterior angles are congruent. Since the angles are equal, the lines are parallel. 37. Daniela; $\angle 1$ and $\angle 2$ are alternate interior angles for $\overline{W X}$ and $\overline{Y Z}$, so if alternate interior angles are congruent, then the lines are parallel.
6. Sample answer:

Given: $a \| b$ and $b \| c$
Prove: $a \| c$
Statements (Reasons)

1. $a \| b$ and $b|\mid c$ (Given)
2. $\angle 1 \cong \angle 3$ (Alt. Int. $\angle s$ Thm.)
3. $\angle 3 \cong \angle 2$ (Vert. \&s are \cong)
4. $\angle 2 \cong \angle 4$ (Alt. Int. $\angle s$ Thm.)
5. $\angle 1 \cong \angle 4$ (Trans. Prop.)
6. $a \| b$ (Alt. Int. $\&$ Conv. Thm.)

41a. We know that $m \angle 1+m \angle 2=180$. Since $\angle 2$ and $\angle 3$ are linear pairs, $m \angle 2+m \angle 3=180$. By substitution, $m \angle 1+m \angle 2=m \angle 2+m \angle 3$. By subtracting $m \angle 2$ from both sides we get $m \angle 1=m \angle 3$. $\angle 1 \cong \angle 3$, by the definition of congruent angles. Therefore, $a \| c$ since the corresponding angles are congruent. 41b. We know that $a \| c$ and $m \angle 1+m \angle 3=$ 180 . Since $\angle 1$ and $\angle 3$ are corresponding angles, they are congruent and their measures are equal. By substitution, $m \angle 3+m \angle 3=180$ or $2 m \angle 3=180$. By dividing both sides by 2 , we get $m \angle 3=90$. Therefore, $t \perp c$ since they form a right angle. 43. Yes; sample answer: A pair of angles can be both supplementary and congruent if the measure of both angles is 90 , since the sum of the angle measures would be 180. 45. G
47. J
49. $y=\frac{4}{5} x-9$
51.6 hours
53.

55. $8.6 \mathrm{~m} ; 3.5 \mathrm{~m}^{2} \quad 57.10,8.3$

Lesson 3-6
1.

3. The formation should be that of two parallel lines that are also parallel to the 50-yard line; the band members have formed two lines that are equidistant from the 50 -yard line, so by Theorem 3.9, the two lines formed are parallel. 5. $\sqrt{10}$ units
(7) Let ℓ represent $y=-2 x+4$ and let m represent $y=-2 x+14$. The slope of the lines is -2 . Write an equation for line p. The slope of p is the opposite reciprocal of -2 , or $\frac{1}{2}$. Use the y-intercept of line $\ell,(0,4)$, as one of the endpoints of the perpendicular segment.

$$
\begin{aligned}
\left(y-y_{1}\right) & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
(y-4) & =\frac{1}{2}(x-0) & & \left(x_{1}, y_{1}\right)=(0,4), m=\frac{1}{2} \\
y-4 & =\frac{1}{2} x & & \text { Simplify. } \\
y & =\frac{1}{2} x+4 & & \text { Add 4 to each side. }
\end{aligned}
$$

Use a system of equations to find the point of intersection of lines m and p.
Equation for $m: y=-2 x+14$
Equation for $p: y=\frac{1}{2} x+4$

$$
\begin{array}{rlrl}
y & =-2 x+14 & & \text { Equation for } m \\
\frac{1}{2} x+4 & =-2 x+14 & & \text { Use Equation } p \text { to substitute } \\
& & \frac{1}{2} x+4 \text { for } y . \\
\frac{5}{2} x+4 & =14 & & \text { Add } 2 x \text { to each side. }
\end{array}
$$

\[

\]

The point of intersection is $(4,6)$. Use the Distance Formula to find the distance between $(0,4)$ and $(4,6)$.

$$
\begin{array}{rlrl}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{(4-0)^{2}+(6-4)^{2}} & & x_{1}=0, y_{1}=4 \\
& & x_{2}=4, y_{2}=6 \\
& =\sqrt{20} \text { or } 2 \sqrt{5} & & \text { Simplify. }
\end{array}
$$

The distance between the lines is $2 \sqrt{5}$ units.
9.

11.

13. No; a driveway perpendicular to the road would be the shortest. The angle the driveway makes with the road is less than 90°, so it is not the shortest possible driveway.
(15) Find the slope and y-intercept of line ℓ and write the equation for the line.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-(-3)}{7-0}$ or 1
Since ℓ contains $(0,-3)$, the y-intercept is -3 . So, the equation for line ℓ is $y=1 x+(-3)$ or $y=x-3$. The slope of a line perpendicular to ℓ, line w, is -1 . Write the equation of line w through $(4,3)$ with slope -1 .
$y=m x+b \quad$ Slope-intercept form
$3=-1(4)+b \quad m=-1,(x, y)=(4,3)$
$3=-4+b \quad$ Simplify.
$7=b \quad$ Add 4 to each side.
So, the equation for line w is $y=-x+7$. Solve
the system of equations to determine the point of intersection.
line $\ell: \quad y=x-3$
line $w: \begin{aligned}(+) y & =-x+7 \\ 2 y & = \\ y & =\quad 2\end{aligned} \quad$ Add the two equations.
Solve for x.
$y=x-3 \quad$ Equation for line ℓ
$2=x-3 \quad y=2$
$5=x \quad$ Add 3 to each side.
The point of intersection is $(5,2)$. Let this be point Q. Use the Distance Formula to determine
the distance between $P(4,3)$ and $Q(5,2)$.

$$
\begin{array}{rlrl}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Distance Formula } \\
& =\sqrt{(5-4)^{2}+(2-3)^{2}} & & x_{1}=4, y_{1}=3 \\
& =\sqrt{2} & & x_{2}=5, y_{2}=2 \\
\text { Simplify. }
\end{array}
$$

The distance between the lines is $\sqrt{2}$ units.
17. 6 units 19. $\sqrt{10}$ units 21.6 units $\quad 23 . \sqrt{26}$ units
25.21 units 27. $4 \sqrt{17}$ units 29. $\sqrt{14.76}$ units
31.5 units 33.6 units
(35) He can conclude that the right and left sides of the bulletin board are not parallel, since the perpendicular distance between one line and any point on the other line must be equal anywhere on the lines for the two lines to be parallel. In this case, the length of the top of the bulletin board is not equal to the length of the bottom of the bulletin board.
$39 b$. Place point C any place on line m. The area of the triangle is $\frac{1}{2}$ the height of the triangle times the length of the base of the triangle. The numbers stay constant regardless of the location of C on line $m . \quad 39 \mathrm{c} .16 .5 \mathrm{in}^{2}$
(41) To find out if the lines will intersect, determine if they are parallel. If they are parallel the perpendicular distance between the two lines at any point will be equal. Use a ruler to measure the distance between points A and C and points B and $D . A C=1.2$ centimeters and $B D=$ 1.35 centimeters. The lines are not parallel, so they will intersect. Shenequa is correct.
43. $a= \pm 1 ; y=\frac{1}{2} x+6$ and $y=\frac{1}{2} x+\frac{7}{2}$ or $y=-\frac{1}{2} x+6$ and $y=-\frac{1}{2} x+\frac{7}{2}$
45a. Sample answer:

45b. Sample answer: Using a protractor, the measurement of the constructed angle is equal to 90.
So, the line constructed from vertex P is perpendicular to the nonadjacent side chosen.
45c. Sample answer: The same compass setting was used to construct points A and B. Then the same compass setting was used to construct the perpendicular line to the side chosen. Since the compass setting was equidistant in both steps, a perpendicular line was constructed.
47. Sample answer: First, a point on one of the parallel lines is found. Then the line perpendicular to the pair of parallel lines is found. Then the point of intersection is found between the perpendicular line and the other line not used in the first step. Last, the Distance Formula is used to determine the distance between the pair of intersection points. This value is the distance between the pair of parallel lines. 49. $\mathrm{C} \quad$ 51. B \quad 53. $y+1=\frac{1}{4}(x-3)$
55. $y-3=-(x+2)$
57. Given: $A B=B C$

Prove: $A C=2 B C$
Proof:
Statements (Reasons)

1. $A B=B C$ (Given)
2. $A C=A B+B C$ (Seg. Add. Post.)
3. $A C=B C+B C$ (Substitution)
4. $A C=2 B C$ (Substitution)
5. Sample answer: Robin \perp Cardinal; Bluebird divides two of the angles formed by Robin and Cardinal into pairs of complementary angles.

61.5
 63.13
 65.5

Chapter 3 Study Guide and Review

1. false; parallel 3 . true \quad 5. true \quad 7. false; congruent 9. corresponding 11. alternate exterior 13. skew lines 15. 57; $\angle 5 \cong \angle 13$ by Corr. \llcorner Sost. and 13 and 14 form a linear pair 17.123; $\angle 11 \cong \angle 5$ by Alt. Int. $\angle s$ Thm. and $\angle 5 \cong \angle 1$ by Alt. Ext. \angle Thm. 19. 57; $\angle 1 \cong$ $\angle 3$ by Corr. $\angle s$ Post. and $\angle 3$ and $\angle 6$ form a linear pair.
2. perpendicular
3. parallel

4.

27. $y+9=2(x-4)$
29. $y=5 x-3$
31. $y=-\frac{2}{3} x+10$
33. $C=20 h+50$
35. none
37.v $\| z$; Alternate Exterior Angles Converse Thm.
39.13541 .

CHAPTER 4
 Congruent Triangles

Get Ready

1. right 3. obtuse
2. 84°; Alternate Exterior Angles
3. ≈ 10.8
4. ≈ 18.0
11.144 .2 mi

Lesson 4-1

1. right \quad 3. equiangular \quad 5. obtuse; $\angle B D C>90^{\circ}$
2. isosceles
(9) By the definition of midpoint, $F K=K H$.
$F K+K H=F H \quad$ Segment Addition Postulate
$K H+K H=F H \quad$ Substitution
$2 K H=F H \quad$ Simplify.
$2(2.5)=F H \quad$ Substitution $5=F H \quad$ Simplify.
Since $\overline{G H} \cong \overline{F G}, G H=F G$ or 5 . Since $G H=F G=$ $F H=5$, the triangle has three sides with the same measure. Therefore, the triangle has three congruent sides, so it is equilateral.
3. scalene 13. $x=5, Q R=R S=Q S=25$
4. obtuse
5. right
6. acute 21. obtuse
7. acute 25. right 27. equilateral 29. scalene
31.scalene 33.scalene 35. equilateral
(37) Since $\triangle F G H$ is equilateral, $F G=G H$.

$$
\begin{array}{rlrl}
F G & =G H & & \text { Given } \\
3 x+10 & =9 x-8 & & \text { Substitution } \\
10=6 x-8 & & \text { Subtract } 3 x \text { from each side. } \\
18=6 x & & \text { Add } 8 \text { to each side. } \\
3=x & & \text { Divide each side by } 3 . \\
F G=3 x+10 & & \text { Given } \\
& =3(3)+10 \text { or } 19 & x=3 \\
F G=G H=H F=19 &
\end{array}
$$

(39) Because the base of the prism formed is an equilateral triangle, the mirror tile must be cut into three strips of equal width. Since the original tile is a 12 -inch square, each strip will be 12 inches long by $12 \div 3$ or 4 inches wide.

41. isosceles obtuse 43. scalene; $X Z=3 \sqrt{5}, X Y=$ $\sqrt{113}, Y Z=2 \sqrt{26} \quad$ 45. isosceles; $X Z=2, X Y=2 \sqrt{2}$, $Y Z=2$
47. Given: $m \angle A D C=120$

Prove: $\triangle D B C$ is acute.
Proof: $\angle A D C$ and $\angle B D C$ form a linear pair. $\angle A D C$ and $\angle B D C$ are supplementary because if two angles form a linear pair, then they are supplementary. So, $m \angle A D C+m \angle B D C=180$. We know $m \angle A D C=120$, so by substitution, $120+m \angle B D C=180$. Subtract to find that $m \angle B D C=60$. We already know that $\angle B$ is acute because $\triangle A B C$ is acute. $\angle B C D$ must also be acute because $\angle C$ is acute and $m \angle C=$ $m \angle A C D+m \angle B C D . \triangle D B C$ is acute by definition.
49. $x=15 ; F G=35, G H=35, H F=35 \quad$ 51. $x=3$;
$M N=13, N P=13, P M=11$
53.

Sample answer: In $\triangle A B C, A B=B C=$ $A C=1.3 \mathrm{~cm}$. Since all sides have the same length, they are
all congruent. Therefore the triangle is equilateral. $\triangle A B C$ was constructed using $A B$ as the length of each side. Since the arc for each segment is the same, the triangle is equilateral.
(55) a. Sample answer:
acute isosceles

b. | $\boldsymbol{m} \angle \mathbf{A}$ | $\boldsymbol{m} \angle \mathbf{C}$ | $\boldsymbol{m} \angle \mathbf{B}$ | Sum of Angle Measures |
| :---: | :---: | :---: | :---: |
| 55 | 55 | 70 | 180 |
| 68 | 68 | 44 | 180 |
| 45 | 45 | 90 | 180 |
| 30 | 30 | 120 | 180 |

c. Sample answer: In an isosceles triangle, the angles opposite the congruent sides have the same measure. The sum of the angle measures of an isosceles triangle is 180 . d. If the measures of the angles opposite the congruent sides of an isosceles triangle have the same measure, then if one angle measures x, then the other angle also measures x. If the sum of the measures of the angles of an isosceles triangle is 180 , the measure of the third angle is $180-(x+x)$ or $180-2 x$. So, the other two angles measure x and $180-2 x$.
57. Never; all equiangular triangles have three 60° angles, so they do not have a 90° angle. Therefore they cannot be right triangles. 59. Never; all equilateral triangles are also equiangular, which means all of the angles are 60°. A right triangle has one 90° angle.
61. Sample answer:

63. Not possible; all equilateral triangles have three acute angles. 65. A 67.13.5 69.7 71.2 $\sqrt{5} \quad$ 73. Two lines in a plane that are perpendicular to the same line are parallel. 75. H: you are a teenager; C: you are at least 13 years old.
77. H: you have a driver's license; C: you are at least 16 years old 79. Plane $A E B$ intersects with plane \mathcal{N} in $\overleftrightarrow{A B}$. 81. Points D, C, and B lie in plane \mathcal{N}, but point E does not lie in plane \mathcal{N}. Thus, they are not coplanar.
83. cons. int.
85. alt. ext.

Lesson 4-2

1.58
3. 80
5. 49
7.78
9. 61
11.151
13. 30
(15)

$$
\begin{array}{rll}
m \angle L+m \angle M+m \angle 2 & =180 & \\
& \text { Triangle Angle-Sum } \\
& \text { Theorem } \\
31+90+m \angle 2 & =180 & \text { Substitution } \\
121+m \angle 2 & =180 & \text { Simplify. } \\
m \angle 2 & =59 & \\
\text { Subtract 121 from each side. }
\end{array}
$$

$\angle 1$ and $\angle 2$ are congruent vertical angles. So, $m \angle 1=59$.

$$
\begin{array}{cl}
m \angle 1+m \angle 3+m \angle P=180 & \text { Triangle Angle-Sum } \\
& \text { Theorem } \\
59+m \angle 3+22=180 & \text { Substitution } \\
81+m \angle 3=180 & \text { Simplify. } \\
m \angle 3=99 & \text { Subtract 118 from each side. } \\
m \angle 1=59, m \angle 2=59, m \angle 3=99
\end{array}
$$

$17.79 \quad 19.21$
(21) $m \angle A+m \angle B=148 \quad$ Exterior Angle Theorem
$(2 x-15)+(x-5)=148 \quad$ Substitution $3 x-20=148$ Simplify. $3 x=168$ Add 20 to each side. $x=56 \quad$ Divide each side by 2 .
So, $m \angle A B C=56-5$ or 51 .
$\begin{array}{lllll}\text { 23.78 } & \text { 25.39 } & 27.55 & \text { 29.35 } & \text { 31. } x=30 ; 30,60\end{array}$
(33) In $\triangle A B C, \angle B$ and $\angle C$ are congruent, so $m \angle B=m \angle C$.

$$
\left.\begin{array}{rll}
m \angle A & =3(m \angle B) & m \angle A \text { is to be } 3 \text { times } \\
m \angle B . \\
m \angle A+m \angle B+m \angle C & =180 & \\
& & \text { Triangle Angle-Sum } \\
3(m \angle B)+m \angle B+m \angle B & =180 & \text { Theorem } \\
5(m \angle B) & =180 & \text { Substitution } \\
m \angle B & =36 & \text { Simplify. } \\
m \angle C=m \angle B & m \angle A & =3 m \angle B \\
=36 & & =3(36)
\end{array}\right) \text { or } 108 .
$$

35. Given: $\triangle M N O ; \angle M$ is a right angle.

Prove: There can be at most one right angle in a triangle.
Proof: In $\triangle M N O, M$ is a right angle. $m \angle M+$ $m \angle N+m \angle O=180 . m \angle M=90$, so $m \angle N+m \angle O=$ 90. If N were a right angle, then $m \angle O=0$. But that is impossible, so there cannot be two right angles in a triangle.
Given: $\triangle P Q R ; \angle P$ is obtuse.
Prove: There can be at most one obtuse angle in a triangle.
Proof: In $\triangle P Q R, \angle P$ is obtuse. So $m \angle P>90$.
$m \angle P+m \angle Q+m \angle R=180$. It must be that $m \angle Q+$ $m \angle R<90$. So, $\angle Q$ and $\angle R$ must be acute.
37. $m \angle 1=65, m \angle 2=20, m \angle 3=95, m \angle 4=40$,
$m \angle 5=110, m \angle 6=45, m \angle 7=70, m \angle 8=65$ 39. 67°,
23° 41. $z<23$; Sample answer: Since the sum of the
measures of the angles of a triangle is 180 and $m \angle X=157,157+m \angle Y+m \angle Z=180$, so $m \angle Y+$ $m \angle Z=23$. If $m \angle Y$ was 0 , then $m \angle Z$ would equal 23 . But since an angle must have a measure greater than $0, m \angle Z$ must be less than 23 , so $z<23$.
43) Use the Triangle Angle-Sum Theorem and the Addition Property to prove the statement is true.
Given: RSTUV is a pentagon.
Prove: $m \angle S+m \angle S T U+m \angle T U V+$ $m \angle V+m \angle V R S=540$

Proof:

Statements (Reasons)

1. RSTUV is a pentagon.
(Given)
2. $m \angle S+m \angle 1+m \angle 2=180$; $m \angle 3+m \angle 4+m \angle 7=180$;
 $m \angle 6+m \angle V+m \angle 5=180(\angle \mathrm{~s}$ Sum. Thm.)
3. $m \angle S+m \angle 1+m \angle 2+m \angle 3+m \angle 4+m \angle 7+$ $m \angle 6+m \angle V+m \angle 5=540$ (Addition Property) 4. $m \angle V R S=m \angle 1+m \angle 4+m \angle 5 ; m \angle T U V=$ $m \angle 7+m \angle 6 ; m \angle S T U=m \angle 2+m \angle 3$ (\angle Addition) 5. $m \angle S+m \angle S T U+m \angle T U V+m \angle V+$ $m \angle V R S=540$ (Substitution)
45a. Sample answer:

45b. Sample answer:

$m<1$	$m \angle 2$	$m \angle 3$	Sum of Angle Measures
122	105	133	360
70	147	143	360
90	140	130	360
136	121	103	360
49	154	157	360

45c. Sample answer: The sum of the measures of the exterior angles of a triangle is 360 .
45d. $m \angle 1+m \angle 2+$ $m \angle 3=360$

45e. The Exterior Angle Theorem tells us that $m \angle 3=m \angle B A C+m \angle B C A, m \angle 2=m \angle B A C+$ $m \angle C B A, m \angle 1=m \angle C B A+m \angle B C A$. Through substitution, $m \angle 1+m \angle 2+m \angle 3=m \angle C B A+$ $m \angle B C A+m \angle B A C+m \angle C B A+m \angle B A C+m \angle B C A$. This can be simplified to $m \angle 1+m \angle 2+m \angle 3=$ $2 m \angle C B A+2 m \angle B C A+2 m \angle B A C$. The Distributive Property can be applied and gives $m \angle 1+m \angle 2+$ $m \angle 3=2(m \angle C B A+m \angle B C A+m \angle B A C)$. The Triangle Angle-Sum Theorem tells us that $m \angle C B A+m \angle B C A+m \angle B A C=180$.
Through substitution we have
$m \angle 1+m \angle 2+m \angle 3=2(180)=360$.
47. The measure of $\angle a$ is the supplement of the exterior angle with measure 110, so $m \angle a=180-110$ or 70 . Because the angles with measures b and c are congruent, $b=c$. Using the Exterior Angle Theorem, $b+c=110$. By substitution, $b+b=110$, so $2 b=110$ and $b=55$. Because $b=c, c=55$. 49. $y=13, z=14$ 51. Sample answer: Since an exterior angle is acute, the adjacent angle must be obtuse. Since another exterior angle is right, the adjacent angle must be right. A triangle cannot contain both a right and an obtuse angle because it would be more than 180 degrees. Therefore, a triangle cannot have an obtuse, acute, and a right exterior angle. 53. $100^{\circ}, 115^{\circ}, 145^{\circ}$
55. E 57. obtuse 59. $\sqrt{26}$ units
61. Each set of figures has one more triangle than the previous set and the direction of the triangles alternate between pointing up and and pointing to the right.

63. Multiplication Property
65. Addition Property 67. Substitution Property

Lesson 4-3

1. $\angle Y \cong \angle S, \angle X \cong \angle R, \angle X Z Y \cong \angle R Z S, \overline{Y X} \cong \overline{S R}$, $\overline{Y Z} \cong \overline{S Z}, \overline{X Z} \cong \overline{R Z} ; \triangle Y X Z \cong \triangle S R Z \quad$ 3. $\frac{1}{2}$ in.;
Sample answer: The nut is congruent to the opening for the $\frac{1}{2}$-in. socket.
(5)

$$
\begin{aligned}
\angle M & \cong \angle R \\
m \angle M & =m \angle R \\
y+10 & =2 y-40
\end{aligned}
$$

CPCTC
$m \angle M=m \angle R \quad$ Definition of congruence
$10=y-40 \quad$ Subtract y from each side.
$50=y \quad$ Add 40 to each side.
7. $16 ; \angle N$ corresponds to $\angle X$. By the Third Angles

Theorem, $m \angle N=64$, so $4 x=64$. 9. $\angle X \cong \angle A$, $\angle Y \cong \angle B, \angle Z \cong \angle C, \overline{X Y} \cong \overline{A B}, \overline{X Z} \cong \overline{A C}, \overline{Y Z} \cong \overline{B C}$; $\triangle X Y Z \cong \triangle A B C$ 11. $\angle R \cong \angle J, \angle T \cong \angle K, \angle S \cong \angle L$, $\overline{R T} \cong \overline{J K}, \overline{T S} \cong \overline{K L}, \overline{R S} \cong \overline{J L ;} \triangle R T S \cong \triangle J K L \quad 13.20$
(15)

$\overline{E D}$	$\cong \overline{U T}$		CPCTC
$E D$	$=U T$		Definition of congruence
$3 z+10$	$=z+16$		Substitution
$2 z+10$	$=16$		Subtract z from each side.
$2 z$	$=6$		Subtract 10 from each side.
z	$=3$		Divide each side by 3.

17a. $\triangle A B C \cong \triangle M N O ; \triangle D E F \cong \triangle P Q R$
17b. $\overline{A B} \cong \overline{M N}, \overline{B C} \cong \overline{N O}, \overline{A C} \cong \overline{M O}, \overline{D E} \cong \overline{P Q}$, $\overline{E F} \cong \overline{Q R}, \overline{D F} \cong \overline{P R} \quad$ 17c. $\angle A \cong \angle M, \angle B \cong \angle N$, $\angle C \cong \angle O, \angle D \cong \angle P, \angle E \cong \angle Q, \angle F \cong \angle R$
(19) $148+18+a=180$ Triangle Angle-Sum Theorem $166+a=180 \quad$ Simplify.
$a=14 \quad$ Subtract 166 from each side.
If two angles of one triangle are congruent to two angles of another triangle, then the third angles of the triangles are congruent. So, $3 x+$ $y=14$ and $5 x-y=18$. Solve the system of equations.
$3 x+y=14$
$\begin{aligned} &(+) 5 x-y=18 \\ & 8 x=32\end{aligned}$ Add the equations.
$x=4$ Divide each side by 8 .

$$
\begin{aligned}
3 x+y & =14 & & \text { Original equation } \\
3(4)+y & =14 & & x=4 \\
12+y & =14 & & \text { Simplify } . \\
y & =2 & & \text { Subtract } 12 \text { from each side. }
\end{aligned}
$$

21. Given: $\angle A \cong \angle D$ $\angle B \cong \angle E$
Prove: $\angle C \cong \angle F$
Proof:

Statements (Reasons)

1. $\angle A \cong \angle D, \angle B \cong \angle E$ (Given)
2. $m \angle A=m \angle D, m \angle B=m \angle E$ (Def. of $\cong \angle s)$
3. $m \angle A+m \angle B+m \angle C=180, m \angle D+m \angle E+$ $m \angle F=180(\angle$ Sum Theorem $)$
4. $m \angle A+m \angle B+m \angle C=m \angle D+m \angle E+m \angle F$
(Trans. Prop.)
5. $m \angle D+m \angle E+m \angle C=m \angle D+m \angle E+m \angle F$
(Subst.)
6. $m \angle C=m \angle F$ (Subt. Prop.)
7. $\angle C \cong \angle F$ (Def. of $\cong \angle$)
8. Given: $\overline{B D}$ bisects $\angle B$.

$$
\overline{B D} \perp \overline{A C}
$$

Prove: $\angle A \cong \angle C$
Proof:
Statements (Reasons)

1. $\overline{B D}$ bisects $\angle B, \overline{B D} \perp \overline{A C}$. (Given)
2. $\angle A B D \cong \angle D B C$ (Def. of angle bisector)
3. $\angle A D B$ and $\angle B D C$ are right angles. (\perp lines form rt. $\angle \mathrm{s}$.)
4. $\angle A D B \cong \angle B D C$ (All rt. $\angle \mathrm{s}$ are \cong.)
5. $\angle A \cong \angle C$ (Third \angle Thm.)
6. Sample answer: Both of the punched flowers are
congruent to the flower on the stamp, because it was used to create the images. According to the Transitive Property of Polygon Congruence, the two stamped images are congruent to each other because they are both congruent to the flowers on the punch.
7. Given: $\triangle D E F$

Prove: $\triangle D E F \cong \triangle D E F$

29.

(31) a. All the longer sides of the triangles are congruent and all the shorter sides are congruent. Sample answer: $\overline{A B} \cong \overline{C B}, \overline{A B} \cong \overline{D E}, \overline{A B} \cong \overline{F E}, \overline{C B} \cong$ $\overline{D E}, \overline{C B} \cong \overline{F E}, \overline{D E} \cong \overline{F E}, \overline{A C} \cong \overline{D F} \quad \mathbf{b}$. If the area is a square, then each of the four sides measures $\sqrt{100}$ or 10 feet. So, the perimeter of the square is $4(10)$ or 40 ft . The pennant string will need to be 40 ft long. c. Each pennant and the distance to the next pennant is 6 in . or 0.5 ft . So, the number of pennants is $40 \div 0.5$ or 80 .
33a. If two triangles are congruent, then their areas are equal. 33b. If the areas of a pair of triangles are equal, then the triangles are congruent; false; If one triangle has a base of 2 and a height of 6 and a second triangle has a base of 3 and a height of 4, then their areas are equal, but they are not congruent. 33c. No; sample answer: Any pair of equilateral triangles that have the same base also have the same height, so it is not possible to draw a pair of equilateral triangles with the same area that are not congruent.
33d. yes;
sample answer:

33e. No; any pair of squares that have the same area have the same side length, which is the square root of the area. If their areas are equal, they are congruent.
33f. Regular n-gons; If two regular n-gons are congruent, then they have the same area. All regular n-gons have the same shape, but may have different sizes. If two regular n-gons have the same area, then they not only have the same shape but also the same
size. Therefore, they are congruent. 35. diameter, radius, or circumerence; Sample answer: Two circles are the same size if they have the same diameter, radius, or circumference, so she can determine if the hoops are congruent if she measures any of them.
37. Both; Sample answer: $\angle A$ corresponds with $\angle Y$, $\angle B$ corresponds with $\angle X$, and $\angle C$ corresponds with $\angle Z . \triangle C A B$ is the same triangle as $\triangle A B C$ and $\triangle Z X Y$ is the same triangle as $\triangle X Y Z$. 39. $x=16, y=8$
41. False; $\angle A \cong \angle X$, $\angle B \cong \angle Y, \angle C \cong \angle Z$, but corresponding sides are not congruent.

43. Sometimes; Equilateral triangles will be congruent if one pair of corresponding sides are congruent.
45.5 47. C
49.59
51. $J K=2 \sqrt{146}, K L=\sqrt{290}$,
$J L=\sqrt{146} ;$ scalene
53. $J K=5, K L=5 \sqrt{2}, J L=5$; isosceles 55. always 57. complementary angles

Lesson 4-4
1a. two
1b. Given: $A B C D$ is a square
Prove: $\triangle A B C \cong \triangle C D A$
Proof:

Statements (Reasons)

1. $A B C D$ is a square (Given)
2. $\overline{A B} \cong \overline{C D}, \overline{B C} \cong \overline{D A}$ (Def. of \cong a square)
3. $\overline{A C} \cong \overline{C A}$ (Reflex. Prop. \cong)
4. $\triangle A B C \cong \triangle C D A(S S S)$
5. $\underset{\breve{A B}}{ }$ Sample answer: $\overleftrightarrow{A B} \| \overleftrightarrow{C D} ; \overleftrightarrow{A C}$ is a transversal to $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$, so $\angle C A B$ and $\angle A C D$ are alternate interior angles. Since $\triangle A B C \cong \triangle C D A, \angle C A B$ and $\angle A C D$ are congruent corresponding angles.
Therefore, the lines are parallel.
(3) Sample answer: We are given that $\overline{L P} \cong \overline{N O}$ and $\angle L P M \cong \angle N O M$. Since $\triangle M O P$ is equilateral, $\overline{M O} \cong \overline{M P}$ by the definition of an equilateral triangle.
 So, two sides and the included angle of $\triangle L M P$ are congruent to two sides and the included angle of $\triangle N M O$.
Therefore, $\triangle L M P$ is congruent to $\triangle N M O$ by the Side-Angle-Side Congruence Postulate.
6. Given: $\overline{Q R} \cong \overline{S R}$ and $\overline{S T} \cong \overline{Q T}$

Prove: $\triangle Q R T \cong \triangle S R T$
Proof: We know that $\overline{Q R} \cong \overline{S R}$ and $\overline{S T} \cong \overline{Q T} \cdot \overline{R T} \cong \overline{R T}$ by the
 Reflexive Property. Since $\overline{Q R} \cong \overline{S R}$, $\overline{S T} \cong \overline{Q T}$, and $\overline{R T} \cong \overline{R T}, \triangle Q R T \cong \triangle S R T$ by SSS.
7. Given: $\overline{A B} \cong \overline{E D}, \angle A B C$ and $\angle E D C$ are right angles, and C is the midpoint of $\overline{B D}$.
Prove: $\triangle A B C \cong \triangle E D C$

Proof:
Statements (Reasons)

1. $\overline{A B} \cong \overline{E D}, \angle A B C$ and $\angle E D C$ are right angles, and C is the midpoint of $\overline{B D}$. (Given)
2. $\angle A B C \cong \angle E D C$ (All rt. $\mathbb{⿺} \cong$)
3. $\overline{B C} \cong \overline{D C}$ (Midpoint Thm.)
4. $\triangle A B C \cong \triangle E D C$ (SAS)
(9) Use $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ to find the lengths of the sides of $\triangle M N O$.

$$
\begin{aligned}
& M N=\sqrt{(-1-0)^{2}+[-4-(-1)]^{2}} \quad\left(x_{1}, y_{1}\right)=(0,-1), \\
& =\sqrt{1+9} \text { or } \sqrt{10} \quad \text { Simplify. } \\
& N O=\sqrt{[-4-(-1)]^{2}+[-3-(-4)]^{2}} \\
& \left(x_{1}, y_{1}\right)=(-1,-4) \text {, } \\
& \left(x_{2}, y_{2}\right)=(-4,-3) \\
& =\sqrt{9+1} \text { or } \sqrt{10} \quad \text { Simplify. } \\
& M O=\sqrt{(-4-0)^{2}+[-3-(-1)]^{2}} \quad\left(x_{1}, y_{1}\right)=(0,-1) \text {, } \\
& =\sqrt{16+4} \text { or } \sqrt{20} \\
& \left(x_{2}, y_{2}\right)=(-4,-3)
\end{aligned}
$$

Find the lengths of the sides of $\triangle Q R S$.

$$
\begin{aligned}
& Q R=\sqrt{(4-3)^{2}+[-4-(-3)]^{2}} \quad\left(x_{1}, y_{1}\right)=(3,-3), \\
& =\sqrt{1+1} \text { or } \sqrt{2} \\
& \left(x_{2}, y_{2}\right)=(4,-4) \\
& R S=\sqrt{(3-4)^{2}+[3-(-4)]^{2}} \\
& =\sqrt{1+49} \text { or } \sqrt{50} \\
& Q S=\sqrt{(3-3)^{2}+[3-(-3)]^{2}} \quad\left(x_{1}, y_{1}\right)=(3,-3), \\
& =\sqrt{0+36} \text { or } 6 \\
& \left(x_{2}, y_{2}\right)=(3,3) \\
& M N=\sqrt{10}, N O=\sqrt{10}, M O=\sqrt{20}, Q R=\sqrt{2}, \\
& R S=\sqrt{50} \text {, and } Q S=6 \text {. The corresponding sides } \\
& \text { are not congruent, so the triangles are not } \\
& \text { congruent. } \\
& \text { 11. } M N=\sqrt{10}, N O=\sqrt{10}, M O=\sqrt{20}, Q R=\sqrt{10} \text {, } \\
& R S=\sqrt{10} \text {, and } Q S=\sqrt{20} \text {. Each pair of corresponding } \\
& \text { sides has the same measure, so they are congruent. } \\
& \triangle M N O \cong \triangle Q R S \text { by } \operatorname{SSS} \text {. }
\end{aligned}
$$

13. Given: R is the midpoint of $\overline{Q S}$ and $\overline{P T}$.
Prove: $\triangle P R Q \cong \triangle T R S$
Proof: Since R is the midpoint of $\overline{Q S}$ and $\overline{P T}$,
 $\overline{P R} \cong \overline{R T}$ and $\overline{R Q} \cong \overline{R S}$ by definition of a midpoint. $\angle P R Q \cong \angle T R S$ by the Vertical Angles Theorem. So, $\triangle P R Q \cong \triangle T R S$ by SAS.
14. Given: $\triangle X Y Z$ is equilateral. $\overline{W Y}$ bisects $\angle Y$.
Prove: $\overline{\mathrm{XW}} \cong \overline{\mathrm{ZW}}$
Proof: We know that $\overline{W Y}$ bisects $\angle Y$, so $\angle X Y W \cong \angle Z Y W$. Also, $\overline{Y W} \cong \overline{Y W}$ by the Reflexive

Property. Since $\triangle X Y Z$ is equilateral it is a special type of isosceles triangle, so $\overline{X Y} \cong \overline{Z Y}$. By the Side-Angle-Side Congruence Postulate, $\triangle X Y W \cong$ $\triangle Z Y W$. By CPCTC, $\overline{X W} \cong \overline{Z W}$.
(17) The triangles have two pairs of congruent sides. Since triangles cannot be proven congruent using only two sides, it is not possible to prove congruence.
19. SAS
21. Given: $\overline{M J} \cong \overline{M L}$; K is the midpoint of $\overline{J L}$.
Prove: $\triangle M J K \cong \triangle M L K$

Proof:

23a. Given: $\overline{T S} \cong \overline{S F} \cong \overline{F R} \cong \overline{R T}$; $\angle T S F, \angle S F R, \angle F R T$, and $\angle R T S$ are right angles.
Prove: $\overline{R S} \cong \overline{T F}$
Proof:
Statements (Reasons)

1. $\overline{T S} \cong \overline{S F} \cong \overline{F R} \cong \overline{R T}$ (Given)

2. $\angle T S F, \angle S F R, \angle F R T$, and $\angle R T S$
are right angles. (Given)
3. $\angle S T R \cong \angle T R F$ (All rt. $\angle s$ are \cong.)
4. $\triangle S T R \cong \triangle T R F$ (SAS)
5. $\overline{R S} \cong \overline{T F}$ (СРСТС)

23b. Given: $\overline{T S} \cong \overline{S F} \cong \overline{F H} \cong \overline{H T}$; $\angle T S F, \angle S F H, \angle F H T$, and $\angle H T S$ are right angles.
Prove: $\angle S R T \cong \angle S R F$
Proof:
Statements (Reasons)

1. $\overline{T S} \cong \overline{S F} \cong \overline{F R} \cong \overline{R T}$ (Given)

2. $\angle T S F, \angle S F R, \angle F R T$, and $\angle R T S$ are right angles. (Given)
3. $\angle S T R \cong \angle S F R$ (All rt. $\stackrel{1}{ }$ are \cong.)
4. $\triangle S T R \cong \triangle S F R$ (SAS)
5. $\angle S R T \cong \angle S R F$ (СРСТС)
6. Given: $\triangle E A B \cong \triangle D C B$

Prove: $\triangle E A D \cong \triangle D C E$
Proof:
Statements (Reasons)

1. $\triangle E A B \cong \triangle D C B$ (Given)
2. $\overline{E A} \cong \overline{D C}(\mathrm{CPCTC})$

3. $\overline{E D} \cong \overline{D E}$ (Reflex. Prop.)
4. $\overline{A B} \cong \overline{C B}$ (СРСТС)
5. $\overline{D B} \cong \overline{E B}(\mathrm{CPCTC})$
6. $A B=C B, D B=E B$ (Def. \cong segments)
7. $A B+D B=C B+E B$ (Add. Prop. $=$)
8. $A D=A B+D B, C E=C B+E B$ (Seg. addition)
9. $A D=C E$ (Subst. Prop. $=$)
10. $\overline{A D} \cong \overline{C E}$ (Def. \cong segments)
11. $\triangle E A D \cong \triangle D C E$ (SSS)
(27) Given that $\triangle W X Y \cong \triangle W X Z$, by CPCTC, $\angle W X Z \cong \angle W X Y$ and $\overline{X Y} \cong \overline{X Z}$.

$\angle W X Z$	$\cong \angle W X Y$		CPCTC
$m \angle W X Z$	$=m \angle W X Y$		Definition of congruence
90	$=20 y+10$		Substitution
80	$=20 y$		Subtract 10 from each side.
y	$=4$		Divide each side by 20.

$$
\begin{aligned}
\overline{X Y} & \cong \overline{X Z} & & \text { CPCTC } \\
X Y & =X Z & & \text { Definition of congruence } \\
3 y+7 & =19 & & \text { Substitution } \\
3 y & =12 & & \text { Subtract } 7 \text { from each side. } \\
y & =4 & & \text { Divide each side by } 3 .
\end{aligned}
$$

29a. Sample answer: Method 1: You could use the Distance Formula to find the length of each of the sides, and then use the Side-Side-Side Congruence Postulate to prove the triangles congruent. Method 2: You could find the slopes of $\overline{Z X}$ and $\overline{W Y}$ to prove that they are perpendicular and that $\angle W Y Z$ and $\angle W Y X$ are both right angles. You can use the Distance Formula to prove that $\overline{X Y}$ is congruent to $\overline{Z Y}$. Since the triangles share the leg $\overline{W Y}$, you can use the Side-Angle-Side Congruence Postulate; Sample answer: I think that method 2 is more efficient, because you only have two steps instead of three.
29b. Sample answer: Yes; the slope of $\overline{W Y}$ is -1 and the slope of $\overline{Z X}$ is 1 , and -1 and 1 are opposite reciprocals, so $\overline{W Y}$ is perpendicular to $\overline{Z X}$. Since they are perpendicular, $\angle W Y Z$ and $\angle W Y X$ are both 90°. Using the Distance Formula, the length of $\overline{Z Y}$ is $\sqrt{(4-1)^{2}+(5-2)^{2}}$ or $3 \sqrt{2}$, and the length of $\overline{X Y}$ is $\sqrt{(7-4)^{2}+(8-5)^{2}}$ or $3 \sqrt{2}$. Since $\overline{W Y}$ is congruent to $\overline{W Y}, \triangle W Y Z$ is congruent to $\triangle W Y X$ by the Side-Angle-Side Congruence Postulate. 31. Shada; for SAS the angle must be the included angle and here it is not included. 33. Case 1: You know the hypotenuses are congruent and two corresponding legs are congruent. Then the Pythagorean Theorem says that the other legs are congruent so the triangles are congruent by SSS. Case 2: You know the legs are congruent and the right angles are congruent, then the triangles are congruent by SAS. $\quad 35 . \mathrm{F} \quad 37 . \mathrm{D} \quad 39.18$
41. $y=-\frac{1}{5} x-4 \quad$ 43. $y=x+3 \quad$ 45. False; a 16-year-old could be a freshman, sophomore, junior, or senior. The hypothesis of the conditional is true, but the conclusion is false. This counterexample shows that the conditional statement is false. 47. Trans. Prop. 49. Substitution

Lesson 4-5

1. Given: $\overline{C B}$ bisects $\angle A B D$ and $\angle A C D$.
Prove: $\triangle A B C \cong \triangle D B C$

Proof:

Statements (Reasons)

1. $\overline{C B}$ bisects $\angle A B D$ and $\angle A C D$. (Given)
2. $\angle A B C \cong \angle D B C$ (Def. of \angle bisector)
3. $\overline{B C} \cong \overline{B C}$ (Refl. prop.)
4. $\angle A C B \cong \angle D C B$ (Def. of \angle bisector)
5. $\triangle A B C \cong \triangle D B C$ (ASA)
6. Given: $\angle K \cong \angle M, \overline{J K} \cong \overline{J M}$,
$\overline{J L}$ bisects $\angle K L M$.
Prove: $\triangle J K L \cong \triangle J M L$
Proof: We are given $\angle K \cong$ $\angle M, \overline{J K} \cong \overline{J M}$, and $\overline{J L}$ bisects $\angle K L M$. Since $\overline{J L}$ bisects $\angle K L M$,
 we know $\angle K L J \cong \angle M L J$. So, $\triangle J K L \cong \triangle J M L$ is congruent by the AAS Congruence Theorem.
(5) a. We know $\angle B A E$ and $\angle D C E$ are congruent because they are both right angles. $\overline{A E}$ is congruent to $\overline{E C}$ by the Midpoint Theorem. From the Vertical Angles Theorem, $\angle D E C \cong \angle B E A$. So, two angles and the included side of $\triangle D C E$ are congruent to two angles and the included side of $\triangle B A E$. By ASA, the surveyor knows that $\triangle D C E \cong \triangle B A E$. By CPCTC, $\overline{D C} \cong \overline{A B}$, so the surveyor can measure $\overline{D C}$ and know the distance between A and B.
b. $\triangle D C E \cong \triangle B A E$
SAS
CPCTC
$\overline{D C} \cong \overline{A B}$
$D C=A B$
$550=A B \quad$ Substitution

So, by the definition of congruence, $A B=550 \mathrm{~m}$.
7. Given: $\angle W \cong \angle Y, \overline{W Z} \cong \overline{Y Z}$, $\overline{X Z}$ bisects $\angle W Z Y$.
Prove: $\triangle X W Z \cong \triangle X Y Z$
Proof: It is given that $\angle W \cong \angle Y$,
 $\overline{W Z} \cong \overline{Y Z}$, and $\overline{X Z}$ bisects $\angle W Z Y$.
By the definition of angle bisector, $\angle W Z X \cong \angle Y Z X$. The Angle-Side-Angle Congruence Postulate tells us that $\triangle X W Z \cong \triangle X Y Z$.
(9) Use the Alternate Interior Angle Theorem and AAS to prove the triangles congruent.
Given: V is the midpoint of $\overline{Y W}$;
$\overline{U Y} \| \overline{X W}$.
Prove: $\triangle U V Y \cong \triangle X V W$
Proof:
Statements (Reasons)

1. V is the midpoint of $\overline{Y W}$;
$\overline{U Y} \| \overline{X W}$. (Given)
2. $\overline{Y V} \cong \overline{V W}$ (Midpoint Theorem)
3. $\angle V W X \cong \angle V Y U$ (Alt. Int. $\angle \mathrm{s}$ Thm.)
4. $\angle V U Y \cong \angle V X W$ (Alt. Int. \&s Thm.)
5. $\triangle U V Y \cong \triangle X V W$ (AAS)
6. Given: $\angle A$ and $\angle C$ are right angles. $\angle A B E \cong \angle C B D$, $\overline{A E} \cong \overline{C D}$
Prove: $\overline{B E} \cong \overline{B D}$

Proof:

13a. $\angle H J K \cong \angle G F K$ since all right angles are congruent. We are given that $\overline{J K} \cong \overline{K F} . \angle H K J$ and $\angle F K G$ are vertical angles, so $\angle H K J \cong \angle F K G$ by the Vertical Angles Theorem. By ASA, $\triangle H J K \cong \triangle G F K$, so $\overline{F G} \cong \overline{H J}$ by CPCTC. 13b. No; $H J=1350 \mathrm{~m}$, so $F G=1350 \mathrm{~m}$. If the regatta is to be 1500 m , the lake is not long enough, since $1350<1500$.
(15) If the triangles are congruent, $H J=Q J$. Solve for y.

$$
\begin{aligned}
H J & =Q J & & \text { CPCTC } \\
9 & =2 y-1 & & H J=9, Q J=2 y-1 \\
y & =5 & & \text { Simplify. }
\end{aligned}
$$

17. Given: $\overline{A E} \perp \overline{D E}, \overline{E A} \perp \overline{A B}$, C is the midpoint of $\overline{A E}$.
Prove: $\overline{C D} \cong \overline{C B}$

Proof: We are given that $\overline{A E}$ is perpendicular to $\overline{D E}, \overline{E A}$ is perpendicular to $\overline{A B}$, and C is the midpoint of $\overline{A E}$. Since $\overline{A E}$ is perpendicular to $\overline{D E}$, $m \angle C E D=90$. Since $\overline{E A}$ is perpendicular to $\overline{A B}$, $m \angle B A C=90 . \angle C E D \cong \angle B A C$ because all right angles are congruent. $\overline{A C} \cong \overline{C E}$ from the Midpt. Thm. $\angle E C D \cong \angle A C B$ because they are vertical angles. Angle-Side-Angle gives us that $\triangle C E D \cong$ $\triangle C A B . \overline{C D} \cong \overline{C B}$ because corresponding parts of congruent triangles are congruent.
19. Given: $\frac{\angle K}{M R} \cong \angle M, \overline{K P} \perp \overline{P R}$, $\overline{M R} \perp \overline{P R}$
Prove: $\angle K P L \cong \angle M N L$ Proof:
Statements (Reasons)

1. $\angle K \cong \angle M, \overline{K P} \perp \overline{P R}, \overline{M R} \perp \overline{P R}$ (Given)
2. $\angle K P R$ and $\angle M R P$ are both right angles.
(Def. of \perp)
3. $\angle K P R \cong \angle M R P$ (All rt. $\&$ are congruent.)
4. $\overline{P R} \cong \overline{P R}$ (Refl. Prop.)
5. $\triangle K P R \cong \triangle M R P$ (AAS)
6. $\overline{K P} \cong \overline{M R}$ (СРСТС)
7. $\angle K L P \cong \angle M L R$ (Vertical angles are \cong.)
8. $\triangle K L P \cong \triangle M L R$ (AAS)
9. $\angle K P L \cong \angle M R L$ (СРСТС)
(21) Since $m \angle A C B=m \angle A D B=44$, and $m \angle C B A=$ $m \angle D B A=68$, then $\angle A C B \cong \angle A D B$ and $\angle C B A \cong$ $\angle D B A$ by the definition of congruence. $\overline{A B} \cong \overline{A B}$ by the Reflexive Property, so $\triangle A C B \cong \triangle A D B$ by AAS. Then $\overline{A C} \cong \overline{A D}$ by СРСТС. Since $A C=A D$ by the definition of congruence, the two seat stays are the same length.

10. Tyrone; Lorenzo showed that all three corresponding angles were congruent, but AAA is not a proof of triangle congruence.
11.

27. B 29. J 31. $A B=\sqrt{125}, B C=\sqrt{221}, A C=\sqrt{226}$, $X Y=\sqrt{125}, Y Z=\sqrt{221}, X Z=\sqrt{226}$. The corresponding sides have the same measure and are congruent. $\triangle A B C \cong \triangle X Y Z$ by SSS.

37. Given: $\angle 2 \cong \angle 1$

Prove: $\frac{\angle 1}{A B} \cong \frac{\angle 3}{D E}$
Selected Answers and Solutions

Statements (Reasons)

1. $\angle 2 \cong \angle 1, \angle 1 \cong \angle 3$ (Given)
2. $\angle 2 \cong \angle 3$ (Trans. Prop.)
3. $\overline{A B} \| \overline{D E}$ (If alt. int. $\stackrel{\text { s }}{ }$ are \cong, lines are $\|$.)

Lesson 4-6

1. $\angle B A C$ and $\angle B C A \quad 3.12 \quad 5.12$
2. Given: $\triangle A B C$ is isosceles; $\overline{E B}$ bisects $\angle A B C$.

Prove: $\triangle A B E \cong \triangle C B E$
Proof:
Statements (Reasons)

1. $\triangle A B C$ is isosceles; $\overline{E B}$ bisects $\angle A B C$. (Given)
2. $\overline{A B} \cong \overline{B C}$ (Def. of isosceles)
3. $\angle A B E \cong \angle C B E$ (Def. of \angle bisector)
4. $\overline{B E} \cong \overline{B E}$ (Refl. Prop.)
5. $\triangle A B E \cong \triangle C B E$ (SAS)
(9) $\angle A B E$ is opposite $\overline{A E}$ and $\angle A E B$ is opposite $\overline{A B}$. Since $\overline{A E} \cong \overline{A B}, \angle A B E \cong \angle A E B$.
$\begin{array}{lll}\text { 11. } \angle A C D \text { and } \angle A D C & \text { 13. } \overline{B F} \text { and } \overline{B C} & 15.60\end{array}$
17.4
(19) The triangle is equiangular, so it is also equilateral. All the sides are congruent.
$2 x+11=6 x-9 \quad$ Definition of congruence $11=4 x-9 \quad$ Subtract $2 x$ from each side. $20=4 x \quad$ Add 9 to each side. $5=x \quad$ Divide each side by 4.
6. $x=11, y=11$
7. Given: $\triangle H J M$ is an isosceles triangle and $\triangle H K L$ is an equilateral triangle. $\angle J K H, \angle H K L$ and $\angle H L K, \angle M L H$ are
 supplementary.
Prove: $\angle J H K \cong \angle M H L$
Proof: We are given that $\triangle H J M$ is an isosceles triangle and $\triangle H K L$ is an equilateral triangle, $\angle J K H$ and $\angle H K L$ are supplementary and $\angle H L K$ and $\angle M L H$ are supplementary. From the Isosceles Triangle Theorem, we know that $\angle H J K \cong \angle H M L$. Since $\triangle H K L$ is an equilateral triangle, we know $\angle H L K \cong \angle L K H \cong \angle K H L$ and $\overline{H L} \cong \overline{K L} \cong \overline{H K}$. $\angle J K H, \angle H K L$ and $\angle H L K, \angle M L H$ are supplementary, and $\angle H K L \cong \angle H L K$, we know $\angle J K H \cong \angle M L H$ by the Congruent Supplements Theorem. By AAS, $\triangle J H K \cong \triangle M L H$. Ву СРСТС, $\angle J H K \cong \angle M H L$.
25a. 65°; Since $\triangle A B C$ is isosceles, $\angle A B C \cong \angle A C B$, so $180-50=130$ and $\frac{130}{2}$ or 65 .
25b. Given: $\overline{B E} \cong \overline{C D}$
Prove: $\triangle A E D$ is isosceles.
Proof:

Statements (Reasons)

1. $\overline{A B} \cong \overline{A C}, \overline{B E} \cong \overline{C D}$ (Given)
2. $A B=A C, B E=C D$ (Def. of congruence)
3. $A B+B E=A E, A C+C D=A D$
(Seg. Add. Post.)
4. $A B+B E=A C+C D$ (Add. Prop. of Eq.)
5. $A E=A D$ (Subst.)
6. $\overline{A E} \cong \overline{A D}$ (Def. of congruence)
7. $\triangle A E D$ is isosceles. (Def. of isosceles)

25c. Given: $\overline{B C} \| \overline{E D}$ and $\overline{E D} \cong \overline{A D}$
Prove: $\triangle A D E$ is equilateral.
Proof:
Statements (Reasons)

1. $\overline{A B} \cong \overline{A C}, \overline{B C} \| \overline{E D}$ and $\overline{E D} \cong \overline{A D}$ (Given)
2. $\angle A B C \cong \angle A C B$ (Isos. \triangle Thm.)
3. $m \angle A B C=m \angle A C B$ (Def. of \cong)
4. $\angle A B C \cong \angle A E D, \angle A C B \cong \angle A D E$ (Corr. \triangle Thm.)
5. $m \angle A B C=m \angle A E D, m \angle A C B=m \angle A D E$
(Def. of \cong)
6. $m \angle A E D=m \angle A C B$ (Subst.)
7. $m \angle A E D=m \angle A D E$ (Subst.)
8. $\angle A E D \cong \angle A D E($ Def. of $\cong)$
9. $\overline{A D} \cong \overline{A E}$ (Conv. of Isos. \triangle Thm.)
10. $\triangle A D E$ is equilateral. (Def. of equilateral \triangle)

25d. One pair of congruent corresponding sides and one pair of congruent corresponding angles; since you know that the triangle is isosceles, if one leg is congruent to a leg of $\triangle A B C$, then you know that both pairs of legs are congruent. Because the base angles of an isosceles triangle are congruent, if you know that $\angle K \cong \angle B$ you know that $\angle K \cong \angle L, \angle B \cong \angle C$, and $\angle C \cong \angle L$. Therefore, with one pair of congruent corresponding sides and one pair of congruent corresponding angles, the triangles can be proved congruent using either ASA or SAS.
27.

Sample answer: I constructed a pair of perpendicular segments and then used the same compass setting to mark points equidistant from their intersection.
I measured both legs for each triangle. Since $A B=A C=$ $1.3 \mathrm{~cm}, D E=D F=1.9 \mathrm{~cm}$, and $G H=G J=2.3 \mathrm{~cm}$, the triangles are isosceles. I used a protractor to confirm that $\angle A, \angle D$, and $\angle G$ are all right angles.
(29) Since $\overline{A D} \cong \overline{C D}$, base angles $C A D$ and $A C D$ are congruent by the Isosceles Triangle Theorem. So, $m \angle C A D=m \angle A C D$.

$$
m \angle C A D+m \angle A C D+m \angle D=180 \quad \begin{array}{ll}
\text { Triangle Angle- } \\
& \text { Sum Theorem }
\end{array}
$$

$$
\begin{array}{rlrl}
m \angle C A D+m \angle C A D+92 & =180 & & \text { Substitution } \\
2 m \angle C A D+92 & =180 & & \text { Simplify. } \\
2 m \angle C A D & =88 & & \text { Subtract } 92 \text { from } \\
& \text { each side. } \\
m \angle C A D & =44 & & \text { Simplify. }
\end{array}
$$

31.136
33. Given: Each triangle is isosceles, $\overline{B G} \cong \overline{H C}$, $\overline{H D} \cong \overline{J F}, \angle G \cong \angle H$, and $\angle H \cong \angle J$.
Prove: The distance from B to F is three times the distance from D to F.

Proof:

Statements (Reasons)

1. Each triangle is isosceles, $\overline{B G} \cong \overline{H C}, \overline{H D} \cong \overline{J F}$, $\angle G \cong \angle H$, and $\angle H \cong \angle J$. (Given)
2. $\angle G \cong \angle J$ (Trans. Prop.)
3. $\overline{B G} \cong \overline{C G}, \overline{H C} \cong \overline{H D}, \overline{J D} \cong \overline{J F}$ (Def. of Isosceles)
4. $\overline{B G} \cong \overline{J D}$ (Trans. Prop.)
5. $\overline{H C} \cong \overline{J D}$ (Trans. Prop.)
6. $\overline{C G} \cong \overline{J F}$ (Trans. Prop.)
7. $\triangle B C G \cong \triangle C D H \cong \triangle D F J$ (SAS)
8. $\overline{B C} \cong \overline{C D} \cong \overline{D F}$ (СРСТС)
9. $B C=C D=D F$ (Def. of congruence)
10. $B C+C D+D F=B F$ (Seg. Add. Post.)
11. $D F+D F+D F=B F$ (Subst.)
12. $3 D F=B F$ (Addition)
13. Case I

Given: $\triangle A B C$ is an equilateral triangle.
Prove: $\triangle A B C$ is an equiangular triangle.

Proof:

Statements (Reasons)

1. $\triangle A B C$ is an equilateral triangle. (Given)
2. $\overline{A B} \cong \overline{A C} \cong \overline{B C}$ (Def. of equilateral \triangle)
3. $\angle A \cong \angle B \cong \angle C$ (Isosceles \triangle Th.)
4. $\triangle A B C$ is an equiangular triangle. (Def. of equiangular)
Case II
Given: $\triangle A B C$ is an equiangular triangle.
Prove: $\triangle A B C$ is an equilateral triangle.

Proof:

Statements (Reasons)

1. $\triangle A B C$ is an equiangular triangle. (Given)
2. $\angle A \cong \angle B \cong \angle C$ (Def. of equiangular \triangle)
3. $\overline{A B} \cong \overline{A C} \cong \overline{B C}$ (If $2 \&$ of a \triangle are \cong then the sides opp. those \angle are \cong.)
4. $\triangle A B C$ is an equilateral triangle. (Def. of equilateral)
5. Given: $\triangle A B C, \angle A \cong \angle C$

Prove: $\overline{A B} \cong \overline{C B}$
Proof:
Statements (Reasons)

1. Let $\overrightarrow{B D}$ bisect $\angle A B C$. (Protractor Post.)

2. $\angle A B D \cong \angle C B D$ (Def. of \angle bisector)
3. $\angle A \cong \angle C$ (Given)
4. $\overline{B D} \cong \overline{B D}$ (Refl. Prop.)
5. $\triangle A B D \cong \triangle C B D$ (AAS)
6. $\overline{A B} \cong \overline{C B}$ (СРСТС)
7. 14

41

$$
\begin{aligned}
m \angle L P M+m \angle L P Q & =180 & & \text { Supplement Theorem } \\
(3 x-55)+(2 x+10) & =180 & & \text { Substitution } \\
5 x-45 & =180 & & \text { Simplify. } \\
5 x & =225 & & \text { Add } 45 \text { to each side. } \\
x & =45 & & \text { Divide each side by } 45 .
\end{aligned}
$$

$$
\begin{aligned}
m \angle L P M & =3 x-55 & & \text { Given } \\
& =3(45)-55 & & \text { Substitution } \\
& =135-55 \text { or } 80 & & \text { Simplify. }
\end{aligned}
$$

Because $\overline{L M} \cong \overline{L P}$, base angles $L M P$ and $L P M$ are congruent by the Isosceles Triangle Theorem. So, $m \angle L M P=m \angle L P M=80$.
43. 80
45. Given: $\triangle W J Z$ is equilateral, and $\angle Z W P \cong \angle W J M \cong \angle J Z L$.
Prove: $\overline{W P} \cong \overline{Z L} \cong \overline{J M}$
Proof: We know that $\triangle W J Z$ is equilateral, since an equilateral \triangle is equiangular, $\angle Z W J \cong \angle W J Z \cong$
 $\angle J Z W$. So, $m \angle Z W J=m \angle W J Z=m \angle J Z W$, by the definition of congruence. Since $\angle Z W P \cong \angle W J M \cong$ $\angle J Z L, m \angle Z W P=m \angle W J M=m \angle J Z L$, by the definition of congruence. By the Angle Addition Postulate, $m \angle Z W J=m \angle Z W P+m \angle P W J, m \angle W J Z=$ $m \angle W J M+m \angle M J Z, m \angle J Z W=m \angle J Z L+m \angle L Z W$. By substitution, $m \angle Z W P+m \angle P W J=m \angle W J M+$ $m \angle M J Z=m \angle J Z L+m \angle L Z W$. Again by substitution, $m \angle Z W P+m \angle P W J=m \angle Z W P+$ $m \angle P J Z=m \angle Z W P+m \angle L Z W$. By the Subtraction Property, $m \angle P W J=m \angle P J Z=m \angle L Z W$. By the definition of congruence, $\angle P W J \cong \angle P J Z \cong \angle L Z W$. So, by ASA, $\triangle W Z L \cong \triangle Z J M \cong \triangle J W P$.
By CPCTC, $\overline{W P} \cong \overline{Z L} \cong \overline{J M}$.
47. Never; the measure of the vertex angle will be 180 - 2(measure of the base angle) so if the base angles are integers, then 2(measure of the base angle) will be even and $180-2$ (measure of the base angle) will be even. 49. It is not possible because a triangle cannot have more than one obtuse angle.
51. Sample answer: If a triangle is already classified, you can use the previously proven properties of that type of triangle in the proof. Doing this can save you steps when writing the proof. $53.185 \quad 55 . \mathrm{E}$
57. $S U=\sqrt{17}, T U=\sqrt{2}, S T=5, X Z=\sqrt{29}, Y Z=2$, $X Y=5$; the corresponding sides are not congruent; the triangles are not congruent.
59. Given: $A C=B D$

Prove: $A B=C D$

1. $A C=B D$ (Given)
2. $A C=A B+B C, B D=B C+C D$ (Seg. Add. Post.)
3. $A B+B C=B C+C D$ (Subst.)
4. $\overline{B C} \cong \overline{B C}$ (Reflexive)
5. $B C=B C$ (Def. of \cong Segs.)
6. $A B=C D$ (Subt. Prop.)
7. Add. Prop. 63. Trans. Prop. 65. A, K, B or B, J, C
8. Given: $\angle A C B \cong \angle A B C$

Prove: $\angle X C A \cong \angle Y B A$
Statements (Reasons)

1. $\angle A C B \cong \angle A B C$ (Given)
2. $\angle X C A$ and $\angle A C B$ are a linear pair. $\angle A B C$ and $\angle A B Y$ are a linear pair. (Def. of linear pair)
3. $\angle X C A, \angle A C B$ and $\angle A B C, \angle A B Y$ are supplementary. (Suppl. Thm.)
4. $\angle X C A \cong \angle Y B A$ (\measuredangle suppl. to $\cong \nless$ are \cong.)

Lesson 4-7

1. translation 3. reflection $5 . \triangle L K J$ is a reflection of $\triangle X Y Z . X Y=7, Y Z=8, X Z=\sqrt{113}, K J=8, L J=$ $\sqrt{113}, L K=7 . \triangle X Y Z \cong \triangle L K J$ by SSS. 7. reflection
(9) The image in green can be found by translating the blue figure to the right and up, by reflecting the figure in the line $y=-x$, or by rotating the figure 180° in either direction.
2. rotation 13. translation
3. rotation
(17)

Use $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ to find the lengths of the sides of $\triangle M P R$.

$$
\left.\begin{array}{rlrl}
M P & =\sqrt{[-7-(-7)]^{2}+[-7-(-1)]^{2}} & & \left(x_{1}, y_{1}\right)=(-7,-1), \\
& =\sqrt{0+36} \text { or } 6 & & \left(x_{2}, y_{2}\right)=(-7,-7)
\end{array}\right)
$$

Find the lengths of the sides of $\triangle T V S$.

$$
\begin{aligned}
& S T=\sqrt{(7-1)^{2}+[-1-(-4)]^{2}} \quad\left(x_{1}, y_{1}\right)=(1,-4), \\
& \left(x_{2}, y_{2}\right)=(7,-1) \\
& =\sqrt{36+9} \text { or } \sqrt{45} \\
& T V=\sqrt{(7-7)^{2}+[-7-(-1)]^{2}} \quad\left(x_{1}, y_{1}\right)=(7,-1), \\
& =\sqrt{0+36} \text { or } 6 \\
& S V=\sqrt{(7-1)^{2}+[-7-(-4)]^{2}} \\
& =\sqrt{36+9} \text { or } \sqrt{45} \\
& \left(x_{2}, y_{2}\right)=(7,-7) \\
& \text { Simplify. } \\
& \left(x_{1}, y_{1}\right)=(1,-4) \text {, } \\
& \left(x_{2}, y_{2}\right)=(7,-7) \\
& \text { Simplify. }
\end{aligned}
$$

In $\triangle M P R, M P=6, P R=\sqrt{45}$, and $M R=\sqrt{45}$. In
$\triangle T V S, S T=\sqrt{45}, T V=6, S V=\sqrt{45} . \triangle M P R \cong$ $\triangle T V S$ by SSS. $\triangle T V S$ is a reflection of $\triangle M P R$.
19.

$\triangle X Y Z$ is a rotation of $\triangle A B C . A B=5, B C=4$, $A C=3, X Y=5, Y Z=4$, $X Z=3$. Since $A B=X Y$, $B C=Y Z$, and $A C=X Z$, $\overline{A B} \cong \overline{X Y}, \overline{B C} \cong \overline{Y Z}$, and $\overline{A C} \cong \overline{X Z}, \triangle A B C \cong$ $\triangle X Y Z$ by SSS.
21. rotation
23. reflection
25. rotation
27. Rotation; the knob is the center of rotation.
(29) a. Tionne used the stencil on one side, then flipped it and used the other side, then flipped it again to create the third flower in the design. She could have also used the stencil, then turned it to create the second flower, and turned it again to create the third flower. So, she could have used reflections or rotations. b. Tionne used the stamp, then turned it to create the second flower, and turned it again to create the third flower. So, she used rotations.
31a. translation, reflection 31b. Sample answer: The triangles must be either isosceles or equilateral. When triangles are isosceles or equilateral, they have a line of symmetry, so reflections result in the same figure. 33. Sample answer: A person looking in a mirror sees a reflection of himself or herself.
35. Sample answer: A faucet handle rotates when you turn the water on. 37. no; $75 \% \quad 39 . \mathrm{J} \quad 41.4$
43. 10 45. yes; Law of Detachment 47. $(8,9.5)$
49. $(-7.5,3.5) \quad$ 51. $(1,9.5)$

Lesson 4-8
1.

5. $D C=\sqrt{[-a-(-a)]^{2}+(b-0)^{2}}$ or b
$G H=\sqrt{(a-a)^{2}+(b-0)^{2}}$ or b

Since $D C=G H, \overline{D C} \cong \overline{G H}$.
$D F=\sqrt{(0-a)^{2}+\left(\frac{b}{2}-b\right)^{2}}$ or $\sqrt{a^{2}+\frac{b^{2}}{4}}$
$G F=\sqrt{(a-0)^{2}+\left(b-\frac{b}{2}\right)^{2}}$ or $\sqrt{a^{2}+\frac{b^{2}}{4}}$
$C F=\sqrt{(0-a)^{2}+\left(\frac{b}{2}-0\right)^{2}}$ or $\sqrt{a^{2}+\frac{b^{2}}{4}}$
$H F=\sqrt{(a-0)^{2}+\left(0-\frac{b}{2}\right)^{2}}$ or $\sqrt{a^{2}+\frac{b^{2}}{4}}$
Since $D F=G F=C F=H F, \overline{D F} \cong \overline{G F} \cong \overline{C F} \cong \overline{H F}$. $\triangle F G H \cong \triangle F D C$ by SSS.
7.

(9) Since this is a right triangle, each of the legs can be located on an axis. Placing the right angle of the triangle, $\angle T$, at the origin will
 allow the two legs to be along the x - and y-axes. Position the triangle in the first quadrant. Since R is on the y-axis, its x-coordinate is 0 . Its y-coordinate is $3 a$ because the leg is $3 a$ units long. Since S is on the x-axis, its y-coordinate is 0 . Its x-coordinate is $3 a$ because the leg is $3 a$ units long.
11.

13. $C(a, a), Y(a, 0)$
(15) Vertex N is positioned at the origin. So, its coordinates are (0,0). Vertex L is on the x-axis, so its y-coordinate is 0 . The coordinates of vertex L are $(3 a, 0) . \Delta N J L$ is isosceles, so the x-coordinate of J is located halfway between 0 and $3 a$, or 1.5a. The coordinates of vertex J are $(1.5 a, b)$. So, the vertices are $N(0,0), J(1.5 a, b), L(3 a, 0)$.
17. $H(2 b, 2 b \sqrt{3}), N(0,0), D(4 b, 0)$
19. Given: Isosceles $\triangle A B C$ with $\overline{A C} \cong \overline{B C} ; R$ and S are midpoints of legs $\overline{A C}$ and $\overline{B C}$.
Prove: $\overline{A S} \cong \overline{B R}$

Proof:
The coordinates of S are $\left(\frac{2 a+4 a}{2}, \frac{2 b+0}{2}\right)$ or $(3 a, b)$.
The coordinates of R are $\left(\frac{2 a+0}{2}, \frac{2 b+0}{2}\right)$ or (a, b).
$A S=\sqrt{(3 a-0)^{2}+(b-0)^{2}}$ or $\sqrt{9 a^{2}+b^{2}}$
$B R=\sqrt{(4 a-a)^{2}+(0-b)^{2}}$ or $\sqrt{9 a^{2}+b^{2}}$
Since $A S=B R, \overline{A S} \cong \overline{B R}$.
21. Given: Right $\triangle A B C$ with right $\angle B A C ; P$ is the midpoint of $\overline{B C}$.
Prove: $A P=\frac{1}{2} B C$
Proof:

Proof:
Midpoint P is $\left(\frac{0+2 c}{2}, \frac{2 b+0}{2}\right)$ or (c, b).
$A P=\sqrt{(c-0)^{2}+(b-0)^{2}}$ or $\sqrt{c^{2}+b^{2}}$

$$
\begin{aligned}
& B C=\sqrt{(2 c-0)^{2}+(0-2 b)^{2}}=\sqrt{4 c^{2}+4 b^{2}} \text { or } \\
& 2 \sqrt{c^{2}+b^{2}} \\
& \frac{1}{2} B C=\sqrt{c^{2}+b^{2}}
\end{aligned}
$$

$$
\text { So, } A P=\frac{1}{2} B C \text {. }
$$

23. The distance between Raleigh and Durham is about 0.32 units, between Raleigh and Chapel Hill is about 0.41 units, and between Durham and Chapel Hill is about 0.15 units. Since none of these distances are the same, the Research Triangle is scalene.
24. slope of $\overline{X Y}=1$, slope of $\overline{Y Z}=-1$, slope of $\overline{Z X}=0$; since $1(-1)=-1, \overline{X Y} \perp \overline{Y Z}$. Therefore, $\triangle X Y Z$ is a right triangle.
25. The slope between the tents is $-\frac{4}{3}$. The slope between the ranger's station and the tent located at $(12,9)$ is $\frac{3}{4}$. Since $-\frac{4}{3} \cdot \frac{3}{4}=-1$, the triangle formed by the tents and ranger's station is a right triangle.
(29) a.

The equation of the line along which the first vehicle lies is $y=$ x. The slope is 1 because the vehicle travels the same number of units north as it does east of the origin and the y-intercept is 0 . The equation of the line along which the second vehicle lies is $y=-x$. The slope is -1 because the vehicle travels the same number of units north as it does west of the origin and the y-intercept is 0 .
b. The paths taken by both the first and second vehicles are 300 yards long. Therefore, the paths are congruent. If two sides of a triangle are congruent, then the triangle is isosceles. You can also write a coordinate proof to prove the triangle formed is isosceles.
Given: $\triangle A B C$
Prove: $\triangle A B C$ is an isosceles right triangle.
Proof: By the Distance Formula,
$A B=\sqrt{(-a-0)^{2}+(a-0)^{2}}$ or $\sqrt{2 a^{2}}$ and
$A C=\sqrt{(a-0)^{2}+(a-0)^{2}}$ or $\sqrt{2 a^{2}}$. So, $A B=A C$
and $\overline{A B} \cong \overline{A C}$. The triangle is isosceles. By the Slope Formula, the slope of $\overline{A B}$ is $\frac{a}{-a}$ or -1 and the slope of $\overline{A C}$ is $\frac{a}{a}$ or 1 . Since the slopes are negative reciprocals, the sides of the triangle are perpendicular and therefore form a right angle. So, $\triangle A B C$ is an isosceles right triangle.
c. The paths taken by the first two vehicles form the hypotenuse of isosceles right triangles.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean Theorem } \\
a^{2}+a^{2} & =300^{2} & & b=a \\
2 a^{2} & =90,000 & & \text { Simplify } .
\end{aligned}
$$

$$
\begin{aligned}
a^{2} & =45,000 \\
a & =150 \sqrt{2}
\end{aligned} \quad \text { Divide each side by } 2 .
$$

First vehicle: $(a, a)=(150 \sqrt{2}, 150 \sqrt{2})$; second vehicle: $(-a, a)=(-150 \sqrt{2}, 150 \sqrt{2})$
The third vehicle travels due north and therefore, remains on the y-axis; third vehicle: $(0,212)$
d. The y-coordinates of the first two vehicles are $150 \sqrt{2} \approx 212.13$, while the y-coordinate of the third vehicle is 212 . Since all three vehicles have approximately the same y-coordinate, they are approximately collinear. The midpoint between the first and second vehicles is
$\left(\frac{150 \sqrt{2}+(-150 \sqrt{2})}{2}, \frac{150 \sqrt{2}+150 \sqrt{2}}{2}\right)$
or approximately $(0,212.13)$. This is the approximate location of the third vehicle.
31. Sample answer: $(a, 0) \quad 33$. Sample answer: $(4 a, 0)$
35. Given: $\triangle A B C$ with coordinates $A(0,0), B(a, b)$, and $C(c, d)$ and $\triangle D E F$ with coordinates $D(0+n$, $0+m), E(a+n, b+m)$, and $F(c+n, d+m)$
Prove: $\triangle D E F \cong \triangle A B C$
Proof:

$$
\begin{aligned}
& A B=\sqrt{(a-0)^{2}+(b-0)^{2}} \text { or } \sqrt{a^{2}+b^{2}} \\
& D E=\sqrt{[a+n-(0+n)]^{2}+[b+m-(0+m)]^{2}} \text { or } \\
& \sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Since $A B=D E, \overline{A B} \cong \overline{D E}$.

$$
\begin{aligned}
& B C=\sqrt{(c-a)^{2}+(d-b)^{2}} \text { or } \\
& \sqrt{c^{2}-2 a c+a^{2}+d^{2}-2 b d+b^{2}} \\
& E F=\sqrt{[c+n-(a+n)]^{2}+[d+m-(b+m)]^{2}} \text { or } \\
& \sqrt{c^{2}-2 a c+a^{2}+d^{2}-2 b d+b^{2}}
\end{aligned}
$$

Since $B C=E F, \overline{B C} \cong \overline{E F}$.

$$
\begin{aligned}
& C A=\sqrt{(c-0)^{2}+(d-0)^{2}} \text { or } \sqrt{c^{2}+d^{2}} \\
& F D=\sqrt{[0+n-(c+n)]^{2}+[0+m-(d+m)]^{2}} \text { or } \\
& \sqrt{c^{2}+d^{2}}
\end{aligned}
$$

Since $C A=F D, \overline{C A} \cong \overline{F D}$.
Therefore, $\triangle D E F \cong \triangle A B C$ by the SSS Postulate.
37a. Using the origin as a vertex of the triangle makes calculations easier because the coordinates are (0,0).
37b. Placing at least one side of the triangle on the x - or y-axis makes it easier to calculate the length of the side since one of the coordinates will be 0 . 37c. Keeping a triangle within the first quadrant makes all of the coordinates positive, and makes the calculations easier. 39. D 41.C 43. reflection, translation, or rotation 45. Sample answer: $\angle T S R \cong \angle T R S$ 47. Sample answer: $\triangle R Q V \cong \triangle S Q V \quad$ 49.4.2 51.3.6

Chapter 4 Study Guide \& Review

1. true
2. true
3. false; base
4. true
5. false;
coordinate proof 11. obtuse 13. right 15. $x=6$,
$J K=K L=J L=24 \quad 17.70 \quad$ 19. $82 \quad$ 21. $\angle D \cong \angle J$, $\angle A \cong \angle F, \angle C \cong \angle H, \angle B \cong \angle G, \overline{A B} \cong \overline{F G}, \overline{B C} \cong \overline{H G}$, $\overline{D C} \cong \overline{J H}, \overline{D A} \cong \overline{J F} ;$ polygon $A B C D \cong$ polygon $F G H J$
6. $\triangle B F G \cong \triangle C G H \cong \triangle D H E \cong \triangle A E F, \triangle E F G \cong$ $\triangle F G H \cong \triangle G H E \cong \triangle H E F \quad$ 25. No, the corresp. sides of the $2 \triangle \mathrm{~s}$ are not \cong. 27. not possible
7. Given: $\overline{A B} \| \overline{D C}, \overline{A B} \cong \overline{D C}$

Prove: $\triangle A B E \cong \triangle C D E$
Proof:
Statements (Reasons)

1. $\overline{A B} \| \overline{D C}$ (Given)
2. $\angle A \cong \angle D C E$ (Alt. Int. $\angle s$ Thm.)
3. $\overline{A B} \| \overline{D C}$ (Given)
4. $\angle A B E \cong \angle D$ (Alt. Int. $\angle s$ Thm.)
5. $\triangle A B E \cong \triangle C D E$ (ASA)
31.3
6. 77.5
7. reflection
8. rotation
9.

41. Given: $\triangle D S H$ with vertices $D(8,28), S(0,0)$, and $H(19,7)$
Prove: $\triangle D S H$ is scalene.
Proof:
Statements (Reasons)

1. $D(8,28), S(0,0)$, and $H(19,7)$ (Given)
2. $\overline{D S}=\sqrt{(8-0)^{2}+(28-0)^{2}}$ or $\sqrt{848}$ (Distance Formula)
3. $\overline{S H}=\sqrt{(19-0)^{2}+(7-0)^{2}}$ or $\sqrt{410}$ (Distance Formula)
4. $\overline{D H}=\sqrt{(8-19)^{2}+(28-7)^{2}}$ or $\sqrt{562}$
(Distance Formula)
5. $\overline{D S} \not \equiv \overline{S H} \not \approx \overline{D H}$
6. $\triangle D S H$ is a scalene triangle. (Definition of scalene)

CHAPTER 5
 Relationships in Triangles

Chapter 5 Get Ready
1.9 3.10 ft
5. $J K=K L=L M=M J$

Lesson 5-1
$\begin{array}{llll}1.12 & 3.15 & 5.8 & 7.12\end{array}$
(9) $\overrightarrow{M P}$ is the perpendicular bisector of $\overline{L N}$.

$$
\begin{array}{rlrl}
L P & =N P & & \text { Perpendicular Bisector Theorem } \\
2 x-4 & =x+5 & & \text { Substitution } \\
x-4=5 & & \text { Subtract } x \text { from each side. } \\
x=9 & & \text { Add } 4 \text { to each side. } \\
N P=9+5 \text { or } 14
\end{array}
$$

11.6 13.4
17. $\overline{C D}, \overline{B D}$
19. $\overline{B H} \quad 21.11$

23) Since $\overline{Q M} \perp \overrightarrow{N M}, \overline{Q P} \perp \overrightarrow{N P}$, and $Q M=Q P$, Q is equidistant from the sides of $\angle P N M$. By the Converse of the Angle Bisector Theorem, $\overrightarrow{N Q}$ bisects $\angle P N M$.

$$
\begin{aligned}
\angle P N Q & \cong \angle Q N M & & \text { Definition of angle bisector } \\
m \angle P N Q & =m \angle Q N M & & \text { Definition of congruent angles } \\
4 x-8 & =3 x+5 & & \text { Substitution } \\
x-8 & =5 & & \text { Subtract } 3 x \text { from each side. } \\
x & =13 & & \text { Add } 8 \text { to each side. }
\end{aligned}
$$

$$
\begin{aligned}
m \angle P N M & =m \angle P N Q+m \angle Q N M & & \begin{array}{l}
\text { Angle Addition } \\
\text { Postulate }
\end{array} \\
& =(4 x-8)+(3 x+5) & & \text { Substitution } \\
& =7 x-3 & & \text { Simplify. } \\
& =7(13)-3 \text { or } 88 & & x=13
\end{aligned}
$$

25.42 27.7.1 29.33
(31) Sketch the table and draw the three angle bisectors of the triangle.

Find the point of concurrency of the angle bisectors of the triangle, the incenter. This point is equidistant from each side of the triangle. So, the centerpiece should be placed at the incenter.
33. No; we need to know whether the perpendicular segments are congruent to each other. 35 . No; we need to know whether the hypotenuses of the triangles are congruent.
37. Given: $\overline{C A} \cong \overline{C B}, \overline{A D} \cong \overline{B D}$

Prove: C and D are on the perpendicular bisector of $\overline{A B}$.
Proof:

Statements (Reasons)

1. $\overline{C A} \cong \overline{C B}, \overline{A D} \cong \overline{B D}$ (Given)
2. $\overline{C D} \cong \overline{C D}$ (Congruence of
 segments is reflexive.)
3. $\triangle A C D \cong \triangle B C D$ (SSS)
4. $\angle A C D \cong \angle B C D$ (CPCTC)
5. $\overline{C E} \cong \overline{C E}$ (Congruence of segments is reflexive.)
6. $\triangle C E A \cong \triangle C E B$ (SAS)
7. $\overline{A E} \cong \overline{B E}$ (СРСТС)
8. E is the midpoint of $\overline{A B}$. (Def. of midpoint)
9. $\angle C E A \cong \angle C E B$ (СРСТС)
10. $\angle C E A$ and $\angle C E B$ form a linear pair. (Def. of linear pair)
11. $\angle C E A$ and $\angle C E B$ are supplementary.
(Supplement Theorem)
12. $m \angle C E A+m \angle C E B=180$ (Def. of supplementary)
13. $m \angle C E A+m \angle C E A=180$ (Substitution Prop.)
14. $2 m \angle C E A=180$ (Substitution Prop.)
15. $m \angle C E A=90$ (Division Prop.)
16. $\angle C E A$ and $\angle C E B$ are rt. \angle. (Def. of rt. \angle)
17. $\overline{C D} \perp \overline{A B}$ (Def. of \perp)
18. $\overline{C D}$ is the perpendicular bisector of $\overline{A B}$. (Def. of \perp bisector)
19. C and D are on the perpendicular bisector of $\overline{A B}$. (Def. of point on a line)
20. Given: $\overline{C D}$ is the \perp bisector of $\overline{A B}$. E is a point on $\overline{C D}$.
Prove: $E A=E B$
Proof: $\overline{C D}$ is the \perp bisector of $\overline{A B}$. By definition of \perp bisector,
 D is the midpoint of $\overline{A B}$. Thus, $\overline{A D} \cong \overline{B D}$ by the Midpoint Theorem. $\angle C D A$ and $\angle C D B$ are right angles by the definition of perpendicular. Since all right angles are congruent, $\angle C D A \cong \angle C D B$. Since E is a point on $\overline{C D}, \angle E D A$ and $\angle E D B$ are right angles and are congruent. By the Reflexive Property, $\overline{E D} \cong \overline{E D}$.
Thus, $\triangle E D A \cong \triangle E D B$ by SAS. $\overline{E A} \cong \overline{E B}$ because
CPCTC, and by definition of congruence, $E A=E B$. 41. $y=-\frac{7}{2} x+\frac{15}{4}$; The perpendicular bisector bisects the segment at the midpoint of the segment. The midpoint is $\left(\frac{1}{2}, 2\right)$. The slope of the given segment is $\frac{2}{7}$, so the slope of the perpendicular bisector is $-\frac{7}{2}$.
21. Given: $\overline{P X}$ bisects $\angle Q P R . \overline{X Y} \perp \overline{P Q}$ and $\overline{X Z} \perp \overline{P R}$
Prove: $\overline{X Y} \cong \overline{X Z}$
Proof:
Statements (Reasons)
22. $\overline{P X}$ bisects $\angle Q P R, \overline{X Y} \perp \overline{P Q}$, and
 $\overline{\mathrm{XZ}} \perp \overline{P R}$. (Given)
23. $\angle Y P X \cong \angle Z P X$ (Definition of angle bisector)
24. $\angle P Y X$ and $\angle P Z X$ are right angles. (Definition of perpendicular)
25. $\angle P Y X \cong \angle P Z X$ (Right angles are congruent.)
26. $\overline{P X} \cong \overline{P X}$ (Reflexive Property)
27. $\triangle P Y X \cong \triangle P Z X$ (AAS)
28. $\overline{X Y} \cong \overline{X Z}$ (СРСТС)
(45) The circumcenter is the point where the perpendicular bisectors of a triangle intersect. You can find the circumcenter by locating the point of intersection of two of the perpendicular bisectors.
 The equation of the perpendicular bisector of $\overline{A B}$ is $y=3$. The equation of the perpendicular bisector of $\overline{A C}$ is $x=5$. These lines intersect at $(5,3)$. The circumcenter is located at $(5,3)$.
29. a plane perpendicular to the plane in which $\overline{C D}$ lies and bisecting $\overline{C D}$
30. Sample answer:

31. always

Given: $\triangle A B C$ is isosceles with legs $\overline{A B}$ and $\overline{B C}$; $\overline{B D}$ is the \perp bisector of $\overline{A C}$.
Prove: $\overline{B D}$ is the angle bisector of $\angle A B C$.

Proof:

Statements (Reasons)

1. $\triangle A B C$ is isosceles with legs $\overline{A B}$ and $\overline{B C}$. (Given)
2. $\overline{A B} \cong \overline{B C}$ (Def.
 of isosceles \triangle)
3. $\overline{B D}$ is the \perp bisector of $\overline{A C}$. (Given)
4. D is the midpoint of $\overline{A C}$. (Def. of segment bisector)
5. $\overline{A D} \cong \overline{D C}$ (Def. of midpoint)
6. $\overline{B D} \cong \overline{B D}$ (Reflexive Property)
7. $\triangle A B D \cong \triangle C B D$ (SSS)
8. $\angle A B D \cong \angle C B D$ (СРСТС)
9. $\overline{B D}$ is the angle bisector of $\angle A B C$. (Def. of \angle bisector)
10. Given: Plane Z is an angle bisector of $\angle K J H . \overline{K J} \cong \overline{H J}$ Prove: $\overline{M H} \cong \overline{M K}$
Proof:

Statements (Reasons)

1. Plane Z is an angle bisector of $\angle K J H ; \overline{K J} \cong \overline{H J}$ (Given)
2. $\angle K J M \cong \angle H J M$ (Definition of angle bisector)
3. $\overline{J M} \cong \overline{J M}$ (Reflexive Property)
4. $\triangle K J M \cong \triangle H J M$ (SAS)
5. $\overline{M H} \cong \overline{M K}($ СРСТС $)$
6. A 57.D 59. $L(a, b)$ 61. $S(-2 b, 0)$ and $R(0, c)$
7. $\triangle J K L$ is a translation of $\triangle X Y Z ; J K=2, K L=4$,
$J L=\sqrt{20}, X Y=2, Y Z=4$, $X Z=\sqrt{20} . \triangle J K L \cong \triangle X Y Z$ by SSS.
8. $\sqrt{5}$
9. $m=42 t+450 ; \$ 1164$

10. Given: $\triangle M L P$ is isosceles. N is the midpoint of $\overline{M P}$.
Prove: $\overline{L N} \perp \overline{M P}$
Proof:
Statements (Reasons)

11. $\triangle M L P$ is isosceles. (Given)
12. $\overline{M L} \cong \overline{P L}$ (Definition of isosceles \triangle)
13. $\angle M \cong \angle P$ (Isosceles $\triangle \mathrm{Th}$.)
14. N is the midpoint of $\overline{M P}$. (Given)
15. $\overline{M N} \cong \overline{P N}$ (Def. of midpoint)
16. $\triangle M N L \cong \triangle P N L$ (SAS)
17. $\angle L N M \cong \angle L N P$ (CPCTC)
18. $m \angle L N M=m \angle L N P$ (Def. of $\cong \angle s)$
19. $\angle L N M$ and $\angle L N P$ are a linear pair. (Def. of a linear pair)
20. $m \angle L N M+m \angle L N P=180$ (Sum of measure of linear pair of $\angle s=180$)
21. $2 m \angle L N M=180$ (Substitution)
22. $m \angle L N M=90$ (Division)
23. $\angle L N M$ is a right angle. (Def. of rt. \angle)
24. $\overline{L N} \perp \overline{M P}$ (Def. of \perp)

Lesson 5-2

(1) $P C=\frac{2}{3} F C$
$P C=\frac{2}{3}(P F+P C) \quad$ Segment Addition and Substitution
$P C=\frac{2}{3}(6+P C) \quad P F=6$
$P C=4+\frac{2}{3} P C$
$\frac{1}{3} P C=4$
$P C=12$

Distributive Property
Centroid Theorem

Subtract $\frac{2}{3} P C$ from each side.
Multiply each side by 3 .
3. $(5,6)$
5. 4.5
7. 13.5
9.6 11. $(3,6)$
(13) The centroid is the point of balance for a triangle. Use the Midpoint Theorem to find the midpoint M of the side with endpoints at $(0,8)$ and $(6,4)$. The centroid is two-thirds the distance from the opposite vertex to that midpoint.
$M\left(\frac{0+6}{2}, \frac{8+4}{2}\right)=M(3,6)$
The distance from $M(3,6)$ to the point at $(3,0)$ is $6-0$ or 6 units. If P is the centroid of the triangle, then $P=\frac{2}{3}(6)$ or 4 units up from the point at $(3,0)$. The coordinates of P are $(3,0+4)$ or $(3,4)$.
15. $(-4,-4) \quad$ 17. median
19. median
21.3 23. $\frac{1}{2}$
(25)

$$
\begin{aligned}
\overline{A C} & \cong \overline{D C} & & \text { Definition of median } \\
A C & =D C & & \text { Definition of congruence } \\
4 x-3 & =2 x+9 & & \text { Substitution } \\
2 x-3 & =9 & & \text { Subtract } 2 x \text { from each side. } \\
2 x & =12 & & \text { Add } 3 \text { to each side. } \\
x & =6 & & \text { Divide each side by } 2 .
\end{aligned}
$$

$\overline{E C}$ is not an altitude of $\triangle A E D$ because $m \angle E C A=92$. If $\overline{E C}$ were an altitude, then $m \angle E C A$ must be 90 .
27. altitude 29. median
31. Given: $\triangle X Y Z$ is isosceles. $\overline{W Y}$ bisects $\angle Y$.

Prove: $\overline{W Y}$ is a median.
Proof: Since $\triangle X Y Z$ is isosceles, $\overline{X Y} \cong \overline{Z Y}$. By the definition of angle bisector, $\angle X Y W \cong \angle Z Y W$. $\overline{Y W} \cong \overline{Y W}$ by the Reflexive Property. So, by SAS, $\triangle X Y W \cong \triangle Z Y W$. By CPCTC, $\overline{X W} \cong \overline{Z W}$. By the definition of a midpoint, W is the midpoint of $\overline{X Z}$.

By the definition of a median, $\overline{W Y}$ is a median.
33a.

33b. Sample answer: The four points of concurrency of an equilateral triangle are all the same point.

33c.

35.7
(37) Sample answer: Kareem is correct. According to the Centroid Theorem, $A P=\frac{2}{3} A D$. The segment lengths are transposed.
39. $\left(1, \frac{5}{3}\right)$; Sample answer: I found the midpoint of $\overline{A C}$ and used it to find the equation for the line that contains point B and the midpoint of $\overline{A C}, y=\frac{10}{3} x-\frac{5}{3}$. I also found the midpoint of $\overline{B C}$ and the equation for the line between point A and the midpoint of $\overline{B C}$, $y=-\frac{1}{3} x+2$. I solved the system of two equations for x and y to get the coordinates of the centroid, $\left(1, \frac{5}{3}\right)$.
41. $2 \sqrt{13}$ 43. Sample answer: Each median divides the triangle into two smaller triangles of equal area, so the triangle can be balanced along any one of those lines. To balance the triangle on one point, you need to find the point where these three balance lines intersect. The balancing point for a rectangle is the intersection of the segments connecting the midpoints of the opposite sides, since each segment connecting these midpoints of a pair of opposite sides divides the rectangle into two parts with equal area. 45.3 47. B 49.5

53. neither

55. Because the lines are perpendicular, the angles formed are right angles. All right angles are congruent. Therefore, $\angle 1$ is congruent to $\angle 2$.

Lesson 5-3

1. $\angle 1, \angle 2$ 3. $\angle 4 \quad$ 5. $\angle A, \angle C, \angle B ; \overline{B C}, \overline{A B}, \overline{A C} \quad$ 7. $\overline{B C}$; Sample answer: Since the angle across from segment $\overline{B C}$ is larger than the angle across from $\overline{A C}, \overline{B C}$ is
longer. 9. $\angle 1, \angle 2$
2. $\angle 1, \angle 3, \angle 6, \angle 7$
3. $\angle 5, \angle 9$

$$
\begin{aligned}
m \angle E C A & =15 x+2 & & \text { Given } \\
& =15(6)+2 & & x=6 \\
& =90+2 \text { or } 92 & & \text { Simplify. }
\end{aligned}
$$

(15) The sides from shortest to longest are $\overline{R T}, \overline{R S}, \overline{S T}$. The angles opposite these sides are $\angle S, \angle T$, and $\angle R$, respectively. So the angles from smallest to largest are $\angle S, \angle T$, and $\angle R$.
17. $\angle L, \angle P, \angle M ; \overline{P M}, \overline{M L}, \overline{P L}$ 19. $\angle C, \angle D, \angle E ; \overline{D E}$, $\overline{C E}, \overline{C D}$
(21) To use Theorem 5.9, first show that the measure of the angle opposite $\overline{Y Z}$ is greater than the measure of the angle opposite $\overline{X Z}$. If $m \angle X=90$, then $m \angle Y+m \angle Z=90$, so $m \angle Y<90$ by the definition of inequality. So $m \angle X>m \angle Y$. According to Theorem 5.9, if $m \angle X>m \angle Y$, then the length of the side opposite $\angle X$ must be greater than the length of the side opposite $\angle Y$. Since $\overline{Y Z}$ is opposite $\angle X$, and $\overline{X Z}$ is opposite $\angle Y$, then $Y Z>X Z$. So $Y Z$, the length of the top surface of the ramp, must be greater than the length of the ramp.
23. $\angle P, \angle Q, \angle M ; \overline{M Q}, \overline{P M}, \overline{P Q}$
25. $\angle 2 \quad$ 27. $\angle 3$
29. $\angle 8$ 31. $m \angle B C F>m \angle C F B$
33. $m \angle D B F<m \angle B F D$
35. $R P>M P \quad$ 37. $R M>R Q$
(39) Use the Distance Formula
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ to find the lengths of the sides.

$$
\begin{aligned}
A B & =\sqrt{[-2-(-4)]^{2}+(1-6)^{2}} & & x_{1}=-4, x_{2}=-2, \\
& =\sqrt{29} & & y_{1}=6, y_{2}=1 \\
& \approx 5.4 & & \text { Simplify. } \\
B C & =\sqrt{[5-(-2)]^{2}+(6-1)^{2}} & & \begin{array}{l}
x_{1}=-2, x_{2}=5 \\
\\
\end{array}=\sqrt{74} \\
& \approx 8.6 & & y_{1}=1, y_{2}=6 \\
A C & =\sqrt{[5-(-4)]^{2}+(6-6)^{2}} & & \begin{array}{l}
x_{1}=-4, x_{2}=5 \\
\\
\end{array}
\end{aligned} \begin{array}{ll}
& y_{1}=6, y_{2}=6
\end{array}
$$

Since $A B<B C<A C, \angle C<\angle A<\angle B$. The angles in order from smallest to largest are $\angle C, \angle A, \angle B$.
41. $A B, B C, A C, C D, B D$; In $\triangle A B C, A B<B C<A C$ and in $\triangle B C D, B C<C D<B D$. By the figure $A C<$ $C D$, so $B C<A C<C D$. 43. Sample answer: $\angle R$ is an exterior angle to $\triangle P Q R$, so by the Exterior Angle Inequality, $m \angle R$ must be greater than $m \angle Q$. The markings indicate that $\angle R \cong \angle Q$, indicating that $m \angle R=m \angle Q$. This is a contradiction of the Exterior Angle Inequality Theorem, so the markings are incorrect. 45. Sample answer: $10 ; m \angle C>m \angle B$, so if $A B>A C$, Theorem 5.10 is satisfied. Since $10>6$, $A B>A C$. 47. $m \angle 1, m \angle 2=m \angle 5, m \angle 4, m \angle 6, m \angle 3$; Sample answer: The side opposite $\angle 5$ is the smallest side in that triangle and $m \angle 2=m \angle 5$, so we know that $m \angle 4$ and $m \angle 6$ are both greater than $m \angle 2$ and $m \angle 5$. The side opposite $\angle 6$ is greater than the side opposite $\angle 4$, Since the side opposite $\angle 2$ is greater than the side opposite $\angle 1$, we know that $m \angle 1<m \angle 2$ and $m \angle 5$. Since $m \angle 2=m \angle 5, m \angle 1+m \angle 3=m \angle 4+$ $m \angle 6$. Since $m \angle 1<m \angle 4$, then $m \angle 3>m \angle 6$.
49. D

51a. $t=2.5 h+198$
51b. $6 \quad$ 51c. $\$ 180 \quad 53.9 \quad$ 55. $y=-5 x+7$; The perpendicular bisector bisects the segment at the midpoint of the segment. The midpoint is $\left(\frac{1}{2}, \frac{9}{2}\right)$.
The slope of the given segment is $\frac{1}{5}$, so the slope of
the perpendicular bisector is -5 .
57. Given: T is the midpoint of $\overline{S Q}$.

$$
\overline{S R} \cong \overline{Q R}
$$

Prove: $\triangle S R T \cong \triangle Q R T$
Proof:

Statements (Reasons)

1. T is the midpoint of $\overline{S Q}$. (Given)
2. $\overline{S T} \cong \overline{T Q}$ (Def. of midpoint)
3. $\overline{S R} \cong \overline{Q R}$ (Given)
4. $\overline{R T} \cong \overline{R T}$ (Reflexive Prop.)
5. $\triangle S R T \cong \triangle Q R T$ (SSS)
6. false 61.true

Lesson 5-4

1. $\overline{A B} \not \equiv \overline{C D}$
(3) The conclusion of the conditional statement is $x<6$. If $x<6$ is false, then x must be greater than or equal to 6 . The negation of the conclusion is $x \geq 6$.
2. Given: $2 x+3<7$

Prove: $x<2$
Indirect Proof: Step 1
Assume that $x>2$ or $x=2$ is true.

Step 2 | \boldsymbol{x} | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | $\mathbf{2 x}+\mathbf{3}$ | 7 | 9 | 11 | 13 |

When $x>2,2 x+3>7$ and when $x=2,2 x+3=7$.
Step 3 In both cases, the assumption leads to the contradiction of the given information that $2 x+3<7$. Therefore, the assumption that $x \geq 2$ must be false, so the original conclusion that $x<2$ must be true.
7. Use $a=$ average or $\frac{\text { number of points scored }}{\text { number of games played }}$.

Proof:
Indirect Proof: Step 1 Assume that Christina's average points per game was greater than or equal to $3, a \geq 3$.

Step 2 CASE 1
$a=3$
$3 \stackrel{?}{=} \frac{13}{6}$
$3 \neq 2.2$

CASE 2
$a>3$
$\frac{13}{6}>3$
$2.2 \ngtr 3$

Step 3 The conclusions are false, so the assumption must be false. Therefore, Christina's average points per game was less than 3 .
9. Given: $\triangle A B C$ is a right triangle; $\angle C$ is a right angle.
Prove: $A B>B C$ and $A B>A C$
Indirect Proof: Step 1 Assume that the hypotenuse of a right triangle is
 not the longest side. That is, $A B<B C$ and $A B<A C$.
Step 2 If $A B<B C$, then $m \angle C<m \angle A$. Since $m \angle C=90, m \angle A>90$. So, $m \angle C+m \angle A>180$.

By the same reasoning, $m \angle C+m \angle B>180$.
Step 3 Both relationships contradict the fact that the sum of the measures of the angles of a triangle equals 180. Therefore, the hypotenuse must be the longest side of a right triangle.
11. $x \leq 8$ 13. The lines are not parallel. 15. The triangle is equiangular.
(17) To write an indirect proof, first identify the conclusion. Find the negation of the conclusion and assume that it is true. Make a table of values to show that the negation of the conclusion is false. Since the assumption leads to a contradiction, you can conclude that the original conclusion must be true.
Given: $2 x-7>-11$
Prove: $x>-2$
Indirect Proof: Step 1 The negation of $x>-2$ is $x \leq-2$. So, assume that $x \leq-2$ is true.
Step 2 Make a table with several possibilities for x assuming $x<-2$ or $x=-2$.

\boldsymbol{x}	-6	-5	-4	-3	-2
$\mathbf{2 x - 7}$	-19	-17	-15	-13	-11

When $x<-2,2 x-7<-11$ and when $x=-2$, $2 x-7=-11$.
Step 3 In both cases, the assumption leads to the contradiction of the given information that $2 x-7>-11$. Therefore, the assumption that $x \leq-2$ must be false, so the original conclusion that $x>-2$ must be true.
19. Given: $-3 x+4<7$

Prove: $x>-1$
Indirect Proof: Step 1 Assume that $x \leq-1$ is true.
Step 2 When $x<-1,-3 x+4>7$ and when $x=-1,-3 x+4=7$.

\boldsymbol{x}	-5	-4	-3	-2	-1
$\mathbf{- 3 x}+\mathbf{4}$	19	16	13	10	7

Step 3 In both cases, the assumption leads to the contradiction of the given information that $-3 x+4<7$. Therefore, the assumption that $x \leq-1$ must be false, so the original conclusion that $x>-1$ must be true.
21. Let the cost of one game be x and the other be y.

Given: $x+y>80$
Prove: $x>40$ or $y>40$
Indirect Proof: Step 1 Assume that $x \leq 40$ and $y \leq 40$.
Step 2 If $x \leq 40$ and $y \leq 40$, then $x+y \leq 40+40$ or $x+y \leq 80$. This is a contradiction because we know that $x+y>80$.
Step 3 Since the assumption that $x \leq 40$ and $y \leq 40$ leads to a contradiction of a known fact, the assumption must be false. Therefore, the conclusion that $x>40$ or $y>40$ must be true. Thus, at least one of the games had to cost more than $\$ 40$.
23. Given: $x y$ is an odd integer.

Prove: x and y are odd integers.

Indirect Proof: Step 1 Assume that x and y are not both odd integers. That is, assume that either x or y is an even integer.
Step 2 You only need to show that the assumption that x is an even integer leads to a contradiction, since the argument for y is an even integer follows the same reasoning. So, assume that x is an even integer and y is an odd integer. This means that $x=2 k$ for some integer k and $y=2 m+1$ for some integer m.

$$
\begin{aligned}
x y & =(2 k)(2 m+1) & & \text { Subst. of assumption } \\
& =4 k m+2 k & & \text { Dist. Prop. } \\
& =2(k m+k) & & \text { Dist. Prop. }
\end{aligned}
$$

Since k and m are integers, $k m+k$ is also an integer. Let p represent the integer $k m+k$. So $x y$ can be represented by $2 p$, where p is an integer. This means that $x y$ is an even integer, but this contradicts the given that $x y$ is an odd integer. Step 3 Since the assumption that x is an even integer and y is an odd integer leads to a contradiction of the given, the original conclusion that x and y are both odd integers must be true.
25. Given: x is an odd number.

Prove: x is not divisible by 4 .
Indirect Proof: Step 1 Assume x is divisible by 4 . In other words, 4 is a factor of x.
Step 2 Let $x=4 n$, for some integer n.

$$
x=2(2 n)
$$

So, 2 is a factor of x which means x is an even number, but this contradicts the given information. Step 3 Since the assumption that x is divisible by 4 leads to a contradiction of the given, the original conclusion x is not divisible by 4 must be true.
27. Given: $X Z>Y Z$

Prove: $\angle X \neq \angle Y$
Indirect Proof: Step 1
Assume that $\angle X \cong \angle Y$.
Step $2 \overline{\mathrm{XZ}} \cong \overline{\mathrm{YZ}}$ by the converse of the isosceles
 \triangle theorem.
Step 3 This contradicts the given information that $X Z>Y Z$. Therefore, the assumption $\angle X \cong \angle Y$ must be false, so the original conclusion $\angle X \not \equiv \angle Y$ must be true.
29. Given: $\triangle A B C$ is isosceles.

Prove: Neither of the base angles is a right angle.

Indirect Proof: Step 1

Assume that $\angle B$ is a right angle.
Step 2 By the Isosceles \triangle
 Theorem, $\angle C$ is also a
right angle.
Step 3 This contradicts the fact that a triangle can have no more than one right angle. Therefore, the assumption that $\angle B$ is a right angle must be false, so the original conclusion neither of the base angles is a right angle must be true.
31. Given: $m \angle A>m \angle A B C$ Prove: $B C>A C$

Proof:

Assume $B C \ngtr A C$. By the Comparison Property, $B C=A C$ or $B C<A C$.
Case 1: If $B C=A C$, then $\angle A B C \cong \angle A$ by the Isosceles Triangle Theorem. (If two sides of a triangle are congruent, then the angles opposite those sides are congruent.) But, $\angle A B C \cong \angle A$ contradicts the given statement that $m \angle A>$ $m \angle A B C$. So, $B C \neq A C$.
Case 2: If $B C<A C$, then there must be a point D between A and C so that $\overline{D C} \cong \overline{B C}$. Draw the auxiliary segment $\overline{B D}$. Since $D C=B C$, by the Isosceles Triangle Theorem $\angle B D C \cong \angle D B C$. Now $\angle B D C$ is an exterior angle of $\triangle B A D$ and by the Exterior Angles Inequality Theorem (the measure of an exterior angle of a triangle is greater than the measure of either corresponding remote interior angle) $m \angle B D C>m \angle A$. By the Angle Addition Postulate, $m \angle A B C=m \angle A B D+$ $m \angle D B C$. Then by the definition of inequality, $m \angle A B C>m \angle D B C$. By Substitution and the Transitive Property of Inequality, $m \angle A B C>m \angle A$. But this contradicts the given statement that $m \angle A>m \angle A B C$. In both cases, a contradiction was found, and hence our assumption must have been false. Therefore, $B C>A C$.
33. We know that the other team scored 3 points, and Katsu thinks that they made a three point shot. We also know that a player can score 3 points by making a basket and a foul shot.
Step 1 Assume that a player for the other team made a two-point basket and a foul shot.
Step 2 The other team's score before Katsu left was 26 , so their score after a two-point basket and a foul shot would be $26+3$ or 29 .
Step 3 The score is correct when we assume that the other team made a two-point basket and a foul shot, so Katsu's assumption may not be correct. The other team could have made a three-point basket or a two-point basket and a foul shot.
(35) a. To write an indirect proof, first identify the conclusion. Find the negation of the conclusion and assume that it is true. Then use the data to prove that the assumption is false.
Step 150% is half, and the statement says more than half of the teens polled said that they recycle, so assume that less than 50% recycle.
Step 2 The data shows that 51% of teens said that they recycle, and $51 \%>50 \%$, so the number of teens that recycle is not less than half.
Step 3 This contradicts the data given. Therefore, the assumption is false, and the conclusion more than half of the teens polled said they recycle must be true.
b. According to the data, 23% of 400 teenagers
polled said that they participate in Earth Day.
Verify that 23% of 400 is 92 .
$400 \cdot 23 \% \stackrel{?}{=} 92$
$400 \cdot 0.23 \stackrel{2}{=} 92$ $92=92$
(37) Given: $\overline{A B} \perp$ line p

Prove: $\overline{A B}$ is the shortest segment from A to line p.
Indirect Proof: Step 1
Assume $\overline{A B}$ is not the shortest segment from A to p.
Step 2 Since $\overline{A B}$ is not the shortest segment
 from A to p, there is a point C such that $\overline{A C}$ is the shortest distance. $\triangle A B C$ is a right triangle with hypotenuse $\overline{A C}$, the longest side of $\triangle A B C$ since it is across from the largest angle in $\triangle A B C$ by the Angle-Side Relationships in Triangles Theorem. Step 3 This contradicts the fact that $\overline{A C}$ is the shortest side. Therefore, the assumption is false, and the conclusion, $\overline{A B}$ is the shortest side, must be true.

39a. $n^{3}+3$ 39b. Sample answer:
39c. Sample answer: When $n^{3}+3$ is even, n is odd.

39d. Indirect Proof: Step 1

Assume that n is even. Let $n=2 k$, where k is some integer.

\boldsymbol{n}	$\boldsymbol{n}^{\mathbf{3}}+\mathbf{3}$
2	11
3	30
10	1003
11	1334
24	13,827
25	15,628
100	$1,000,003$
101	$1,030,304$
526	$145,531,579$
527	$146,363,186$

Step 2

$$
\begin{array}{rlrl}
n^{3}+3 & =(2 k)^{3}+3 & & \text { Substitute assumption } \\
& =8 k^{3}+3 & & \text { Simplify. } \\
& =\left(8 k^{3}+2\right)+1 & & \text { Replace } 3 \text { with } 2+1 \text { and group } \\
& =2\left(4 k^{3}+1\right)+1 & & \text { the first two terms. } \\
& \text { Distributive Property }
\end{array}
$$

Since k is an integer, $4 k^{3}+1$ is also an integer. Therefore, $n^{3}+3$ is odd.
Step 3 This contradicts the given information that $n^{3}+3$ is even. Therefore, the assumption is false, so the conclusion that n is odd must be true.
41. Sample answer: $\triangle A B C$ is scalene.

Given: $\triangle A B C ; A B \neq B C ; B C \neq A C$; $A B \neq A C$
Prove: $\triangle A B C$ is scalene.

Indirect Proof:
Step 1 Assume that $\triangle A B C$ is not scalene.
Case 1: $\triangle A B C$ is isosceles.
Step 2 If $\triangle A B C$ is isosceles, then $A B=B C$, $B C=A C$, or $A B=A C$.
Step 3 This contradicts the given information, so $\triangle A B C$ is not isosceles.

Case 2: $\triangle A B C$ is equilateral.
In order for a triangle to be equilateral, it must also be isosceles, and Case 1 proved that $\triangle A B C$ is not isosceles. Thus, $\triangle A B C$ is not equilateral. Therefore, $\triangle A B C$ is scalene. 43. Neither; sample answer: Since the hypothesis is true when the conclusion is false, the statement is false. 45. $y=2 x-7$
47. J
49. Given: $\overline{R Q}$ bisects $\angle S R T$.

Prove: $m \angle S Q R>m S R Q$
Proof:
Statements (Reasons)

1. $\overline{R Q}$ bisects $\angle S R T$. (Given)
2. $\angle S R Q \cong \angle Q R T$ (Def. of bisector)
3. $m \angle Q R S=m \angle Q R T($ Def. of $\cong \angle \boxed{*})$
4. $m \angle S Q R=m \angle T+m \angle Q R T$ (Exterior Angles Theorem)
5. $m \angle S Q R>m \angle Q R T$ (Def. of Inequality)
6. $m \angle S Q R>m \angle S R Q$ (Substitution)
7. $\left(1 \frac{2}{5}, 2 \frac{3}{5}\right)$ 53. 64 55. $\sqrt{5} \approx 2.2$ 57. true 59. false Lesson 5-5
(1) Yes; check each inequality.
$5+7>10$
$5+10>7$
$7+10>5$ $12>10 \checkmark \quad 15>7 \checkmark \quad 17>5 \checkmark$

Since the sum of each pair of side lengths is greater than the third side length, sides with lengths 5 cm , 7 cm , and 10 cm will form a triangle.
3. yes; $6+14>10,6+10>14$, and $10+14>6$
5. Given: $\overline{X W} \cong \overline{Y W}$

Prove: $Y Z+Z W>X W$
Proof:
Statements (Reasons)

1. $\overline{X W} \cong \overline{Y W}$ (Given)
2. $X W=Y W$ (Def. of \cong segs. $)$

3. $Y Z+Z W>Y W$ (\triangle Inequal. Thm.)
4. $Y Z+Z W>X W$ (Subst.)
5. yes 9. no; $2.1+4.2 \ngtr 7.9 \quad$ 11. yes $\quad 13.6 \mathrm{~m}<n<$
$16 \mathrm{~m} \quad 15.5 .4 \mathrm{in} .<n<13 \mathrm{in}$.
6. $5 \frac{1}{3} \mathrm{yd}<n<10 \mathrm{yd}$
7. Given: $\overline{\mathrm{JL}} \cong \overline{L M}$

Prove: $K J+K L>L M$
Proof:
Statements (Reasons)

1. $\overline{\bar{L}} \cong \overline{L M}$ (Given)
2. $J L=L M$ (Def. of \cong segments)

3. $K J+K L>J L$ (\triangle Inequal. Thm.)
4. $K J+K L>L M$ (Subst.)
(21)

$$
\begin{aligned}
X Y+Y Z & >X Z \\
(4 x-1)+(2 x+7) & >x+13 \\
6 x+6 & >x+13 \\
5 x & >7 \\
x & >\frac{7}{5} \\
X Y+X Z & >Y Z \\
(4 x-1)+(x+13) & >2 x+7 \\
5 x+12 & >2 x+7 \\
3 x & >-5 \\
x & >-\frac{5}{3}
\end{aligned}
$$

$$
\begin{aligned}
Y Z+X Z & >X Y \\
(2 x+7)+(x+13) & >4 x-1 \\
3 x+20 & >4 x-1 \\
21 & >x
\end{aligned}
$$

Since x must be greater than $\frac{7}{5}$, greater than $-\frac{5}{3}$, and less than 21, possible values of x are $\frac{7}{5}<x<21$.
23. Given: $\triangle A B C$

Prove: $A C+B C>A B$ Proof:

Statements (Reasons)

1. Construct $C D$ so that C is
 between B and D and
$\overline{C D} \cong \overline{A C}$. (Ruler Post.)
2. $C D=A C$ (Def. of \cong segments)
3. $\angle C A D \cong \angle A D C$ (Isos. \triangle Thm.)
4. $m \angle C A D=m \angle A D C$ (Def. of $\cong \&)$
5. $m \angle B A C+m \angle C A D=m \angle B A D(\angle$ Add. Post. $)$
6. $m \angle B A C+m \angle A D C=m \angle B A D$ (Subst.)
7. $m \angle A D C<m \angle B A D$ (Def. of inequality)
8. $A B<B D$ (Thoerem 5.10)
9. $B D=B C+C D$ (Seg. Add. Post.)
10. $A B<B C+C D$ (Subst.)
11. $A B<B C+A C$ (Subst. (Steps 2, 10))
$\begin{array}{llll}\text { 25. } 2<x<10 & 27.1<x<11 & \text { 29. } x>0 & \text { 31. Yes; }\end{array}$ sample answer: The measurements on the drawing do not form a triangle. According to the Triangle Inequality Theorem, the sum of the lengths of any two sides of a triangle is greater than the length of the third side. The lengths in the drawing are 1 ft , $3 \frac{7}{8} \mathrm{ft}$, and $6 \frac{3}{4} \mathrm{ft}$. Since $1+3 \frac{7}{8} \ngtr 6 \frac{3}{4}$, the triangle is impossible. They should recalculate their measurements before they cut the wood.
(33) A triangle 3 feet by 4 feet by x feet is formed. The length of the third side x must be less than the sum of the lengths of the other two sides. So, $x<3+4$ or $x<7$. Since the awning drapes 6 inches or 0.5 feet over the front, the total length should be less than $7+0.5$ or 7.5 feet. She should buy no more than 7.5 feet.
12. Yes; $\sqrt{99} \approx 9.9$ since $\sqrt{100}=10, \sqrt{48} \approx 6.9$ since $\sqrt{49}=7$, and $\sqrt{65} \approx 8.1$ since $\sqrt{64}=8$. $6.9+8.1>9.9$, so it is possible.
13. no; $\sqrt{122} \approx 11.1$ since $\sqrt{121}=11, \sqrt{5} \approx 2.1$ since $\sqrt{4}=2$, and $\sqrt{26} \approx 5.1$ since $\sqrt{25}=5$. So, $2.1+5.1 \ngtr 11.1$.
(39) Use the Distance Formula
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ to find the lengths of the sides.

$$
\begin{aligned}
F G & =\sqrt{[3-(-4)]^{2}+(-3-3)^{2}} & \begin{array}{l}
x_{1}=-4, x_{2}=3, \\
y_{1}=3, y_{2}=-3 \\
\\
\end{array} \sqrt{85} &
\end{aligned}
$$

$$
\left.\begin{array}{rlr}
& =\sqrt{82} & \\
\approx 9.1 & & \text { Simplify. } \\
\text { Use a calculator. }
\end{array}\right] \begin{array}{rlr}
F H & =\sqrt{[4-(-4)]^{2}+(6-3)^{2}} & \\
& \begin{array}{l}
x_{1}=-4, x_{2}=4, \\
y_{1}=3, y_{2}=6
\end{array} \\
& =\sqrt{73} & \\
\approx 8.5 & & \text { Simplify. } \\
F G+G H>F H & F G+F H>G H & G H+F H>F G \\
9.2+9.1>8.5 & 9.2+8.5>9.1 & 9.1+8.5>9.2 \\
18.3>8.5 & 17.7>9.1 & \\
\text { Use a calculator. } \\
& & 17.6>9.2
\end{array}
$$

Since $F G+G H>F H, F G+F H>G H$, and $G H+$ $F H>F G$, the coordinates are the vertices of a triangle.
41. yes; $Q R+Q S>R S, Q R+R S>Q S$, and $Q S+R S>$ $Q R$ 43. The perimeter is greater than 36 and less than 64. Sample answer: From the diagram we know that $\overline{A C} \cong \overline{E C}$ and $\overline{D C} \cong \overline{B C}$, and $\angle A C B \cong \angle E C D$ because vertical angles are congruent, so $\triangle A C B \cong$ $\triangle E C D$. Using the Triangle Inequality Theorem, the minimum value of $A B$ and $E D$ is 2 and the maximum value is 16 . Therefore, the minimum value of the perimeter is greater than $2(2+7+9)$ or 36 , and the maximum value of the perimeter is less than $2(16+7$ +9) or 64 .
45. Sample answers: whether or not the side lengths actually form a triangle, what the smallest and largest angles are, whether the triangle is equilateral,
isosceles, or scalene
47.

49. B 51. H 53. $y>6$ or $y<6$
55. $132 \mathrm{mi}<d<$

618 mi
57.15; Alt. Ext. \&s Thm.
59. $x=\frac{4}{3} \approx 1.3$;
$J K=4 \quad$ 61. $x=2 ; J K=K L=J L=14$
63. $x=7 ; S R=$
$R T=24, S T=19$
Lesson 5-6

1. $m \angle A C B>m \angle G D E$
(3) $\overline{Q R} \cong \overline{S R}, \overline{T R} \cong \overline{T R}$, and $m \angle Q R T<m \angle S R T$. By the Hinge Theorem, $Q T<S T$.

5a. $\overline{A B} \cong \overline{D E}, \overline{A C} \cong \overline{D F} \quad$ 5b. $\angle D$; Sample answer: Since $E F>B C$, according to the converse of the Hinge Theorem,
$m \angle D>m \angle A \quad$ 7. $\frac{5}{3}<x<B$
9. Given: $\overline{A D} \cong \overline{C B}, D C<A B$

Prove: $m \angle C B D<m \angle A D B$
Statements (Reasons)

1. $\overline{A D} \cong \overline{C B}$ (Given)
2. $\overline{D B} \cong \overline{D B}$ (Reflexive Property)

3. $D C<A B$ (Given)
4. $m \angle C B D<m \angle A D B$ (SSS Inequality)
5. $m \angle M L P<m \angle T S R$
(13) $\overline{T U} \cong \overline{V U}, \overline{W U} \cong \overline{W U}$, and $W T<W V$. By the Converse of the Hinge Theorem, $m \angle T U W>$ $m \angle V U W$.
6. JK $>$ HJ $\quad 17.2<x<6$
(19) Two sides of one triangle are congruent to two sides of the other triangle and the third side of the first triangle is less than the third side of the second triangle. So, by the Converse of the Hinge Theorem, the included angle of the first triangle is less than the included angle of the second triangle.
$0<x+20<41 \quad$ Converse of Hinge Theorem $-20<x<21 \quad$ Subtract 20 from each.
The range of values containing x is $-20<x<21$.
7. $\overline{R S}$; sample answer: The height of the crane is the same and the length of the crane arm is fixed, so according to the Hinge Theorem, the side opposite the smaller angle is shorter. Since $29^{\circ}<52^{\circ}, R S<M N$.
8. Given: $\overline{L K} \cong \overline{J K}, \overline{R L} \cong \overline{R J}, K$ is the midpoint of $\overline{Q S}$, $m \angle S K L>m \angle Q K J$
Prove: $R S>Q R$
Statements (Reasons)
9. $\overline{L K} \cong \overline{J K}, \overline{R L} \cong \overline{R J}, K$ is the midpoint of $\overline{Q S}, m \angle S K L>$ $m \angle Q K J$ (Given)
10. $S K=Q K$ (Def. of midpoint)

11. $S L>Q J$ (Hinge Thm.)
12. $R L=R J$ (Def. of \cong segs.)
13. $S L+R L>R L+R J$ (Add. Prop.)
14. $S L+R L>Q J+R J$ (Subst.)
15. $R S=S L+R L, Q R=Q J+R J$ (Seg. Add. Post.)
16. $R S>Q R$ (Subst.)
17. Given: $\overline{X U} \cong \overline{V W}, V W>X W, \overline{X U} \| \overline{V W}$

Prove: $m \angle X Z U>m \angle U Z V$
Statements (Reasons)

1. $\overline{X U} \cong \overline{V W}, \overline{X U} \| \overline{V W}$ (Given)
2. $\angle U X V \cong \angle X V W, \angle X U W \cong$
$\angle U W V$ (Alt. Int. \&s Thm.)
3. $\triangle X Z U \cong \triangle V Z W$ (ASA)
4. $\overline{X Z} \cong \overline{V Z}$ (CPCTC)

5. $\overline{W Z} \cong \overline{W Z}$ (Refl. Prop.)
6. $V W>X W$ (Given)
7. $m \angle V Z W>m \angle X Z W$ (Converse of Hinge Thm.)
8. $\angle V Z W \cong \angle X Z U, \angle X Z W \cong \angle V Z U$ (Vert. $\angle \mathrm{s}$ are \cong.)
9. $m \angle V Z W=m \angle X Z U, m \angle X Z W=m \angle V Z U$ (Def. of $\cong \angle s)$
10. $m \angle X Z U>m \angle U Z V$ (Subst.)
(27) a. Sample answer: Use a ruler to measure the distance from her shoulder to her fist for each position. The distance is 1.6 cm for Position 1 and 2 cm for Position 2. Therefore, the distance from her shoulder to her fist is greater in Position 2. b. Sample answer: In each position, a triangle formed. The distance from her shoulder to her elbow and from her elbow to her wrist is the same in both triangles. Using the measurements in part a and the Converse of the Hinge Theorem, you know that the measure of the angle opposite the larger side is larger, so the angle formed by Anica's elbow is greater in Position 2.
11. Given: $\overline{P R} \cong \overline{P Q}, S Q>S R$

Prove: $m \angle 1<m \angle 2$
Statements (Reasons)

1. $\overline{P R} \cong \overline{P Q}$ (Given)
2. $\angle P R Q \cong \angle P Q R$ (Isos.
\triangle Thm.)

3. $m \angle P R Q=m \angle 1+m \angle 4$,
$m \angle P Q R=m \angle 2+m \angle 3$ (Angle Add. Post.)
4. $m \angle P R Q=m \angle P Q R($ Def. of $\cong \angle s)$
5. $m \angle 1+m \angle 4=m \angle 2+m \angle 3$ (Subst.)
6. $S Q>S R$ (Given)
7. $m \angle 4>m \angle 3$ (Angle Side Relationship Thm.)
8. $m \angle 4=m \angle 3+x$ (Def. of inequality)
9. $m \angle 1+m \angle 4-m \angle 4=m \angle 2+m \angle 3-(m \angle 3+x)$ (Subt. Prop.)
10. $m \angle 1=m \angle 2-x$ (Subst.)
11. $m \angle 1+x=m \angle 2$ (Add. Prop.)
12. $m \angle 1<m \angle 2$ (Def. of inequality)
13. $C B<A B \quad$ 33. $m \angle B G C<m \angle F B A$
(35) $\overline{W Z} \cong \overline{Y Z}, \overline{Z U} \cong \overline{Z U}$, and $m \angle W Z U>m \angle Y Z U$. By the Hinge Theorem, $W U>Y U$.

37a.

37b. \angle measures: 59, 76, 45; 90, 90, 90, 90; 105, 100, 96, 116, 123; Sum of $\stackrel{s}{ }$: 180, 360, 540
37c. Sample answer: The sum of the angles of the polygon is equal to 180 times two less than the number of sides of the polygon. 37d. Inductive; sample answer: Since I used a pattern to determine the relationship, the reasoning I used was inductive.
37e. $(n-2) 180$
39.

A door; as the door opens, the door opening increases as the angle made by the hinge increases. As the door closes, the door opening decreases as the angle made
by the hinge decreases. This is similar to the side opposite the angle in a triangle, because as the side opposite an angle increases the measure of the angle also increases. As the side decreases, the angle also decreases. 41. Never; from the Converse of the Hinge Theorem, $\angle A D B<\angle B D C . \angle A D B<\angle B D C$ form a linear pair. So, $m \angle A D B+m \angle B D C=180$. Since, $m \angle B D C>m \angle A D B, m \angle B D C$ must be greater than 90 and $m \angle A D B$ must be smaller than 90 . So, by the definition of obtuse and acute angles, $m \angle B D C$ is always obtuse and $m \angle A D B$ is always acute. $43.2 .8<x<12$
45. F $\quad 47.1 .2 \mathrm{~cm}<n<7.6 \mathrm{~cm}$
$49.6 \mathrm{~m}<n<12 \mathrm{~m}$
51. $x=8$

53. A
55. $\angle 3, \angle A C B$
57. $x=66$ by the Consecutive Interior Angles Theorem; $y=35$ by the Consecutive Interior Angles Theorem

Chapter 5 Study Guide and Review

1. false; orthocenter 3 . true \quad 5. false; median
2. false; false 9. false; the vertex opposite that $\begin{array}{lllll}\text { side } & 11.5 & 13.34 & \text { 15. }(2,3) & \text { 17. } \angle S, \angle R, \angle T ; \overline{R T} \text {, }\end{array}$ $\overline{T S}, \overline{S R}$ 19. The shorter path is for Sarah to get Irene and then go to Anna's house. 21. $\triangle F G H$ is not congruent to $\triangle M N O$. 23. $y \geq 4$
3. Let the cost of one DVD be x, and the cost of the other DVD be y.
Given: $x+y>50$
Prove: $x>25$ or $y>25$
Indirect proof: Step 1 Assume that $x \leq 25$ and $y \leq 25$.
Step 2 If $x \leq 25$ and $y \leq 25$, then $x+y \leq 25+25$, or $x+y \leq 50$. This is a contradiction because we know that $x+y>50$.
Step 3 Since the assumption that $x \leq 25$ and $y \leq$ 25 leads to a contradiction of a known fact, the assumption must be false. Therefore, the conclusion that $x>25$ or $y>25$ must be true. Thus, at least one DVD had to be over $\$ 25$.
4. no; $3+4<8 \quad$ 29. Let x be the length of the third side. $6.5 \mathrm{~cm}<x<14.5 \mathrm{~cm} \quad 31 . m \angle A B C>m \angle D E F \quad 33$. Rose

CHAPTER 6 Quadrilaterals

Chapter 6 Get Ready
$\begin{array}{llll}\text { 1. } 150 & 3.54 & \text { 5. } 137 & \text { 7. } x=1, W X=X Y=Y W=9\end{array}$
9. Des Moines to Phoenix $=1153 \mathrm{mi}$, Des Moines to Atlanta $=738 \mathrm{mi}$, Phoenix to Atlanta $=1591 \mathrm{mi}$

Lesson 6-1

1. 1440 3. $m \angle X=36, m \angle Y=72, m \angle Z=144$, $m \angle W=108$
(5) $(n-2) \cdot 180=(16-2) \cdot 180 \quad n=6$

$$
=14 \cdot 180 \text { or } 2520 \text { Simplify. }
$$

The sum of the interior angle measures is 2520 . So, the measure of one interior angle is $2520 \div$ 16 or 157.5 .
7.36
9. $68 \quad 11.45$
13.3240
15.5400
(17) $(n-2) \cdot 180=(4-2) \cdot 180 \quad n=4$ $=2 \cdot 180$ or 360 Simplify.
The sum of the interior angle measures is 360 . $360=m \angle J+m \angle K+$ $m \angle L+m \angle M$

Sum of interior angle measures
$360=(3 x-6)+(x+10)+$ $x+(2 x-8)$

Substitution
$360=7 x-4$
$364=7 x$
$52=x$
Combine like terms. Add 4 to each side. Simplify.

$$
m \angle J=3 x-6
$$

$$
m \angle K=x+10
$$

$$
=3(52)-6 \text { or } 150
$$

$$
=52+10 \text { or } 62
$$

$m \angle L=x$
$m \angle M=2 x-8$ $=2(52)-8$ or 96
19. $m \angle U=60, m \angle V=193, m \angle W=76, m \angle Y=68$, $m \angle Z=143 \quad 21.150 \quad 23.144 \quad 25 a .720 \quad$ 25b. Yes, 120; sample answer: Since the measures of the sides of the hexagon are equal, it is regular and the measures of the angles are equal. That means each angle is $720 \div 6$ or 120. $\quad \mathbf{2 7 . 4} \quad \mathbf{2 9 . 1 5}$
(31) $21+42+29+(x+14)+$

$$
\begin{aligned}
x+(x-10)+(x-20) & =360 \\
4 x+76 & =360 \\
4 x & =284 \\
x & =71
\end{aligned}
$$

$\begin{array}{lllll}33.37 & 35.72 & 37.24 & 39.51 .4,128.6 & 41.25 .7,154.3\end{array}$
43. Consider the sum of the measures of the exterior angles N for an n-gon.
$N=$ sum of measures of linear pairs - sum of measures of interior angles

$$
\begin{aligned}
& =180 n-180(n-2) \\
& =180 n-180 n+360 \\
& =360
\end{aligned}
$$

So, the sum of the exterior angle measures is 360 for any convex polygon. $45.105,110,120,130,135,140$, $160,170,180,190$
(47) a. $60 \mathrm{ft} \div 8=7.5 \mathrm{ft} \quad$ Perimeter \div number of sides b. $(n-2) \cdot 180=(8-2) \cdot 180 \quad n=8$

$$
=6 \cdot 180 \text { or } 1080 \text { Simplify. }
$$

Sample answer: The sum of the interior angle measures is 1080 . So, the measure of each angle of a regular octagon is $1080 \div 8$ or 135 . So if each side of the board makes up half of the angle, each one measures $135 \div 2$ or 67.5 .
49. Liam; by the Exterior Angle Sum Theorem, the sum of the measures of any convex polygon is 360 .
51. Always; by the Exterior Angle Sum Theorem, $m \angle Q P R=$ 60 and $m \angle Q R P=60$. Since the sum of the interior angle measures of a triangle is 180 , the measure of $\angle P Q R=180-$
 $m \angle Q P R-m \angle Q R P=180-60-60=60$. So, $\triangle P Q R$ is an equilateral triangle. 53. The Interior Angles Sum Theorem is derived from the pattern between the number of sides in a polygon and the number of triangles. The formula is the product of the sum of the measures of the angles in a triangle, 180, and the number of triangles in the polygon. $55.72 \quad 57 \mathrm{C}$
59. $M L<J M \quad 61.3 \quad 63 . \angle E \cong \angle G ; \angle E F H \cong \angle G H F ;$ $\angle E H F \cong \angle G F H ; \overline{E F} \cong \overline{G H} ; \overline{E H} \cong \overline{G F} ; \overline{F H} \cong \overline{H F} ; \triangle E F H$ $\cong \triangle G H F \quad 65 . \angle 1$ and $\angle 5, \angle 4$ and $\angle 6, \angle 2$ and $\angle 8$, $\angle 3$ and $\angle 7$

Lesson 6-2

$\begin{array}{lllll}\text { 1a. } 148 & \text { 1b. } 125 & \text { 1c. } 4 & \text { 3. } 15 & \text { 5. } w=5, b=4\end{array}$
7. Given: $\square A B C D, \angle A$ is a right angle.

Prove: $\angle B, \angle C$, and $\angle D$ are right angles. (Theorem 6.6)
Proof: By definition of a parallelogram, $\overline{A B} \| \overline{C D}$.
Since $\angle A$ is a right angle, $\overline{A C} \perp \overline{A B}$. By the Perpendicular Transversal Theorem, $\overline{A C} \perp \overline{C D} . \angle C$ is a right angle, because perpendicular lines form a right angle. $\angle B \cong \angle C$ and $\angle A \cong \angle D$ because opposite angles in a parallelogram are congruent. $\angle C$ and $\angle D$ are right angles, since all right angles are congruent.
(9) $m \angle R+m \angle Q=180$ Consecutive angles are supplementary. $m \angle R+128=180 \quad$ Substitution $m \angle R=52$ Subtract 128 from each side.
11.5
(13) a. $\overline{J H} \cong \overline{F G} \quad$ Opposite sides are congruent.
$J H=F G \quad$ Definition of congruence
$=1 \mathrm{in}$. Substitution
b. $\overline{G H} \cong \overline{F J} \quad$ Opposite sides are congruent.
$G H=F J \quad$ Definition of congruence
$=\frac{3}{4} \mathrm{in}$. Substitution
c. $\angle J F G \cong \angle J H G \quad$ Opposite angles are congruent.
$m \angle J F G=m \angle J H G \quad$ Definition of congruence $=62$ Substitution
d. $m \angle F J H+m \angle J H G=180 \quad$ Consecutive angles are supplementary.
$m \angle F J H+62=180$ Substitution $m \angle F J H=118$ Subtract 62 from each side.
$\begin{array}{lll}\text { 15. } a=7, b=11 & \text { 17. } x=5, y=17 & \text { 19. } x=58 \text {, }\end{array}$ $y=63.5 \quad$ 21. $(2.5,2.5)$
23. Given: $W X T V$ and $Z Y V T$ are parallelograms. Prove: $\overline{W X} \cong \overline{\mathrm{ZY}}$

Proof:

Statements (Reasons)

1. WXTV and ZYVT are parallelograms. (Given)

2. $\overline{W X} \cong \overline{V T}, \overline{V T} \cong \overline{Y Z}$ (Opp. sides of a \square are \cong.)
3. $\overline{W X} \cong \overline{Z Y}$ (Trans. Prop.)
4. Given: $\triangle A C D \cong \triangle C A B$

Prove: $\overline{D P} \cong \overline{P B}$
Proof:
Statements (Reasons)

1. $\triangle A C D \cong \triangle C A B$ (Given)
2. $\angle A C D \cong \angle C A B$ (СРСТС) D
3. $\angle D P C \cong \angle B P A$ (Vert. \angle are \cong.)
4. $\overline{A B} \cong \overline{C D}$ (CPCTC)
5. $\triangle A B P \cong \triangle C D P$ (AAS)
6. $\overline{D P} \cong \overline{P B}$ (СРСТС)
7. Given: $\square W X Y Z$

Prove: $\triangle W X Z \cong \triangle Y Z X$ (Theorem 6.8)
Proof:

Statements (Reasons)

1. $\square W X Y Z$ (Given)
2. $\overline{W X} \cong \overline{Z Y}, \overline{W Z} \cong \overline{X Y}$
(Opp. sides of a \square are \cong.)
3. $\angle Z W X \cong \angle X Y Z$ (Opp. $\&$ of a \square are \cong.)
4. $\triangle W X Z \cong \triangle Y Z X$ (SAS)
5. Given: $A C D E$ is a parallellogram. Prove: $\overline{E C}$ bisects $\overline{A D}$.
(Theorem 6.7)

路

Proof: It is given that $A C D E$ is a parallelogram.
Since opposite sides of a parallelogram are congruent, $\overline{E A} \cong \overline{D C}$. By definition of a parallelogram, $\overline{E A} \| \overline{D C} . \angle A E B \cong \angle D C B$ and $\angle E A B \cong \angle C D B$ because alternate interior angles are congruent. $\triangle E B A \cong \triangle C B D$ by ASA. $\overline{E B} \cong \overline{B C}$ and $\overline{A B} \cong \overline{B D}$ by СРСТС. By the definition of segment bisector, $\overline{E C}$ bisects $\overline{A D}$ and $\overline{A D}$ bisects $\overline{E C}$.
31.3
(33) $\angle A F B$ and $\angle B F C$ form a linear pair. $\begin{array}{rll}\angle A F B+\angle B F C & =180 & \text { Supplement Theorem } \\ \angle A F B+49 & =180 & \text { Substitution } \\ \angle A F B & =131 & \text { Subtract } 49 \text { from each side } .\end{array}$
35. 29 37. $(-1,-1)$; Sample answer: Opposite sides of a parallelogram are parallel. Since the slope of $\overline{B C}=$ $\frac{-6}{2}$, the slope of $\overline{A D}$ must also be $\frac{-6}{2}$. To locate vertex
D, start from vertex A and move down 6 and right 2 .
(39) First, use properties involving opposite angles and opposite sides of a parallelogram to help prove that $\triangle Y U Z$ and $\triangle V X W$ are right angles. Then use the Hypotenuse-Angle Congruence Theorem to prove the triangles are congruent.
Given: $\square Y W V Z, \overline{V X} \perp \overline{W Y}, \overline{Y U} \perp \overline{V Z}$
Prove: $\triangle Y U Z \cong \triangle V X W$

Proof:

Statements (Reasons)

1. $\square Y W V Z, \overline{V X} \perp \overline{W Y}$, $\overline{Y U} \perp \overline{V Z}$ (Given)

2. $\angle Z \cong \angle W$ (Opp. \measuredangle of a \square are \cong.)
3. $\overline{W V} \cong \overline{Z Y}$ (Opp. sides of a \square are \cong.)
4. $\angle V X W$ and $\angle Y U Z$ are rt. \measuredangle. (\perp lines form four rt. © .)
5. $\triangle V X W$ and $\triangle Y U Z$ are rt. $\triangle \mathrm{s}$. (Def. of rt. $\triangle \mathrm{s}$)
6. $\triangle Y U Z \cong \triangle V X W(H A)$
41.7
7.

45. Sample answer: In a parallelogram, the opposite sides and angles are congruent. Two consecutive angles in a parallelogram are supplementary. If one angle of a parallelogram is right, then all the angles are right. The diagonals of a parallelogram bisect $\begin{array}{llllll}\text { each other. } & 47.13 & 49 . \text { B } & 51.9 & 53.18 & 55.100\end{array}$ 57. not a polyhedron; cylinder
59. not a polyhedron; cone
61. diagonal; $-\frac{4}{5}$

Lesson 6-3

1. Yes; each pair of opposite angles are congruent.
2. $A P=C P, B P=D P$; sample answer: If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram, so if $A P=C P$ and $B P=D P$, then the string forms a parallelogram.
(5) If both pairs of opposite sides are congruent, then the quadrilateral is a parallelogram.

$$
\begin{aligned}
2 x+3 & =x+7 & & \text { Congruent sides have equal measures. } \\
x+3 & =7 & & \text { Subtract } x \text { from each side. } \\
x & =4 & & \text { Subtract } 3 \text { from each side. } \\
3 y-5 & =y+11 & & \text { Congruent sides have equal measures. } \\
2 y-5 & =11 & & \text { Subtract } y \text { from each side. } \\
2 y & =16 & & \text { Add } 5 \text { to each side. } \\
y & =8 & & \text { Divide each side by } 2 .
\end{aligned}
$$

(7)

If the diagonals bisect each other, then it is a parallelogram.
midpoint of $\overline{W Y}:\left(\frac{-5+1}{2}, \frac{4+(-3)}{2}\right)=\left(-2, \frac{1}{2}\right)$ midpoint of $\overline{X Z}:\left(\frac{3+(-7)}{2}, \frac{4+(-3)}{2}\right)=\left(-2, \frac{1}{2}\right)$
The midpoint of $\overline{W Y}$ and $\overline{X Z}$ is $\left(-2, \frac{1}{2}\right)$. Since the diagonals bisect each other, $W X Y Z$ is a parallelogram.
9. Yes; both pairs of opposite sides are congruent.
11. No; none of the tests for parallelograms are fulfilled. 13. Yes; the diagonals bisect each other.
15.

17. Given: $A B E F$ is a parallelogram; $B C D E$ is a parallelogram.
Prove: $A C D F$ is a parallelogram.

Proof:

Statements (Reasons)

1. $A B E F$ is a parallelogram; $B C D E$ is a parallelogram. (Given)
2. $\overline{A F} \cong \overline{B E}, \overline{B E} \cong \overline{C D}$,
$\overline{A F}\|\overline{B E}, \overline{B E}\| \overline{C D}$ (Def. of \square)
3. $\overline{A F} \cong \overline{C D}, \overline{A F} \| \overline{C D}$ (Trans. Prop.)
4. $A C D F$ is a parallelogram. (If one pair of opp. sides is \cong and $\|$, then the quad. is a \square.)
$\begin{array}{lll}\text { 19. } x=8, y=9 & \text { 21. } x=11, y=7 & \text { 23. } x=4, y=3\end{array}$
5. No; both pairs of opposite sides must be congruent. The distance between K and L is $\sqrt{53}$. The distance between L and M is $\sqrt{37}$. The distance between M and J is $\sqrt{50}$.
The distance between J and K is $\sqrt{26}$. Since, both pairs of opposite sides are not
 congruent, $J K L M$ is not a parallelogram.
6. Yes; a pair of opposite sides must be parallel and congruent.
Slope of $\overline{Q R}=\frac{7}{2}=$
slope of $\overline{S T}$, so
$\overline{Q R} \| \overline{S T}$. The distance between Q and $R=\sqrt{53}=$ distance between S and T,

so $\overline{Q R} \cong \overline{S T}$. So, $Q R S T$ is a parallelogram.
7. Given: $A B C D$ is a parallelogram. $\angle A$ is a right angle.

Prove: $\angle B, \angle C$, and $\angle D$ are right angles.

Proof:

slope of $\overline{B C}=\left(\frac{b-b}{a-0}\right)$ or 0
The slope of $\overline{C D}$ is undefined.
 slope of $\overline{A D}=\left(\frac{0-0}{a-0}\right)$ or 0
The slope of $\overline{A B}$ is undefined.
Therefore, $\overline{B C} \perp \overline{C D}, \overline{C D} \perp \overline{A D}$, and $\overline{A B} \perp \overline{B C}$. So, $\angle B, \angle C$, and $\angle D$ are right angles.
(31) a. Use the Segment Addition Postulate to rewrite $A C$ and $C F$ each as the sum of two measures. Then use substitution, the Subtraction Property, and the Transitive Property to show that $\overline{B C} \cong \overline{D E}$. By proving that $B C D E$ is a parallelogram, you can prove that $\overline{B E} \| \overline{C D}$.
Given: $\overline{A C} \cong \overline{C F}, \overline{A B} \cong \overline{C D} \cong \overline{B E}$, and $\overline{D F} \cong \overline{D E}$ Prove: $\overline{B E} \| \overline{C D}$
Proof: We are given that $\overline{A C} \cong \overline{C F}, \overline{A B} \cong \overline{C D} \cong \overline{B E}$, and $\overline{D F} \cong \overline{D E} . A C=C F$ by the definition of congruence. $A C=A B+B C$ and $C F=C D+D F$ by the Segment Addition Postulate and $A B+B C=$ $C D+D F$ by substitution. Using substitution again, $A B+B C=A B+D F$, and $B C=D F$ by the Subtraction Property. $\overline{B C} \cong \overline{D F}$ by the definition of congruence, and $\overline{B C} \cong \overline{D E}$ by the Transitive Property. If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram, so $B C D E$ is a parallelogram. By the definition of a parallelogram, $\overline{B E} \| \overline{C D}$.
b. Let $x=$ width of the copy. If $A B=12$, then
$C D=B E=12$. So, $C F=12+8$ or 20 .

$$
\begin{aligned}
\frac{C F}{B E} & =\frac{\text { width of copy }}{\text { width of original }} & & \\
\frac{20}{12} & =\frac{x}{5.5} & & \text { Substitutic } \\
(5.5) & =12 x & & \text { Cross mul } \\
110 & =12 x & & \text { Simplify. } \\
9.2 & \approx x & & \text { Divide ead }
\end{aligned}
$$

Substitution Simplify.

$$
20(5.5)=12 x \quad \text { Cross multiply }
$$ Divide each side by 12 .

The width of the original object is about 9.2 in .
33. Given: $\overline{A B} \cong \overline{D C}, \overline{A B} \| \overline{D C}$

Prove: $A B C D$ is a parallelogram.
Proof:
Statements (Reasons)

1. $\overline{A B} \cong \overline{D C}, \overline{A B} \| \overline{D C}$ (Given)

2. Draw $\overline{A C}$. (Two points determine a line.)
3. $\angle 1 \cong \angle 2$ (If two lines are $\|$, then alt. int. $\angle s$ are \cong.)
4. $\overline{A C} \cong \overline{A C}$ (Refl. Prop.)
5. $\triangle A B C \cong \triangle C D A$ (SAS)
6. $\overline{A D} \cong \overline{B C}$ (СРСТС)
7. $A B C D$ is a parallelogram. (If both pairs of opp. sides are \cong, then the quad. is \square.)
(35) Opposite sides of a parallelogram are parallel and congruent. Since the slope of $\overline{A B}$ is 0 , the slope of $\overline{D C}$
must be 0 . The y-coordinate of vertex D must be c. The length of $\overline{A B}$ is $(a+b)-0$ or $a+b$. So the length of $\overline{D C}$
must be $a+b$. If the x-coordinate of D is $-b$ and the x-coordinate of C is a, then the length of $\overline{D C}$ is $a-(-b)$ or $a+b$. So, the coordinates are $C(a, c)$ and $D(-b, c)$.
(37) Sample answer: Since the two vertical rails are both perpendicular to the ground, he knows that they are parallel to each other. If he measures the distance between the two rails at the top of the steps and at the bottom of the steps, and they are equal, then one pair of sides of the quadrilateral formed by the handrails is both parallel and congruent, so the quadrilateral is a parallelogram. Since the quadrilateral is a parallelogram, the two hand rails are parallel by definition.
39a. Sample answer:

39b. Sample answer:

Rectangle	Side	Length
$A B C D$	$\overline{A C}$	3.3 cm
	$\overline{B D}$	3.3 cm
$M N O P$	$\overline{M O}$	2.8 cm
	$\overline{N P}$	2.8 cm
$W X Y Z$	$\overline{W Y}$	2.0 cm
	$\overline{X Z}$	2.0 cm

39c. Sample answer: The diagonals of a rectangle are congruent. 41. Sample answer: The theorems are converses of each other. The hypothesis of Theorem 6-3 is "a figure is a parallelogram," and the hypothesis of 6-9 is "both pairs of opposite sides of a quadrilateral are congruent." The conclusion of Theorem 6-3 is "opposite sides are congruent," and the conclusion of 6-9 is "the quadrilateral is a parallelogram."
43.

45. Sample answer: You can show that: both pairs of opposite sides are congruent or parallel, both pairs of opposite angles are congruent, diagonals bisect each other, or one pair of opposite sides is both congruent and parallel. 47.4 49. E $51 .(4.5,1.5) \quad 53.35$
55. Given: $P+W>2$ (P is time spent in the pool;
W is time spent lifting weights.)
Prove: $P>1$ or $W>1$
Proof:
Step 1: Assume $P \leq 1$ and $W \leq 1$.
Step 2: $P+W \leq 2$
Step 3: This contradicts the given statement.
Therefore he did at least one of these activities for more than an hour.
57.

59. not perpendicular

Lesson 6-4
$\begin{array}{lll}1.7 \mathrm{ft} & 3.33 .5 & 5.11\end{array}$

Statements (Reasons)

L

1. $A B D E$ is a rectangle; $\overline{B C} \cong \overline{D C}$. (Given)
2. $A B D E$ is a parallelogram. (Def. of rectangle)
3. $\overline{A B} \cong \overline{D E}$ (Opp. sides of a \square are \cong.)
4. $\angle B$ and $\angle D$ are right angles. (Def. of rectangle)
5. $\angle B \cong \angle D$ (All rt. $\angle \mathrm{s}$ are \cong.)
6. $\triangle A B C \cong \triangle E D C$ (SAS)
7. $\overline{A C} \cong \overline{E C}($ CPCTC $)$
8. Yes; $A B=5=C D$ and $B C=8=A D$. So, $A B C D$ is a parallelogram. $B D=\sqrt{89}=A C$, so the diagonals are congruent. Thus, $A B C D$ is a rectangle.

(11) Since all angles in a rectangle are right angles, $\angle A B D$ is a right triangle.
$A D^{2}+A B^{2}=B D^{2} \quad$ Pythagorean Theorem

$$
\begin{aligned}
2^{2}+6^{2} & =B D^{2} & & \text { Substitution } \\
40 & =B D^{2} & & \text { Simplify. } \\
6.3 & \approx B D & & \text { Take the positive square root of each side. }
\end{aligned}
$$

$B D \approx 6.3 \mathrm{ft}$
$13.25 \quad 15.43 \quad 17.38 \quad 19.46$
21. Given: $Q T V W$ is a rectangle; $\overline{Q R} \cong \overline{S T}$.

Prove: $\triangle S W Q \cong \triangle R V T$
Proof:
Statements (Reasons)

1. QTVW is a rectangle;
 $\overline{Q R} \cong \overline{S T}$. (Given)
2. QTVW is a parallelogram. (Def. of rectangle)
3. $\overline{W Q} \cong \overline{V T}$ (Opp sides of a \square are \cong.)
4. $\angle Q$ and $\angle T$ are right angles. (Def. of rectangle)
5. $\angle Q \cong \angle T$ (All rt. $\angle \mathrm{s}$ are \cong.)
6. $Q R=S T$ (Def. of \cong segs.)
7. $\overline{R S} \cong \overline{R S}$ (Refl. Prop.)
8. $R S=R S$ (Def. of \cong segs.)
9. $Q R+R S=R S+S T$ (Add. prop.)
10. $Q S=Q R+R S, R T=R S+S T$ (Seg. Add. Post.)
11. $Q S=R T$ (Subst.)
12. $\overline{Q S} \cong \overline{R T}$ (Def. of \cong segs.)
13. $\triangle S W Q \cong \triangle R V T$ (SAS)
14. No; $J K=\sqrt{65}=L M$, $K L=\sqrt{37}=M J$, so $J K L M$ is a parallelogram. $K M=\sqrt{106} ; J L=\sqrt{98}$.
$K M \neq J L$, so the diagonals are not congruent. Thus, JKLM is not a rectangle.

15. No; slope of $\overline{G H}=$ $\frac{1}{8}=$ slope of $\overline{J K}$ and slope of $\overline{H J}=-6=$ slope of $\overline{K G}$. So, $G H J K$ is a parallelogram. The product of the slopes of consecutive sides $\neq-1$, so the consecutive sides are not perpendicular.
 Thus, GHJK is not a rectangle. 27.40
(29) A rectangle has four right angles, so $m \angle C D B=$ 90. Since a rectangle is a parallelogram, opposite sides are parallel. Alternate interior angles of parallel lines are congruent. So, $\angle 3 \cong \angle 2$ and $m \angle 3=m \angle 2=40 . m \angle 4=90-40$ or 50 . Since diagonals of a rectangle are congruent and bisect each other, the triangle with angles 4,5 , and 6 is isosceles with $m \angle 6=m \angle 4$.

$$
\begin{array}{rll}
m \angle 4+m \angle 5+m \angle 6 & =180 & \text { Triangle Angle-Sum Theorem } \\
m \angle 4+m \angle 5+m \angle 4 & =180 & m \angle 6=m \angle 4 \\
50+m \angle 5+50 & =180 & \text { Substitution } \\
100+m \angle 5 & =180 & \text { Simplify. } \\
m \angle 5 & =80 & \text { Subtract } 100 \text { from each side. }
\end{array}
$$

31.100
33. Given: $W X Y Z$ is a rectangle with diagonals $\overline{W Y}$ and $\overline{X Z}$.
Prove: $\overline{W Y} \cong \overline{X Z}$
Proof:

Statements (Reasons)

1. $W X Y Z$ is a rectangle with diagonals $\overline{W Y}$
and $\overline{X Z}$. (Given)
2. $\overline{W X} \cong \overline{Z Y}$ (Opp. sides of a \square are \cong.)
3. $\overline{W Z} \cong \overline{W Z}$ (Refl. Prop.)
4. $\angle X W Z$ and $\angle Y Z W$ are right angles. (Def. of \square)
5. $\angle X W Z \cong \angle Y Z W$ (All right $\stackrel{s}{ }$ are \cong.)
6. $\triangle X W Z \cong \triangle Y Z W$ (SAS)
7. $\overline{W Y} \cong \overline{X Z}(\mathrm{CPCTC})$
8. $A B C D$ is a parallelogram, and $\angle B$ is a right angle. Since $A B C D$ is a parallelogram and has one right angle, then it has four right angles. So by the
 definition of a rectangle, $A B C D$ is a rectangle. 37. Sample answer: Since $\overline{R P} \perp \overline{P Q}$ and $\overline{S Q} \perp \overline{P Q}$, $m \angle P=m \angle Q=90$. Lines that are perpendicular to the same line are parallel, so $\overline{R P} \| \overline{S Q}$. The same compass setting was used to locate points R and S,
 so $\overline{R P} \cong \overline{S Q}$. If one pair of opposite sides of a quadrilateral is both parallel and congruent, then the quadrilateral is a parallelogram. A parallelogram with right angles is a rectangle. Thus, $P R S Q$ is a rectangle. 39.5 41. No; sample answer: Both pairs of opposite sides are congruent, so the sign is a parallelogram, but no measure is given that can be used to prove that it is a rectangle.
(43) Draw $\square A B C D$ on the coordinate plane.
Find the slopes of $\overline{A D}$ and $\overline{A B}$ and show that the lines are perpendicular.

Given: $\square A B C D$ and $\overline{A C} \cong \overline{B D}$
Prove: $\square A B C D$ is a rectangle.
Proof:

$$
\begin{aligned}
& A C=\sqrt{(a+b-0)^{2}+(c-0)^{2}} \\
& B D=\sqrt{(b-a)^{2}+(c-0)^{2}} \\
& \text { But } A C=B D \text { and } \\
& \sqrt{(a+b-0)^{2}+(c-0)^{2}}=\sqrt{(b-a)^{2}+(c-0)^{2}} \text {. } \\
& (a+b-0)^{2}+(c-0)^{2}=(b-a)^{2}+(c-0)^{2} \\
& (a+b)^{2}+c^{2}=(b-a)^{2}+c^{2} \\
& a^{2}+2 a b+b^{2}+c^{2}=b^{2}-2 a b+a^{2}+c^{2} \\
& 2 a b=-2 a b \\
& 4 a b=0 \\
& a=0 \text { or } b=0
\end{aligned}
$$

Because A and B are different points, $a \neq 0$. Then $b=0$. The slope of $\overline{A D}$ is undefined and the slope of $\overline{A B}=0$. Thus, $\overline{A D} \perp \overline{A B} . \angle D A B$ is a right angle and $A B C D$ is a rectangle.
45. $x=6, y=-10 \quad$ 47. $6 \quad$ 49. Sample answer: All rectangles are parallelograms because, by definition, both pairs of opposite sides are parallel.
Parallelograms with right angles are rectangles, so some parallelograms are rectangles, but others with non-right angles are not. 51. J 53.E \quad 55. $x=8$,
$y=22 \quad$ 57. $(2.5,0.5)$
59. $\overline{A H}$ and $\overline{A J}$
61. $\angle A J K$ and $\angle A K J$
63. $\sqrt{101}$

Lesson 6-5

1. 32
2. Given: $A B C D$ is a rhombus with diagonal $\overline{D B}$.

Prove: $\overline{A P} \cong \overline{C P}$
Proof:

Statements (Reasons)

1. $A B C D$ is a rhombus with diagonal $\overline{D B}$. (Given)
2. $\angle A B P \cong \angle C B P$ (Diag. of rhombus bisects \angle)
3. $\overline{P B} \cong \overline{P B}$ (Refl. Prop.)
4. $\overline{A B} \cong \overline{C B}$ (Def. of rhombus)
5. $\triangle A P B \cong \triangle C P B$ (SAS)
6. $\overline{A P} \cong \overline{C P}$ (СРСТС)
7. Rectangle, rhombus, square; consecutive sides are perpendicular, all sides are congruent. $\quad 7.14 \quad 9.28$
(11)

$$
\begin{aligned}
m \angle A B C+m \angle B C D & =180 & & \text { Consecutive } \angle \mathrm{s} \text { are supp. } \\
(2 x-7)+(2 x+3) & =180 & & \text { Substitution } \\
4 x-4 & =180 & & \text { Simplify. } \\
4 x & =184 & & \text { Add } 4 \text { to each side. } \\
x & =46 & & \text { Divide each side by } 4 .
\end{aligned}
$$

$$
\begin{aligned}
m \angle B C D & =2 x+3 & & \text { Given } \\
& =2(46)+3 \text { or } 95 & & \text { Substitution }
\end{aligned}
$$

$\angle D A B \cong \angle B C D \quad$ Opposite angles are congruent.
$m \angle D A B=m \angle B C D \quad$ Definition of congruence $=95 \quad$ Substitution
13. Given: $\overline{W Z}\|\overline{X Y}, \overline{W X}\| \overline{Z Y}$, $\overline{W Z} \cong \overline{Z Y}$
Prove: $W X Y Z$ is a rhombus. Proof:
Statements (Reasons)

1. $\overline{W Z}\|\overline{X Y}, \overline{W X}\| \overline{Z Y}, \overline{W Z} \cong \overline{Z Y}$ (Given)
2. $W X Y Z$ is a \square. (Both pairs of opp. sides are \|.)
3. $W X Y Z$ is a rhombus. (If one pair of consecutive sides of a \square are \cong, the \square is a rhombus.)
4. Given: $J K Q P$ is a square. $\overline{M L}$ bisects $\overline{J P}$ and $\overline{K Q}$.

Prove: $J K L M$ is a parallelogram.
Proof:
Statements (Reasons)

1. JKQP is a square. $\overline{M L}$ bisects $\overline{J P}$ and $\overline{K Q}$. (Given)

2. JKQP is a parallelogram.
(All squares are parallelograms.)
3. $\overline{J M} \| \overline{K L}$ (Def. of \square)
4. $\overline{J P} \cong K Q$ (Opp. Sides of \square are $\cong)$
5. $J P=K Q$ (Def of \cong segs.)
6. $J M=M P, K L=L Q$ (Def. of bisects)
7. $J P=J M+M P, K Q=K L+L Q$ (Seg. Add Post.)
8. $J P=2 J M, K Q=2 K L$ (Subst.)
9. $2 J M=2 K L$ (Subst.)
10. $J M=K L$ (Division Prop.)
11. $\overline{K L} \cong \overline{J M}$ (Def. of \cong segs.)
12. JKLM is a parallelogram. (If one pair of opp. sides is \cong and $\|$, then the quad. is a \square.)
13. Rhombus; Sample answer: The measure of angle formed between the two streets is 29, and vertical angles are congruent, so the measure of one angle of the quadrilateral is 29 . Since the crosswalks are the same length, the sides of the quadrilateral are congruent. Therefore, they form a rhombus. 19. Rhombus; the diagonals are perpendicular. 21. None; the diagonals are not congruent or perpendicular.
(23) The diagonals of a rhombus are perpendicular, so $\triangle A B P$ is a right triangle.
$A P^{2}+P B^{2}=A B^{2} \quad$ Pythagorean Theorem
$A P^{2}+12^{2}=15^{2} \quad$ Substitution
$A P^{2}+144=225$ Simplify.

$$
A P^{2}=81 \quad \text { Subtract } 144 \text { from each side }
$$

$A P=9 \quad$ Take the square root of each side.
25. $24 \quad 27.6 \quad$ 29.90 31 . square \quad 33. rectangle
35. Given: $A B C D$ is a parallelogram; $\overline{A C} \perp \overline{B D}$.

Prove: $A B C D$ is a rhombus.
Proof: We are given that $A B C D$ is a parallelogram. The diagonals of a parallelogram bisect each other, so $\overline{A E} \cong \overline{E C} . \overline{B E} \cong \overline{B E}$
 because congruence of segments is reflexive. We are also given that $\overline{A C} \perp \overline{B D}$. Thus, $\angle A E B$ and $\angle B E C$ are right angles by the definition of perpendicular lines. Then $\angle A E B \cong \angle B E C$ because all right angles are congruent. Therefore, $\triangle A E B \cong \triangle C E B$ by SAS. $\overline{A B} \cong \overline{C B}$ by CPCTC. Opposite sides of parallelograms are congruent, so $\overline{A B} \cong \overline{C D}$ and $\overline{B C} \cong \overline{A D}$. Then since congruence of segments is transitive, $\overline{A B} \cong \overline{C D} \cong \overline{B C} \cong \overline{A D}$. All four sides of $A B C D$ are congruent, so $A B C D$ is a rhombus by definition.
37. Given: $A B C D$ is a parallelogram; $\overline{A B} \cong \overline{B C}$. Prove: $A B C D$ is a rhombus.
Proof: Opposite sides of a parallelogram are congruent, so $\overline{B C} \cong \overline{A D}$ and $\overline{A B} \cong \overline{C D}$. We are given that $\overline{A B} \cong \overline{B C}$. So, by the Transitive Property, $\overline{B C} \cong \overline{C D}$. So, $\overline{B C} \cong$ $\overline{C D} \cong \overline{A B} \cong \overline{A D}$. Thus, $A B C D$ is a rhombus by definition.

39. Sample answer: The diagonals bisect each other, so the quadrilateral is a parallelogram. Since the diagonals of the parallelogram are perpendicular to each other, the parallelogram is a rhombus.

41. Given: $A B C D$ is a square.

Prove: $\overline{A C} \perp \overline{D B}$
Proof:
slope of $\overline{D B}=\frac{0-a}{a-0}$ or -1
slope of $\overline{A C}=\frac{0-a}{0-a}$ or 1
 The slope of $\overline{A C}$ is the negative reciprocal of the slope of $\overline{D B}$, so they are perpendicular.
(43) Use the properties of exterior angles to classify the quadrilaterals. Sample answer: Since the octagons are regular, each side is congruent, and the quadrilaterals share common sides with the octagons, so the quadrilaterals are either rhombuses or squares. The vertices of the quadrilaterals are formed by the exterior angles of the sides of the
octagons adjacent to the vertices. The sum of the measures of the exterior angles of a polygon is always 360 and since a regular octagon has 8 congruent exterior angles, each one measures $360 \div$ 8 or 45 . As shown in the diagram, each angle of the quadrilaterals in the pattern measures $45+45$ or 90 . Therefore, the quadrilateral is a square.

45a.

45b.

Figure	Distance from \mathbf{N} to each vertex along shorter diagonal	Distance from \mathbf{N} to each vertex along longer diagonal		
$A B C D$	0.8 cm	0.8 cm	0.9 cm	1.5 cm
PQRS	1.2 cm	1.2 cm	0.3 cm	0.9 cm
$W X Y Z$	0.2 cm	0.2 cm	1.1 cm	0.4 cm

45c. Sample answer: The shorter diagonal of a kite is bisected by the longer diagonal. 47. True; sample answer: A rectangle is a quadrilateral with four right angles and a square is both a rectangle and a rhombus, so a square is always a rectangle. Converse: If a quadrilateral is a rectangle then it is a square. False; sample answer: A rectangle is a quadrilateral with four right angles. It is not necessarily a rhombus, so it is not necessarily a square. Inverse: If a quadrilateral is not a square, then it is not a rectangle. False; sample answer: A quadrilateral that has four right angles and two pairs of congruent sides is not a square, but it is a rectangle.
Contrapositive: If a quadrilateral is not a rectangle, then it is not a square. True; sample answer: If a quadrilateral is not a rectangle, it is also not a square by definition. 49. Sample answer: $(0,0),(6,0)$, $(0,6),(6,6)$; the diagonals are perpendicular, and any four points on the lines equidistant from the intersection of the lines will be the vertices of a $\begin{array}{llllll}\text { square. } & \text { 51. B } & 53 . \mathrm{H} & 55.52 & 57.38 & \text { 59. Yes; both }\end{array}$ pairs of opposite sides are congruent. 61. No; the Triangle Inequality Theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. Since $22+$ $23=45$, the sides of Monifa's backyard cannot be $22 \mathrm{ft}, 23 \mathrm{ft}$ and $45 \mathrm{ft} . \quad 63.2 \quad 65 . \frac{5}{4}$

Lesson 6-6

1. 101 3. $\overline{B C} \| \overline{A D}, \overline{A B} \nVdash \overline{C D} ; A B C D$ is a trapezoid. 5.1.2 $\quad 7.70 \quad 9.70$
(11) $\overline{X Z} \cong \overline{Y W} \quad$ Diagonals are congruent.
$X Z=Y W \quad$ Definition of congruence. $18=Y W \quad$ Substitution $18=Y P+P W \quad$ Segment Addition Postulate $18=3+P W \quad$ Substitution $15=P W \quad$ Subtract 3 from each side.
2. $\overline{J K} \| \overline{L M}, \overline{K L} \nVdash \overline{J M}$; JKLM is a trapezoid, but not isosceles since $K L=\sqrt{26}$ and $J M=5$. 15. $\overline{X Y} \| \overline{W Z}$, $\overline{W X} \nVdash \overline{Y Z} ; W X Y Z$ is a trapezoid, but not isosceles since $X Z=\sqrt{74}$ and $W Y=\sqrt{68} . \quad 17.10 \quad 19.8 \quad 21.17$
(23) The G key represents the midsegment of the trapezoid. Use the Trapezoid Midsegment Theorem to find the length of the key. length of G key $=\frac{1}{2}$ (length of C key + length of

D key)

$$
=\frac{1}{2}(6+1.8) \quad \text { Substitution }
$$

$$
=\frac{1}{2}(7.8) \text { or } 3.9 \quad \text { Simplify. }
$$

The length of the G key is 3.9 in .
25. $\sqrt{20} \quad 27.75$
29. Given: $A B C D$ is a trapezoid; $\angle D \cong \angle C$.

Prove: Trapezoid $A B C D$ is isosceles.
Proof: By the Parallel Postulate, we can draw the auxillary line $\overline{E B} \| \overline{A D} . \angle D \cong \angle B E C$, by the
 Corr. \&s Thm. We are given that $\angle D \cong \angle C$, so by the Trans. Prop, $\angle B E C \cong \angle C$. So, $\triangle E B C$ is isosceles and $\overline{E B} \cong \overline{B C}$. From the definition of a trapezoid, $\overline{A B} \| \overline{D E}$. Since both pairs of opposite sides are parallel, $A B E D$ is a parallelogram. So, $\overline{A D} \cong \overline{E B}$. By the Transitive Property, $\overline{B C} \cong \overline{A D}$. Thus, $A B C D$ is an isosceles trapezoid.
31. Given: $A B C D$ is a kite with $\overline{A B} \cong \overline{B C}$ and $\overline{A D} \cong \overline{D C}$. Prove: $\overline{B D} \perp \overline{A C}$
Proof: We know that $\overline{A B} \cong \overline{B C}$ and $\overline{A D} \cong \overline{D C}$. So, B and D are both equidistant from A and C. If a point is equidistant from the endpoints of a segment,
 then it is on the perpendicular bisector of the segment. The line that contains B and D is the perpendicular bisector of $\overline{A C}$, since only one line exists through two points. Thus, $\overline{B D} \perp \overline{A C}$.
33. Given: $A B C D$ is a trapezoid with median $\overline{E F}$. Prove: $\overline{E F} \| \overline{A B}$ and $\overline{E F} \| \overline{D C}$ and

$$
E F=\frac{1}{2}(A B+D C)
$$

Proof:

By the definition of the median of a trapezoid, E is the midpoint of $\overline{A D}$ and F is the midpoint of $\overline{B C}$.
Midpoint E is $\left(\frac{a+0}{2}, \frac{d+0}{2}\right)$ or $\left(\frac{a}{2}, \frac{d}{2}\right)$.
Midpoint F is $\left(\frac{a+b+a+b+c}{2}, \frac{d+0}{2}\right)$ or
$\left(\frac{2 a+2 b+c}{2}, \frac{d}{2}\right)$.
The slope of $\overline{A B}=0$, the slope of $\overline{E F}=0$, and the slope of $\overline{D C}=0$. Thus, $\overline{E F} \| \overline{A B}$ and $\overline{E F} \| \overline{D C}$.

$$
\begin{aligned}
& A B=\sqrt{[(a+b)-a]^{2}+(d-d)^{2}}=\sqrt{b^{2}} \text { or } b \\
& \begin{aligned}
D C & =\sqrt{[(a+b+c)-0]^{2}+(0-0)^{2}} \\
& =\sqrt{(a+b+c)^{2}} \text { or } a+b+c
\end{aligned} \\
& \begin{aligned}
& E F=\sqrt{\left(\frac{2 a+2 b+c-a}{2}\right)^{2}+\left(\frac{d}{2}-\frac{d}{2}\right)^{2}} \\
&=\sqrt{\left(\frac{a+2 b+c}{2}\right)^{2}} \text { or } \frac{a+2 b+c}{2} \\
& \begin{aligned}
\frac{1}{2}(A B+D C) & =\frac{1}{2}[b+(a+b+c)] \\
& =\frac{1}{2}(a+2 b+c) \\
& =\frac{a+2 b+c}{2} \\
& =E F
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Thus, $\frac{1}{2}(A B+D C)=E F$.
35. $15 \quad 37.28 \mathrm{ft} \quad 39.70 \quad 41.2 \quad 43.20 \quad 45.10 \mathrm{in}$.
47.105
(49) $\angle Z W X \cong \angle Z Y X$ because one pair of opposite sides of a kite is congruent and $\angle Z W X \cong \angle Z Y X$. So, $m \angle Z Y X=m \angle Z W X=10 x$.
$m \angle Z W X+m \angle W X Y+$ $m \angle Z Y X+m \angle W Z Y=360$

Polygon Interior Angles Sum Theorem

$$
\begin{array}{rlrl}
10 x+120+10 x+4 x & =360 & & \text { Substitution } \\
24 x+120 & =360 & & \text { Simplify. } \\
24 x & =240 & & \text { Subtract } 120 \text { from } \\
& \text { each side. } \\
x & =10 & & \text { Divide each side by } 24 .
\end{array}
$$

So, $m \angle Z Y X=10 x$ or 100 .
51. Given: $A B C D$ is an isosceles trapezoid.

Prove: $\angle D A C \cong \angle C B D$
Proof:
Statements (Reasons)

1. $A B C D$ is an isosceles trapezoid. (Given)

2. $\overline{A D} \cong \overline{B C}$ (Def. of isos. trap.)
3. $\overline{D C} \cong \overline{D C}$ (Refl. Prop.)
4. $\overline{A C} \cong \overline{B D}$ (Diags. of isos. trap. are \cong.)
5. $\triangle A D C \cong \triangle B C D$ (SSS)
6. $\angle D A C \cong \angle C B D$ (СРСТС)
7. Sometimes; opp $\&$ are supplementary in an isosceles trapezoid. 55. Always; by def. a square is a quadrilateral with 4 rt . \llcorner and $4 \cong$ sides. Since by def., a rhombus is a quadrilateral with $4 \cong$ sides, a square is always a rhombus. 57. Sometimes; only if the
parallelogram has 4 rt . \&s and/or congruent diagonals, is it a rectangle.
8.

(61) slope of $\overline{W X}=\frac{4-4}{3-(-3)}=0$
slope of $\overline{X Y}=\frac{3-4}{5-3}=-\frac{1}{2}$
slope of $\overline{Y Z}=\frac{1-3}{-5-5}=\frac{1}{5}$
slope of $\overline{W Z}=\frac{1-4}{-5-(-3)}=\frac{3}{2}$
Since the figure has no parallel sides, it is just a quadrilateral.
63. Given: isosceles trapezoid $A B C D$ with $\overline{A D} \cong \overline{B C}$ Prove: $\overline{B D} \cong \overline{A C}$
Proof:
$D B=\sqrt{(a-b)^{2}+(0-c)^{2}}$

$$
\text { or } \sqrt{(a-b)^{2}+c^{2}}
$$

$A C=\sqrt{[(a-b)-0]^{2}+(c-0)^{2}}$ or $\sqrt{(a-b)^{2}+c^{2}}$
$B D=A C$ and $\overline{B D} \cong \overline{A C}$
65. Belinda; $m \angle D=m \angle B$. So $m \angle A+m \angle B+m \angle C+$ $m \angle D=360$ or $m \angle A+100+45+100=360$. So, $m \angle A=115$. 67. Never; a square has all 4 sides \cong, while a kite does not have any opposite sides congruent. 69. A quadrilateral must have exactly one pair of sides parallel to be a trapezoid. If the legs are congruent, then the trapezoid is an isosceles trapezoid. If a quadrilateral has exactly two pairs of consecutive congruent sides with the opposite sides not congruent, the quadrilateral is a kite. A trapezoid
and a kite both have four sides. In a trapezoid and isosceles trapezoid, both have exactly one pair of parallel sides. 71.76
73. B $\quad 75.18 \quad 77.9$
79. No; slope of $\overline{J K}=\frac{1}{8}$ = slope of $\overline{L M}$ and slope of $\overline{K L}=-6=$ slope of $\overline{M J}$. So, JKLM is a parallelogram. The product of the slopes of consecutive sides $\neq-1$, so the consecutive sides are not perpendicular. Thus, JKLM is not
 a rectangle.
81. Given: $\angle C M F \cong \angle E M F$,

2. $\overline{M F} \cong \overline{M F}, \overline{D M} \cong \overline{M F}$
(Reflexive Property)
3. $\triangle C M F \cong \triangle E M F$ (ASA)
4. $\overline{C M} \cong \overline{E M}$ (СРСТС)
5. $\angle D M C$ and $\angle C M F$ are supplementary and $\angle D M E$ and $\angle E M F$ are supplementary.
(Supplement Th.)

7. $\triangle D M C \cong \triangle D M E$ (SAS)
83.1

Chapter 6 Study Guide and Review

1. false, both pairs of base angles 3. false, diagonal 5. true 7. false, is always 9. true
2. 1440
13.720
3. $26 \quad 17.18$
19.115
$\begin{array}{ll}\text { 21. } x=37, y=6 & \text { 23. yes, Theorem } 6.11\end{array}$
4. Given: $\square A B C D, \overline{A E} \cong \overline{C F}$

Prove: Quadrilateral $E B F D$ is a parallelogram

Statements (Reasons)

1. $A B C D, \overline{A E} \cong \overline{C F}$ (Given)
2. $A E=C F$ (Def. of \cong segs)
3. $\overline{B C} \cong \overline{A D}$ (Opp. sides of a \square are \cong)
4. $B C=A D$ (Def. of \cong segs)
5. $B C=B F+C F, A D=A E+E D$ (Seg. Add. Post.)
6. $B F+C F=A E+E D$ (Subst.)
7. $B F+A E=A E+E D$ (Subst.)
8. $B F=E D$ (Subt. Prop.)
9. $\overline{B F} \cong \overline{E D}$ (Def. of \cong segs)

10. $\overline{B F} \| \overline{E D}$ (Def. of \square)

11. Quadrilateral $E B F D$ is a parallelogram. (If one pair of opposite sides is parallel and congruent then it is a parallelogram.)
12. $x=5, y=12$
13. 33
31.64
$33.6 \quad 35.55$
14. 35 39. Rectangle, rhombus, square; all sides are \cong, consecutive sides are \perp. 41.19.2 43a. Sample answer: The legs of the trapezoids are part of the diagonals of the square. The diagonals of a square bisect opposite angles, so each base angle of a trapezoid measures 45°. One pair of sides is parallel and the base angles are congruent. $43 \mathrm{~b} .16+8 \sqrt{2} \approx$ 27.3 in.

CHAPTER 7
 Proportions and Similarity

Chapter 7 Get Ready

1. 4 or -4
2. -37
5.64
3. 64.5

Lesson 7-1

1. $23: 50$
2. $30,75,60$
5.16
$7.8 \quad 9.18$
3. Movie A; 1:2
(13) The ratio of the sides can be written as $9 x: 7 x: 5 x$. $9 x+7 x+5 x=191.1$ Perimeter of a triangle

$$
\begin{aligned}
21 x & =191.1 & & \text { Combine like terms. } \\
x & =9.1 & & \text { Divide each side by } 21 .
\end{aligned}
$$

The measures of the sides are $9(9.1)$ or 81.9 inches, $7(9.1)$ or 63.7 inches, and 5(9.1) or 45.5 inches.
15. $2.2 \mathrm{ft} \quad$ 17.54, 108, 18
19. $75,60,45$
21. $\frac{15}{8}$
$23.3 \quad 25.8 \quad 27.3$
(29) $\frac{7}{500}=\frac{x}{350} \quad \leftarrow 13$ - to 17 -year-old vegetarians

$$
\begin{aligned}
7 \cdot 350 & =500 \cdot x & & \text { Cross Products Property } \\
2450 & =500 x & & \text { Simplify } \\
4.9 & =x & & \text { Divide each side by } 500 .
\end{aligned}
$$

About 5 13- to 17-year-olds would be vegetarian.
31.3,-3.5 33.12.9, $-0.2 \quad$ 35. 2541 in 2 37.48, 96,

144, 72 39a. No; the HDTV aspect ratio is 1.77778 and the standard aspect ratio is 1.33333 . Neither television set is a golden rectangle since the ratios of the lengths to the widths are not the golden ratio.
39b. 593 pixels and 367 pixels
41. Given: $\frac{a}{b}=\frac{c}{d}, b \neq 0, d \neq 0$

Prove: $a d=b c$
Proof:

Statements (Reasons)

1. $\frac{a}{b}=\frac{c}{d} b \neq 0, d \neq 0$ (Given)
2. $(b d) \frac{a}{b}=(b d) \frac{c}{d}$ (Mult. Prop.)
3. $d a=b c$ (Subst. Prop.)
4. $a d=b c$ (Comm. Prop.)
(43) a.

b.

Triangle	ABC	MNO	PQR
Leg length	1 in.	2 in.	0.5 in.
Perimeter	2.5 in.	5 in.	1.25 in.

c. Sample answer: When the vertex angle of an isosceles triangle is held constant and the leg length is increased or decreased by a factor, the perimeter of the triangle increases or decreases by the same factor.
45. 5:2 47. $\frac{2}{3}=\frac{5}{7.5}$; You need to multiply $\frac{2}{3}$ by a factor of 2.5 to get $\frac{5}{7.5}$. The factor of the other three proportions is 2.8. 49. Both are written with fractions. A ratio compares two quantities with division, while a proportion equates two ratios. First, ratios are used to write proportions. Then the cross products are used to solve the proportion. 51.F
53. D 55.2.5 57. Since a square is a parallelogram, the diagonals bisect each other. Since a square is a rhombus, the diagonals are congruent. Therefore, the distance from first base to third base is equal to the distance between home plate and second base. Thus, the distance from home plate to the center of the infield is $127 \mathrm{ft} 3 \frac{3}{8} \mathrm{in}$. divided by 2 or $63 \mathrm{ft} 7 \frac{11}{16} \mathrm{in}$. This distance is longer than the distance from home plate to the pitcher's mound so the pitcher's mound is not located in the center of the field. It is about 3 feet closer to home. 59. $-\frac{4}{7}<x<\frac{136}{7}$
61. $\angle 1, \angle 4, \angle 11$
63. $\angle 2, \angle 6, \angle 9, \angle 4$
65. Given: $\triangle A B C \cong \triangle D E F$ $\triangle D E F \cong \triangle G H I$
Prove: $\triangle A B C \cong \triangle G H I$

Proof:
You are given that $\triangle A B C \cong \triangle D E F$. Because corresponding parts of congruent triangles are congruent, $\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F$, $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E F}$, and $\overline{A C} \cong \overline{D F}$. You are also
given that $\triangle D E F \cong \triangle G H I$. So $\angle D \cong \angle G, \angle E \cong$ $\angle H, \angle F \cong \angle I, \overline{D E} \cong \overline{G H}, \overline{E F} \cong \overline{H I}$, and $\overline{D F} \cong \overline{G I}$ by CPCTC. Therefore, $\angle A \cong \angle G, \angle B \cong \angle H, \angle C \cong$ $\angle I, \overline{A B} \cong \overline{G H}, \overline{B C} \cong \overline{H I}$, and $\overline{A C} \cong \overline{G I}$ because congruence of angles and segments is transitive. Thus, $\triangle A B C \cong \triangle G H I$ by the definition of congruent triangles.

Lesson 7-2

(1) Using the similarity statement, $\angle A$ and $\angle Z$ are corresponding angles, $\angle B$ and $\angle Y$ are corresponding angles, and $\angle C$ and $\angle X$ are corresponding angles. So, $\angle A \cong \angle Z, \angle B \cong \angle Y$, and $\angle C \cong \angle X . \overline{A C}$ and $\overline{Z X}$ are corresponding sides, $\overline{B C}$ and $\overline{Y X}$ are corresponding sides, and $\overline{A B}$ and $\overline{Z Y}$ are corresponding sides. So, $\frac{A C}{Z X}=\frac{B C}{Y X}=\frac{A B}{Z Y}$.
3. no; $\frac{N Q}{W Z} \neq \frac{Q R}{W X} \quad 5.6 \quad$ 7.22 ft \quad 9. $\angle J \cong \angle P, \angle F \cong$
$\angle S, \angle M \cong \angle T ; \angle H \cong \angle Q, \frac{P Q}{J H}=\frac{T S}{M F}=\frac{S Q}{F H}=\frac{T P}{M J}$
11. $\angle D \cong \angle K, \angle F \cong \angle M, \angle G \cong \angle J ; \frac{D F}{K M}=\frac{F G}{M J}=\frac{G D}{J K}$
(13) Two sides and the included angle of $\triangle L T K$ are congruent to two sides and the included angle of $\triangle M T K$, so $\triangle L T K \cong \triangle M T K$. By CPCTC, the triangles have all corresponding angles congruent and all corresponding sides congruent. So, $\triangle L T K \sim$ $\triangle M T K$, with a scale factor of 1 .
15. no; $\frac{A D}{W M} \neq \frac{D K}{M L} \quad$ 17. Yes; sample answer:

The ratio of the longer dimensions of the screens is approximately 1.1 and the ratio of the shorter dimensions of the screens is approximately 1.1.
(19) $\frac{S B}{J H}=\frac{B P}{H T}$

Similarity proportion

$$
\frac{2}{3}=\frac{x+3}{2 x+2}
$$

$$
2(2 x+2)=3(x+3) \quad \text { Cross Products Property }
$$

$$
4 x+4=3 x+9 \quad \text { Distributive Property }
$$

$$
x+4=9 \quad \text { Subtract } 3 x \text { from each side. }
$$

$$
x=5 \quad \text { Subtract } 4 \text { from each side. }
$$

$\begin{array}{lllll}21.3 & 23.10 .8 & 25.18 .9 & 27.40 \mathrm{~m} & \text { 29. } \angle A \cong \angle V \text {, }\end{array}$ $\angle B \cong \angle X, \angle D \cong \angle Z, \angle F \cong \angle T ; \frac{A B}{V X}=\frac{B D}{X Z}=\frac{D F}{Z T}=$

$$
\frac{F A}{T V}=2 \quad \text { 31. } \overline{A C}, \overline{A D} \quad \text { 33. } \angle A B H, \angle A D F
$$

(35)

$\angle D$	$\cong \angle P$		Corresponding angles of similar polygons are congruent.
$m \angle D$	$=m \angle P$		Definition of congruence
$x+34$	$=97$		Substitution
x	$=63$		Subtract 34 from each side.
$\angle C \cong \angle R$		Corresponding angles of similar polygons	
$m \angle C$	$=m \angle R$		are congruent.
83	$=3 y-13$		Sefinition of congruence
96	$=3 y$		Add 13 to each side.
32	$=y$		Divide each side by 3.

$$
\begin{aligned}
x+34 & =97 & & \text { Substitution } \\
x & =63 & & \text { Subtract } 34 \text { from each side. } .
\end{aligned}
$$

$\angle C \cong \angle R \quad$ Corresponding angles of similar polygons
$m \angle C=m \angle R \quad$ Definition of congruence
$83=3 y-13$ Substitution
$96=3 y \quad$ Add 13 to each side.
$32=y \quad$ Divide each side by 3.
37.52 in. by 37 in. 39. no; $\frac{B C}{X Y} \neq \frac{A B}{W X} \quad$ 41. Never; sample answer: Parallelograms have both pairs of opposite sides parallel. Trapezoids have exactly one pair of parallel legs. Therefore, the two figures cannot be similar because they can never be the same type of figure. 43. Sometimes; sample answer: If corresponding angles are congruent and corresponding sides are proportional, two isosceles triangles are similar. 45. Always; sample answer: Equilateral triangles always have three 60° angles, so the angles of one equilateral triangle are always congruent to the angles of a second equilateral triangle. The three sides of an equilateral triangle are always congruent, so the ratio of each pair of legs of one triangle to a second triangle will always be the same. Therefore, a pair of equilateral triangles is always similar.
(47) Let $\ell=$ new length and $w=$ new width.

$$
\begin{aligned}
\frac{2 \frac{1}{3}}{\ell} & =\frac{2}{3} & & \begin{array}{l}
\text { Use the lengths and scale } \\
\text { factor to write a proportion }
\end{array} \\
2 \frac{1}{3} \cdot 3 & =\ell \cdot 2 & & \text { Cross Products Property } \\
\frac{7}{3} \cdot 3 & =2 \ell & & \text { Write } 2 \frac{1}{3} \text { as } \frac{7}{3} . \\
7 & =2 \ell & & \text { Multiply. } \\
\frac{7}{2} & =\ell & & \text { Divide each side by } 7 .
\end{aligned}
$$

The new length is $\frac{7}{2}$ inches or $3 \frac{1}{2}$ inches.

$$
\begin{aligned}
\frac{1 \frac{2}{3}}{w} & =\frac{2}{3} & & \begin{array}{l}
\text { Use the widths and scale } \\
\text { factor to write a proportion. }
\end{array} \\
1 \frac{2}{3} \cdot 3 & =w \cdot 2 & & \text { Cross Products Property } \\
\frac{5}{3} \cdot 3 & =2 w & & \text { Write } 1 \frac{2}{3} \text { as } \frac{5}{3} . \\
5 & =2 w & & \text { Multiply. } \\
\frac{5}{2} & =w & & \text { Divide each side by } 2 .
\end{aligned}
$$

The new width is $\frac{5}{2}$ inches or $2 \frac{1}{2}$ inches.
49a. $\frac{a}{3 a}=\frac{b}{3 b}=\frac{c}{3 c}=\frac{a+b+c}{3(a+b+c)}=\frac{1}{3}$
49b. No; the sides are no longer proportional. 51.4
53. Sample answer:

55. Sample answer: The figures could be described as congruent if they are the same size and shape, similar if their corresponding angles are congruent and their corresponding sides are proportional, and equal if they are the same exact figure. 57. G 59. E
61. Given: E and C are midpoints of $\overline{A D}$ and $\overline{D B}$. $\overline{A D} \cong \overline{D B} ; \angle A \cong \angle 1$
Prove: $A B C E$ is an isosceles trapezoid.

Proof:

63. $x \leq 4 \quad$ 65. The angle bisector of the vertex angle of an isosceles triangle is not an altitude of the
$\begin{array}{llll}\text { triangle. } 67.128 & 69.68 & \text { 71. } x=2, R T=8, R S=8\end{array}$

Lesson 7-3

1. Yes; $\triangle Y X Z \sim \triangle V W Z$ by AA Similarity. 3. No; corresponding sides are not proportional. 5. C 7. $\triangle Q V S \sim \triangle R T S ; 20 \quad$ 9. Yes; $\triangle X U Z \sim \triangle W U Y$ by SSS Similarity.
(11) $\frac{C B}{D B}=\frac{10}{6}$ or $\frac{5}{3}$ and $\frac{B A}{B F}=\frac{9+6}{9}=\frac{15}{9}$ or $\frac{5}{3}$. $m \angle C B A=m \angle D B F=38$, so $\angle C B A \cong \angle D B F$. Since the length of the sides that include the congruent angles are proportional, $\triangle C B A \sim \triangle D B F$ by SAS Similarity.
2. No; not enough information to determine. If $J H=3$ or $W Y=24$, then $\triangle J H K \sim \triangle X W Y$ by SSS Similarity. 15. Yes; sample answer: Since $\overline{A B} \cong \overline{E B}$ and $\overline{C B} \cong \overline{D B}$, $\frac{A B}{C B}=\frac{E B}{D B} . \angle A B E \cong \angle C B D$ because vertical angles are congruent. Therefore, $\triangle A B E \sim \triangle C B D$ by SAS Similarity.
(17) Since $\overline{R S} \| \overline{P T}, \angle Q R S \cong \angle Q P T$ and $\angle Q S R \cong$ $\angle Q T P$ because they are corresponding angles. By AA Similarity, $\triangle Q R S \sim \triangle Q P T$.

$$
\begin{aligned}
\frac{R S}{P T} & =\frac{Q S}{Q T} & & \text { Definition of similar polygons } \\
\frac{12}{16} & =\frac{x}{20} & & R S=12, P T=16, Q S=x, Q T=20 \\
12 \cdot 20 & =16 \cdot x & & \text { Cross Products Property } \\
240 & =16 x & & \text { Simplify. } \\
15 & =x & & \text { Divide each side by } 16 .
\end{aligned}
$$

Since $Q S+S T=20$ and $Q S=15$, then $S T=5$.
19. $\triangle H J K \sim \triangle N Q P ; 15,10 \quad$ 21. $\triangle G H J \sim \triangle G D H ; 14,20$
23. about 12.8 ft
25. Given: $\angle B \cong \angle E, \overline{Q P} \| \overline{B C} ; \overline{Q P} \cong \overline{E F}, \frac{A B}{D E}=\frac{B C}{E F}$

Prove: $\triangle A B C \sim \triangle D E F$

Proof:

Statements (Reasons)

1. $\angle B \cong \angle E, \overline{Q P} \| \overline{B C} ; \overline{Q P} \cong \overline{E F}, \frac{A B}{D E}=\frac{B C}{E F}$ (Given)
2. $\angle A P Q \cong \angle C, \angle A Q P \cong \angle B$ (Corr. $\stackrel{s}{ }$ Post.)
3. $\angle A Q P \cong \angle E$ (Trans. Prop.)
4. $\triangle A B C \sim \triangle A Q P$ (AA Similarity)
5. $\frac{A B}{A Q}=\frac{B C}{Q P}$ (Def. of $\left.\sim \triangle \mathrm{s}\right)$
6. $A B \cdot Q P=A Q \cdot B C ; A B \cdot E F=D E \cdot B C($ Cross products)
7. $Q P=E F$ (Def. of \cong segs.)
8. $A B \cdot E F=A Q \cdot B C$ (Subst.)
9. $A Q \cdot B C=D E \cdot B C$ (Subst.)
10. $A Q=D E$ (Div. Prop.)
11. $\overline{A Q} \cong \overline{D E}$ (Def. of \cong segs.)
12. $\triangle A Q P \cong \triangle D E F$ (SAS)
13. $\angle A P Q \cong \angle F$ (СРСТС)
14. $\angle C \cong \angle F$ (Trans. Prop.)
15. $\triangle A B C \sim \triangle D E F$ (AA Similarity)
16. Given: $\triangle X Y Z$ and $\triangle A B C$ are right triangles; $\frac{X Y}{A B}=\frac{Y Z}{B C}$.
Prove: $\triangle Y X Z \sim \triangle B A C$
Proof:

Statements (Reasons)

1. $\triangle X Y Z$ and $\triangle A B C$ are right triangles. (Given)
2. $\angle X Y Z$ and $\angle A B C$ are right angles. (Def. of rt. \triangle)
3. $\angle X Y Z \cong \angle A B C$ (All rt. $\$ \mathrm{~s}$ are \cong.)
4. $\frac{X Y}{A B}=\frac{Y Z}{B C}$ (Given)
5. $\triangle Y X Z \sim \triangle B A C$ (SAS Similarity)
6. 20 in .
(31) Use $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ to find the side lengths of $\triangle X Y Z$ and $\triangle W Y V$.

$$
\begin{aligned}
X Y= & \sqrt{[5-(-1)]^{2}+[3-(-9)]^{2}}=6 \sqrt{5} \\
& \left(x_{1}, y_{1}\right)=(-1,-9),\left(x_{2}, y_{2}\right)=(5,3) \\
Y Z= & \sqrt{(-1-5)^{2}+(6-3)^{2}}=3 \sqrt{5} \\
& \left(x_{1}, y_{1}\right)=(5,3),\left(x_{2}, y_{2}\right)=(-1,6) \\
X Z= & \sqrt{[-1-(-1)]^{2}+[6-(-9)]^{2}}=15 \\
& \left(x_{1}, y_{1}\right)=(-1,-9),\left(x_{2}, y_{2}\right)=(-1,6) \\
W Y= & \sqrt{(5-1)^{2}+[3-(-5)]^{2}}=2 \sqrt{5} \\
& \left(x_{1}, y_{1}\right)=(1,-5),\left(x_{2}, y_{2}\right)=(5,3) \\
Y V= & \sqrt{(1-5)^{2}+(5-3)^{2}}=2 \sqrt{5} \\
& \left(x_{1}, y_{1}\right)=(5,3),\left(x_{2}, y_{2}\right)=(1,5) \\
W V= & \sqrt{(1-1)^{2}+[5-(-5)]^{2}}=10 \\
& \left(x_{1}, y_{1}\right)=(1,-5),\left(x_{2}, y_{2}\right)=(1,5)
\end{aligned}
$$

Since the perimeter of $\triangle X Y Z=6 \sqrt{5}+3 \sqrt{5}+15$ or $9 \sqrt{5}+15$ and the perimeter of $\triangle W Y V=$
$4 \sqrt{5}+2 \sqrt{5}+10$ or $6 \sqrt{5}+10$, the ratio of the perimeters is $\frac{9 \sqrt{5}+15}{6 \sqrt{5}+10}=\frac{3(3 \sqrt{5}+5)}{2(3 \sqrt{5}+5)}$ or $\frac{3}{2}$.
33. $\angle C \cong \angle C^{\prime}$, since all right angles are congruent. Line ℓ is a transversal of parallel segments $\overline{B C}$ and $\overline{B^{\prime} C^{\prime}}$, so $\angle A B C \cong \angle A^{\prime} B^{\prime} C^{\prime}$ since corresponding angles of parallel lines are congruent. Therefore, by AA Similarity, $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$. So $\frac{B C}{A C^{\prime}}$, the slope of line ℓ through points A and B, is equal to $\frac{B^{\prime} C^{\prime}}{A^{\prime} C^{\prime \prime}}$ the slope of line ℓ through points A^{\prime} and B^{\prime}.
(35) Since $\angle C A B \cong \angle C A B$ by the Reflexive Property and $\angle A B C \sim \angle A D E$ by the definition of right angles, $\triangle A B C \sim \triangle A D E$ by the AA Similarity Postulate.

$$
\begin{aligned}
\frac{A B}{B C} & =\frac{A D}{D E} & & \text { Definition of similar polygons } \\
\frac{100}{15} & =\frac{100+5}{D E} & & \text { Substitution } \\
100 \cdot D E & =105 \cdot 15 & & \text { Cross Products Property } \\
100 D E & =1575 & & \text { Simplify. } \\
D E & =15.75 & & \text { Divide each side by } 100 .
\end{aligned}
$$

Since the \triangle s formed by the laser sources are \cong, $\overline{D E} \cong \overline{G E}$. So, $D G=15.75+15.75$ or 31.5 . Since $\overline{A D}$ and $\overline{F G}$ are $\|, A F=D G$. So, $A F=31.5$. The laser sources should be placed 31.5 cm apart.
37. Sample answer: The AA Similarity Postulate, SSS Similarity Theorem, and SAS Similarity Theorem are all tests that can be used to determine whether two triangles are similar. The AA Similarity Postulate is used when two pairs of congruent angles on two triangles are given. The SSS Similarity Theorem is used when the corresponding side lengths of two triangles are given. The SAS Similarity Theorem is used when two proportional side lengths and the included angle on two triangles are given. 39.6 41. Sample answer: You could consider the amount of space that the actual object occupies and compare it to the amount of space that is available for the scale model or drawing. Then, you could determine the amount of detail that you want the scale model or drawing to have, and you could use these factors to choose an appropriate scale. 43a. $\frac{6}{x-2}=\frac{4}{5}$
43b. 9.5; 7.5 45. B 47. $\angle X \cong \angle R, \angle W \cong \angle Q$,
$\angle Y \cong \angle S ; \angle Z \cong \angle T, \frac{W X}{Q R}=\frac{Z Y}{T S}=\frac{W Z}{Q T}=\frac{X Y}{R S}$
49. $12 \quad$ 51.52.3 53. Sample answer: If one pair of opposite sides are congruent and parallel, the quadrilateral is a parallelogram. 55. not possible
57. Given: $r \| t ; \angle 5 \cong \angle 6$

Prove: $\ell \| m$

Proof:
Statements (Reasons)

1. $r \| t ; \angle 5 \cong \angle 6$ (Given)
2. $\angle 4$ and $\angle 5$ are supplementary. (Consecutive Interior Angles Theorem)
3. $m \angle 4+m \angle 5=180$ (Def. of Suppl. $\stackrel{\boxed{ } \text {) }) ~}{\text { (D) }}$
4. $m \angle 5=m \angle 6$ (Def. of $\cong \angle s)$
5. $m \angle 4+m \angle 6=180$ (Substitution)
6. $\angle 4$ and $\angle 6$ are supplementary. (Def. of Suppl. \&s)
7. $\ell \| m$ (If cons. int. \&s are suppl., then lines are \|.)

Lesson 7-4

1. 10 3. Yes; $\frac{A D}{D C}=\frac{B E}{E C}=\frac{2}{3}$, so $\overline{D E} \| \overline{A B}$. \quad 5. 11
2. $2360.3 \mathrm{ft} \quad$ 9. $x=20 ; y=2$
(11) If $A B=12$ and $A C=16$, then $B C=4$.

$$
\begin{aligned}
\frac{A B}{B C} & =\frac{A E}{E D} & & \text { Triangle Proportionality Theorem } \\
\frac{12}{4} & =\frac{A E}{5} & & \text { Substitute. } \\
12 \cdot 5 & =4 \cdot A E & & \text { Cross Products Property } \\
60 & =4 A E & & \text { Multiply. } \\
15 & =A E & & \text { Divide each side by } 4 .
\end{aligned}
$$

13. 10

$$
\text { 15. yes; } \frac{Z V}{V X}=\frac{W Y}{Y X}=\frac{11}{5} \quad \text { 17. no; } \frac{Z V}{V X} \neq \frac{W Y}{Y X}
$$

(19) $m \angle P H M+m \angle P H J+m \angle J H L=180 \quad \begin{aligned} & \text { Definition of a } \\ & \text { straight angle }\end{aligned}$

$$
\begin{aligned}
44+m \angle P H J+76=180 & \text { Substitution } \\
120+m \angle P H J=180 & \text { Simplify. } \\
m \angle P H J=60 & \text { Subtract } 120 \\
& \text { from each side. }
\end{aligned}
$$

By the Triangle Midsegment Theorem, $\overline{P H} \| \overline{K L}$.

$$
\angle P H J \cong \angle J H L \quad \text { Alternate Interior Angles Theorem }
$$

$$
m \angle P H J=m \angle J H L \quad \text { Definition of congruence }
$$

$$
60=x
$$

Substitution
$\begin{array}{llll}\text { 21.1.35 23.1.2 in. 25. } x=18 ; y=3 & \text { 27. } x=48 ; y=72\end{array}$
29. Given: $\overleftrightarrow{A D}\|\overleftrightarrow{B E}\| \overleftrightarrow{C F}, \overrightarrow{A B} \cong \overrightarrow{B C}$

Prove: $\overline{D E} \cong \overline{E F}$
Proof:
From Corollary 7.1, $\frac{A B}{B C}=\frac{D E}{E F}$. Since $\overline{A B} \cong \overline{B C}, A B=B C$ by definition of congruence.
Therefore, $\frac{A B}{B C}=1$.

By substitution, $1=\frac{D E}{E F}$. Thus, $D E=E F$. By
definition of congruence, $\overline{D E} \cong \overline{E F}$.
31. Given: $\frac{D B}{A D}=\frac{E C}{A E}$

Prove: $\overline{D E} \| \overline{B C}$

Proof:

Statements (Reasons)

1. $\frac{D B}{A D}=\frac{E C}{A E}$ (Given)
2. $\frac{A D}{A D}+\frac{D B}{A D}=\frac{A E}{A E}+\frac{E C}{A E}$ (Add. Prop.)
3. $\frac{A D+D B}{A D}=\frac{A E+E C}{A E}$ (Subst.)
4. $A B=A D+D B, A C=A E+E C$ (Seg. Add. Post.)
5. $\frac{A B}{A D}=\frac{A C}{A E}$ (Subst.)
6. $\angle A \cong \angle A$ (Refl. Prop.)
7. $\triangle A D E \sim \triangle A B C$ (SAS Similarity)
8. $\angle A D E \cong \angle A B C$ (Def. of ~ polygons)
9. $\overline{D E} \| \overline{B C}$ (If corr. $\angle s$ are \cong, then the lines are $\|$.)
33.9
(35) If $C A=10$ and $C D=2$, then $D A=8$.

$$
\begin{aligned}
\frac{C E}{E B} & =\frac{C D}{D A} & & \text { Triangle Proportionality Theorem } \\
\frac{t-2}{t+1} & =\frac{2}{8} & & \text { Substitute. } \\
(t-2)(8) & =(t+1)(2) & & \text { Cross Products Property } \\
8 t-16 & =2 t+2 & & \text { Distributive Property } \\
6 t-16 & =2 & & \text { Subtract } 2 t \text { from each side. } \\
6 t & =18 & & \text { Add } 16 \text { to each side. } \\
t & =3 & & \text { Divide each side by } 6 .
\end{aligned}
$$

If $t=3$, then $C E=3-2$ or 1 .
37. $8,7.5$
39. $\triangle A B C \sim \triangle A D E \quad$ SAS Similarity
41.6

$$
\begin{aligned}
\frac{A D}{A B} & =\frac{D E}{B C} & & \text { Def. } \sim \triangle \mathrm{s} \\
\frac{40}{100} & =\frac{D E}{B C} & & \text { Substitution } \\
\frac{2}{5} & =\frac{D E}{B C} & & \text { Simplify. } \\
\frac{2}{5} B C & =D E & & \text { Multiply. }
\end{aligned}
$$

(43) All the triangles are isosceles. Segment $E H$ is the midsegment of triangle $A B C$. Therefore, segment $E H$ is half of the length of $A C$, which is $35 \div 2$ or 17.5 feet. Similarly, $F G$ is the midsegment of triangle $B E H$, so $F G=17.5 \div 2$ or 8.75 feet. To find $D J$, use the vertical altitude which is 12 feet. Let the altitude from B to the segment $A C$ meet the segment $D J$ at K. Find $B C$ using the Pythagorean Theorem.

$$
\begin{aligned}
B C^{2} & =B K^{2}+K C^{2} \\
B C^{2} & =12^{2}+17.5^{2} \\
B C & =\sqrt{12^{2}+17.5^{2}} \\
B C & \approx 21.22 \text { in. }
\end{aligned}
$$

Since the width of each piece of siding is the same, $B J=\frac{3}{4} B C$, which is about $\frac{3}{4}(21.22)$ or 15.92 in.
Now, use the Triangle Proportionality Theorem.

$$
\begin{aligned}
\frac{A C}{B C} & =\frac{D J}{B J} \\
\frac{35}{21.22} & =\frac{D J}{15.92} \\
21.22(D J) & =(15.92)(35) \\
21.22(D J) & =557.2 \\
D J & \approx 26.25 \mathrm{in} .
\end{aligned}
$$

45. Sample answer:

47a. Sample answer:

Triangle				
	$A D$	1.1 cm	$A D$	10
	$C D$	1.1 cm	$C D$	
	$A B$	2.0 cm	$A B$	
	$C B$	2.0 cm	$C B$	
	$M Q$	1.4 cm	$M Q$	0.8
	$P Q$	1.7 cm	$\overline{P Q}$	0.8
MN	MN	1.6 cm	MN	0.8
	PN	2.0 cm	$\overline{P N}$	0.8
WXY	WZ	0.8 cm	$\frac{W Z}{Y Z}$	0.7
	YZ	1.2 cm		
	WX	2.0 cm	$\frac{w X}{Y X}$	0.7
	$Y X$	2.9 cm		

47c. Sample answer: The proportion of the segments created by the angle bisector of a triangle is equal to the proportion of their respective consecutive sides.
49. Always; sample answer: $\overline{F H}$ is a midsegment. Let $B C=x$, then $F H=\frac{1}{2} x . F H C B$ is a trapezoid, so $D E=\frac{1}{2}(B C+F H)=\frac{1}{2}\left(x+\frac{1}{2} x\right)=\frac{1}{2} x+\frac{1}{4} x=\frac{3}{4} x$.
Therefore, $D E=\frac{3}{4} B C$.
51.

By Corollary 7.1, $\frac{a}{b}=\frac{c}{d}$.
53.8 55. G 57. $\triangle A B E \sim \triangle C D E$ by AA Similarity; 6.25
59. $\triangle W Z T \sim \triangle W X Y$ by AA Similarity; 7.5
61. $\overline{Q R} \| \overline{T S}, \overline{Q T} \nVdash \overline{R S} ; Q R S T$ is an isosceles trapezoid since $R S=\sqrt{26}=Q T . \quad 63.6 \quad 65.56 \quad 67 . \frac{2}{3}$
69.2.1 71.8.7

Lesson 7-5

(1) The triangles are similar by AA Similarity.

$$
\begin{aligned}
\frac{x}{10} & =\frac{12}{15} & & \sim \triangle \text { s have corr. medians } \\
x \cdot 15 & =10 \cdot 12 & & \text { proportional to the corr. sides. } \\
15 x & =120 & & \text { Simplify. } \\
x & =8 & & \text { Divide each side by } 15 .
\end{aligned}
$$

3.35.7 ft $\quad \mathbf{5 .} 20 \quad 7.8 .5 \quad 9.18$
(11) $\frac{15}{27}=\frac{28-b}{b}$

Triangle Angle Bisector Theorem
$15 \cdot b=27(28-b) \quad$ Cross Products Property
$15 b=756-27 b \quad$ Multiply.
$42 b=756 \quad$ Add 27 b to each side.
$b=18 \quad$ Divide each side by 42.
13. 15
(15)

$$
\begin{aligned}
\frac{A B}{J K} & =\frac{A D}{J M} & & \sim \triangle \text { s have corr. altitudes } \\
\frac{9}{21} & =\frac{4 x-8}{5 x+3} & & \text { proportional to the corr. sides. } \\
9(5 x+3) & =21(4 x-8) & & \text { Cross Products Property } \\
45 x+27 & =84 x-168 & & \text { Distributive Property } \\
27 & =39 x-168 & & \text { Subtract } 45 x \text { from each side. } \\
195 & =39 x & & \text { Add } 168 \text { to each side. } \\
5 & =x & & \text { Divide each side by } 39 .
\end{aligned}
$$

17.4
19. Given: $\triangle A B C \sim \triangle R S T$
$\overline{A D}$ is a median of $\triangle A B C$. $\overline{R U}$ is a median of $\triangle R S T$.
Prove: $\frac{A D}{R U}=\frac{A B}{R S}$

Proof:

Statements (Reasons)

1. $\triangle A B C \sim \triangle R S T ; \overline{A D}$ is a median of $\triangle A B C$;
$\overline{R U}$ is a median of $\triangle R S T$. (Given)
2. $C D=D B ; T U=U S$ (Def. of median)
3. $\frac{A B}{R S}=\frac{C B}{T S}($ Def. of $\sim \triangle \mathrm{s})$
4. $C B=C D+D B ; T S=T U+U S$ (Seg. Add. Post.)
5. $\frac{A B}{R S}=\frac{C D+D B}{T U+U S}$ (Subst.)
6. $\frac{A B}{R S}=\frac{D B+D B}{U S+U S}$ or $\frac{2(D B)}{2(U S)}$ (Subst.)
7. $\frac{A B}{R S}=\frac{D B}{U S}$ (Subst.)
8. $\angle B \cong \angle S$ (Def. of $\sim \triangle \mathrm{s}$)
9. $\triangle A B D \sim \triangle R S U$ (SAS Similarity)
10. $\frac{A D}{R U}=\frac{A B}{R S}$ (Def. of $\left.\sim \triangle \mathrm{s}\right)$

$21.3 \quad 23.70$

25. Given: $\overline{C D}$ bisects $\angle A C B$.

By construction, $\overline{A E} \| \overline{C D}$.
Prove: $\frac{A D}{D B}=\frac{A C}{B C}$

Proof:

Statements (Reasons)

1. $\overline{C D}$ bisects $\angle A C B$; By construction, $\overline{A E} \| \overline{C D}$. (Given)
2. $\frac{A D}{D B}=\frac{E C}{B C}$ (\triangle Prop. Thm.)
3. $\angle 1 \cong \angle 2$ (Def. of \angle Bisector)
4. $\angle 3 \cong \angle 1$ (Alt. Int. $\angle \mathrm{s}$ Thm.)
5. $\angle 2 \cong \angle E$ (Corr. \angle s Post.)
6. $\angle 3 \cong \angle E$ (Trans. Prop.)
7. $\overline{E C} \cong \overline{A C}$ (Converse of Isos. \triangle Thm.)
8. $E C=A C$ (Def. of \cong segs.)
9. $\frac{A D}{D B}=\frac{A C}{B C}$ (Subst.)
10. Given: $\triangle Q T S \sim \triangle X W Z$, $\overline{T R}, \overline{W Y}$ are \angle bisectors.
Prove: $\frac{T R}{W Y}=\frac{Q T}{X W}$
Proof:

Statements (Reasons)

1. $\triangle S T Q \sim \triangle Z W X, \overline{T R}$ and $\overline{W Y}$ are angle bisectors. (Given)
2. $\angle S T Q \cong \angle Z W X, \angle Q \cong \angle X$ (Def of $\sim \triangle$ s)
3. $\angle S T R \cong \angle Q T R, \angle Z W Y \cong \angle X W Y$ (Def.
\angle bisector)
4. $m \angle S T Q=m \angle S T R+m \angle Q T R, m \angle Z W X=$ $m \angle Z W Y+m \angle X W Y$ (\angle Add. Post.)
5. $m \angle S T Q=2 m \angle Q T R, m \angle Z W X=2 m \angle X W Y$
(Subst.)
6. $2 m \angle Q T R=2 m \angle X W Y$ (Subst.)
7. $m \angle Q T R=m \angle X W Y$ (Div. Prop.)
8. $\angle Q T R \cong \angle X W Y$ (Def. of \cong Angles)
9. $\triangle Q T R \sim \triangle X W Y$ (AA Similarity)
10. $\frac{T R}{W Y}=\frac{Q T}{X W}$ (Def. of $\sim \triangle \mathrm{s}$)
(29) Since the segment from Trevor to Ricardo is an angle bisector, the segments from Ricardo to Craig and from Ricardo to Eli are proportional to the segments from Trevor to Craig and from Trevor to Eli. Since Craig is closer to Trevor than Eli is, Craig is also closer to Ricardo than Eli is. So, Craig will reach Ricardo first.
11. Chun; by the Angle Bisector Theorem, the correct proportion is $\frac{5}{8}=\frac{15}{x} . \quad$ 33. $P S=18.4, R S=24$
12. Both theorems have a segment that bisects an angle and have proportionate ratios. The Triangle Angle Bisector Theorem pertains to one triangle, while Theorem 7.9 pertains to similar triangles. Unlike the Triangle Angle Bisector Theorem, which separates the opposite side into segments that have the same ratio as the other two sides, Theorem 7.9 relates the angle bisector to the measures of the sides. 37.2.2 39. C
13. $x=2 ; y=3$
14. $K P=5, K M=15, M R=13 \frac{1}{3}$,
$M L=20, M N=12, P R=16 \frac{2}{3}$
15. Given: $\overline{E F} \cong \overline{H F}$
G is the midpoint of $\overline{E H}$.
Prove: $\triangle E F G \cong \triangle H F G$

Proof:

Statements (Reasons)

1. $\overline{E F} \cong \overline{H F} ; G$ is the midpoint of $\overline{E H}$. (Given)
2. $\overline{E G} \cong \overline{G H}$ (Def. of midpoint)
3. $\overline{F G} \cong \overline{F G}$ (Reflexive Prop.)
4. $\triangle E F G \cong \triangle H F G$ (SSS)
47.5 49. $\sqrt{137} \approx 11.7 \quad$ 51. $\sqrt{340} \approx 18.4$

Lesson 7-6

1. enlargement; 2
(3) The ratio comparing the widths is $\frac{152.5}{27} \approx 5.6$.

The ratio comparing the lengths is $\frac{274}{78} \approx 3.5$. Sample answer: Since $\frac{152.5}{27} \neq \frac{274}{78}$, a table tennis table is not a dilation of a tennis court.
5. $\frac{R J}{K J}=\frac{S J}{L J}=\frac{R S}{K L}=\frac{1}{2}$, so $\triangle R S J \sim \triangle K L J$ by SSS

Similarity. 7. reduction; $\frac{1}{2}$ 9. enlargement; 2
11. reduction
13. No; sample answer: Since $\frac{1.2}{2.5} \neq \frac{1.25}{3}$, the design and the actual tattoo are not proportional.
Therefore, the tattoo is not a dilation of the design.
15.

$\angle A \cong \angle A$ and $\frac{A B}{A D}=\frac{A C}{A E}=\frac{1}{4}$,
so $\triangle A B C \sim \triangle A D E$ by SAS Similarity.
17.

$\frac{J K}{D G}=\frac{K L}{G H}=$ $\frac{J L}{D H}=\frac{1}{2}$, so $\triangle J K L \sim \triangle D G H$ by SSS Similarity.
(19)

$$
\begin{aligned}
\frac{A C}{A B} & =\frac{A Z}{A Y} & & \text { Definition of similar polygons } \\
\frac{4}{A B} & =\frac{12}{6} & & A C=4, A Z=12, A Y=6 \\
4 \cdot 6 & =A B \cdot 12 & & \text { Cross Products Property } \\
24 & =12 A B & & \text { Simplify. } \\
2 & =A B & & \text { Divide each side by } 12 .
\end{aligned}
$$

Since $A B=2$, the coordinates of B are $(0,-2)$.
(21)
mple answer $\triangle A B C: A(0,0)$, $B(1,3), C(4,2)$
Draw points D and E so that $A D=2 A B$ and $A E=2 A C$. Connect the points to form $\triangle A D E: A(0,0)$, $D(2,6), E(8,4)$.

b. Sample answer: $\triangle M N P: M(0,0), N(1,2), P(3,1)$ Draw points Q and R so that $M Q=3 M N$ and $M R=$ $3 M P$. Connect the points to form $\triangle M Q R: M(0,0)$, $Q(3,6), R(9,3)$.
$\triangle T W X: T(0,0), W(0,7), X(4,0)$
Draw points Y and Z so that $T Y=0.5 T W$ and $T Z=$ $0.5 T X$. Connect the points to form $\triangle T Y Z: T(0,0)$, $Y(0,3.5), Z(2,0)$.

C.

Coordinates											
$\triangle A B C$		$\triangle A D E$		$\triangle M N P$		$\triangle M Q R$		$\triangle T W X$		$\triangle T Y Z$	
A	$(0,0)$	A	$(0,0)$	M	$(0,0)$	M	$(0,0)$	T	$(0,0)$	T	$(0,0)$
B	$(1,3)$	D	$(2,6)$	N	$(1,2)$	Q	$(3,6)$	W	$(0,7)$	Y	$(0,3.5)$
C	$(4,2)$	E	$(8,4)$	P	$(3,1)$	R	$(9,3)$	X	$(4,0)$	Z	$(2,0)$

d. Sample answer: Multiply the coordinates of the given triangle by the scale factor to get the coordinates of the dilated triangle.
$\triangle A D E: A(0 \cdot 2,0 \cdot 2)$ or $A(0,0), D(1 \cdot 2,3 \cdot 2)$ or $D(2,6), E(4 \cdot 2,2 \cdot 2)$ or $E(8,4)$
$\triangle M Q R: M(0 \cdot 3,0 \cdot 3)$ or $M(0,0), Q(1 \cdot 3,2 \cdot 3)$ or $Q(3,6), R(3 \cdot 3,1 \cdot 3)$ or $R(9,3)$
$\triangle T Y Z: T(0 \cdot 0.5,0 \cdot 0.5)$ or $T(0,0), Y(0 \cdot 0.5,7 \cdot 0.5)$ or $Y(0,3.5), Z(4 \cdot 0.5,0 \cdot 0.5)$ or $Z(2,0)$
23. No; sample answer: Since the x-coordinates are multiplied by 3 and the y-coordinates are multiplied by $2, \triangle X Y Z$ is 3 times as wide and only 2 times as tall as $\triangle P Q R$. Therefore, the transformation is not a dilation. 25. Sample answer: Architectural plans are reductions. 27. Sample answer: If a transformation is an enlargement, the lengths of the transformed object will be greater than the original object, so the scale factor will be greater than 1 . If a transformation is a reduction, the lengths of the transformed object will be less than the original object, so the scale factor will be less than 1, but greater than 0 . If the transformation is a congruence transformation, the scale factor is 1 , because the lengths of the transformed object are equal to the lengths of the original object. 29. $\frac{1}{2} \quad 31$. E
33. yes; $\frac{A C}{B D}=\frac{D E}{C E}=\frac{4}{3}$
35. no; $\frac{A B}{C D} \neq \frac{A E}{C E} \quad 37.117$
39. Given: $\triangle A B C$
S is the midpoint of $\overline{A C}$. T is the midpoint of $\overline{B C}$.
Prove: $\overline{S T} \| \overline{A B}$

Proof:

Midpoint S is $\left(\frac{b+0}{2}, \frac{c+0}{2}\right)$ or $\left(\frac{b}{2}, \frac{c}{2}\right)$.
Midpoint T is $\left(\frac{a+b}{2}, \frac{0+c}{2}\right)$ or $\left(\frac{a+b}{2}, \frac{c}{2}\right)$.
Slope of $\overline{S T}=\frac{\frac{c}{2}-\frac{c}{2}}{\frac{a+b}{2}-\frac{b}{2}}=\frac{0}{\frac{a}{2}}$ or 0 .
Slope of $\overline{A B}=\frac{0-0}{a-0}=\frac{0}{a}$ or 0 .
$\overline{S T}$ and $\overline{A B}$ have the same slope so, $\overline{S T} \| \overline{A B}$.
41.8 43.0.003 45.0.17

Lesson 7-7

1. about 117 mi
3a. 6 in.: 50 ft
3b. $\frac{1}{100}$
5.380 km
7.173 km
(9) a. $\frac{\text { replica height }}{\text { statue height }}=\frac{10 \mathrm{in} .}{10 \mathrm{ft}}=\frac{1 \mathrm{in} .}{1 \mathrm{ft}}$

The scale of the replica is 1 inch $: 1$ foot.
b. $\frac{10 \mathrm{in} .}{10 \mathrm{ft}}=\frac{10 \mathrm{in.}}{10 \mathrm{ft}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in} .}=\frac{1}{12}$

The scale factor is $1: 12$. So, the replica is $\frac{1}{12}$ times as tall as the actual sculpture.
11. Sample answer: 1 in . $=12 \mathrm{ft}$

13. about 2.7 h or 2 h and 42 min
15. 1.61 km
(17) a. Scale Model to Rocket

$$
\begin{aligned}
\frac{1 \mathrm{in.} .}{12 \mathrm{ft}} & =\frac{7 \mathrm{in.} .}{x \mathrm{ft}} & & \text { Write a proportion. } \\
1 \cdot x & =12 \cdot 7 & & \text { Cross Product Property } \\
x & =84 & & \text { Simplify. }
\end{aligned}
$$

The height of the rocket is 84 feet.
b. Since $12 \mathrm{ft}=144 \mathrm{in} ., \frac{1 \mathrm{in} .}{12 \mathrm{ft}}=\frac{1 \mathrm{in} .}{144 \mathrm{in} .}$

Scale Model to Rocket

$\frac{1 \mathrm{in} .}{144 \mathrm{in.}}=\frac{x \mathrm{in} .}{70 \text { in. }} \quad$ Write a proportion.

$$
\begin{aligned}
1 \cdot 70 & =144 \cdot x & & \text { Cross Product Property } \\
70 & =144 x & & \text { Simplify. } \\
0.5 & \approx x & & \text { Divide each side by } 144 .
\end{aligned}
$$

The diameter of the model is about 0.5 inch.

(19) Scale Actual Tower to Replica

$$
\begin{aligned}
\frac{3}{1} & =\frac{986 \mathrm{ft}}{x \mathrm{ft}} & & \text { Write a proportion. } \\
3 \cdot x & =1 \cdot 986 & & \text { Cross Product Property } \\
3 x & =986 & & \text { Simplify. } \\
x & \approx 329 & & \text { Divide each side by } 3 .
\end{aligned}
$$

The height of the ride is about 329 feet.
21. Felix; sample answer: The ratio of the actual high school to the replica is $\frac{75}{1.5}$ or $50: 1$. 23. The first drawing will be larger. The second drawing will be $\frac{1}{6}$ the size of the first drawing, so the scale factor is $1: 6$.
25. Both can be written as ratios comparing lengths. A scale factor must have the same unit of measure for $\begin{array}{llll}\text { both measurements. 27.D } & \text { 29. C } & 31.12 & 33.17 .5\end{array}$
35. $29.3 \quad 37.3 .5 \quad$ 39. $10.5 \quad$ 41. $8 \quad$ 43. $J K=\sqrt{10}$, $K L=\sqrt{10}, J L=\sqrt{20}, X Y=\sqrt{10}, Y Z=\sqrt{10}$, and $X Z=\sqrt{20}$. Each pair of corresponding sides has the same measure so they are congruent. $\triangle J K L \cong \triangle X Y Z$ $\begin{array}{llll}\text { by SSS. } & 45.8 & 47.48 & 49.3 \sqrt{77}\end{array}$

Chapter 7 Study Guide and Review

1.j; ratio 3. g; AA Similarity Postulate 5. d; extremes 7.b; proportion $\quad \mathbf{9 . 4 9} \quad \mathbf{1 1 . 1 0}$ or $-10 \quad \mathbf{1 3 . 1 2 0} \mathrm{in}$.
15. No, the polygons are not similar because the corresponding sides are not proportional. 17.16.5 19. Yes, $\triangle A B E \sim \triangle A D C$ by the SAS \sim Thm. 21. No, the triangles are not similar because not all corresponding angles are congruent. 23.34.2 feet
25. $22.5 \quad 27.6 \quad 29.633 \mathrm{mi}$ 31. enlargement; 2
33. 10.5 inches
35.95 .8 mi

CHAPTER 8
 Right Angles and Trigonometry

Chapter 8 Get Ready

1. $4 \sqrt{7}$
2. $10 \sqrt{3}$
3. $\frac{3}{4}$
4. 10
5. $x=17.2$ in., 68.8 in.
of trim
6.

Lesson 8-1

1. 10 3. $10 \sqrt{6}$ or 24.5 5. $x=6 ; y=3 \sqrt{5} \approx 6.7 ; z=$ $6 \sqrt{5} \approx 13.4 \quad 7.18 \mathrm{ft} 11 \mathrm{in}$.
(9) $x=\sqrt{a b}$

Definition of geometric mean

$$
\begin{array}{ll}
=\sqrt{16 \cdot 25} & a=16 \text { and } b=25 \\
=\sqrt{(4 \cdot 4) \cdot(5 \cdot 5)} & \text { Factor. } \\
=4 \cdot 5 \text { or } 20 & \text { Simplify. }
\end{array}
$$

11. $12 \sqrt{6} \approx 29.4 \quad 13.3 \sqrt{3} \approx 5.2$ 15. $\triangle W X Y \sim \triangle X Z Y \sim$ $\triangle W Z X$ 17. $\triangle H G F \sim \triangle H I G \sim \triangle G I F$
(19)

$$
17=\sqrt{6 \cdot(y-6)}
$$

$$
289=6 \cdot(y-6) \quad \text { Square each side. }
$$

$$
\frac{289}{6}=y-6 \quad \text { Divide each side by } 6
$$

$$
54 \frac{1}{6}=y \quad \text { Add } 6 \text { to each side. }
$$

$$
54.2 \approx y \quad \text { Write as a decimal }
$$

$$
\begin{array}{rlrl}
x & =\sqrt{6 \cdot y} & & \text { Geometric Mean (Leg) Theorem } \\
& =\sqrt{6 \cdot 54 \frac{1}{6}} & & y=54 \frac{1}{6} \\
& =\sqrt{325} & & \text { Multiply. } \\
& =5 \sqrt{13} & & \text { Simplify. } \\
& \approx 18.0 & & \text { Use a calculator. } \\
z & =\sqrt{(y-6) \cdot y} & \quad \text { Geometric Mean (Leg) Theorem } \\
& =\sqrt{\left(54 \frac{1}{6}-6\right) \cdot 54 \frac{1}{6}} & y=54 \frac{1}{6} \\
& =\sqrt{48 \frac{1}{6} \cdot 54 \frac{1}{6}} & & \text { Subtract. } \\
& \approx 51.1 & & \text { Use a calculator. }
\end{array}
$$

$\begin{array}{ll}\text { 21. } x \approx 4.7 ; y \approx 1.8 ; z \approx 13.1 & \text { 23. } x=24 \sqrt{2} \approx 33.9 \text {; }\end{array}$
$y=8 \sqrt{2} \approx 11.3 ; z=32 \quad$ 25.161.8 ft 27. $\frac{\sqrt{30}}{7}$ or 0.8
29. $x=\frac{3 \sqrt{3}}{2} \approx 2.6 ; y=\frac{3}{2} ; z=3 \quad 31.11 \quad 33.3 .5 \mathrm{ft}$
$35.5 \quad 37.4$
39. Given: $\angle P Q R$ is a right angle.
$\overline{Q S}$ is an altitude of $\triangle P Q R$.
Prove: $\triangle P S Q \sim \triangle P Q R$
$\triangle P Q R \sim \triangle Q S R$
$\triangle P S Q \sim \triangle Q S R$

Proof:

Statements (Reasons)

1. $\angle P Q R$ is a right angle. $\overline{Q S}$ is an altitude of $\triangle P Q R$. (Given)
2. $\overline{Q S} \perp \overline{R P}$ (Definition of altitude)
3. $\angle 1$ and $\angle 2$ are right angles. (Definition of perpendicular lines)
4. $\angle 1 \cong \angle P Q R, \angle 2 \cong \angle P Q R$ (All right $\stackrel{\leftrightarrow}{ }$ are \cong.)
5. $\angle P \cong \angle P, \angle R \cong \angle R$ (Congruence of angles is reflexive.)
6. $\triangle P S Q \sim \triangle P Q R, \triangle P Q R \sim \triangle Q S R$
(AA Similarity Statements 4 and 5)
7. $\triangle P S Q \sim \triangle Q S R$ (Similarity of triangles is transitive.)
8. Given: $\angle A D C$ is a right angle.
$\overline{D B}$ is an altitude of $\triangle A D C$.
Prove: $\frac{A B}{A D}=\frac{A D}{A C}$

Proof:

Statements (Reasons)

1. $\angle A D C$ is a right angle. $\overline{D B}$ is an altitude of $\triangle A D C$. (Given)
2. $\triangle A D C$ is a right triangle. (Definition of right triangle)
3. $\triangle A B D \sim \triangle A D C, \triangle D B C \sim \triangle A D C$ (If the altitude is drawn from the vertex of the rt. \angle to the hypotenuse of a rt. Δ, then the 2Δ s formed are similar to the given Δ and to each other.)
4. $\frac{A B}{A D}=\frac{A D}{A C}, \frac{B C}{D C}=\frac{D C}{A C}$ (Def. of similar triangles)
(43) $x=\sqrt{a b} \quad$ Definition of geometric mean

$$
=\sqrt{7 \cdot 12} \quad a=7 \text { and } b=12
$$

$$
\begin{array}{ll}
=\sqrt{84} & \text { Multiply. } \\
\approx 9 & \text { Simplify. }
\end{array}
$$

The average rate of return is about 9%.
(45) Sample answer: The geometric mean of two consecutive integers is $\sqrt{x(x+1)}$ and the average of two consecutive integers is $\frac{x+(x+1)}{2}$.
$\sqrt{x(x+1)} \stackrel{?}{=} \frac{x+(x+1)}{2}$

$$
\begin{aligned}
\sqrt{x^{2}+x} & \stackrel{?}{=} \frac{2 x+1}{2} \\
\sqrt{x^{2}+x} & \stackrel{?}{=} x+\frac{1}{2} \\
x^{2}+x & \stackrel{?}{=}\left(x+\frac{1}{2}\right)^{2} \\
x^{2}+x & \stackrel{?}{=} x^{2}+x+\frac{1}{4} \\
0 & \neq \frac{1}{4}
\end{aligned}
$$

If you set the two expressions equal to each other, the equation has no solution. So, the statement is never true.
47. Sometimes; sample answer: When the product of the two integers is a perfect square, the geometric mean will be a positive integer. 49. Neither; sample answer: On the similar triangles created by the altitude, the leg that is x units long on the smaller triangle corresponds with the leg that is 8 units long on the larger triangle, so the correct proportion is $\frac{4}{x}=\frac{x}{8}$ and x is about 5.7. 51. Sample answer: 9 and 4,8 and 8 ; In order for two whole numbers to result in a whole-number geometric mean, their product must be a perfect square. 53. Sample answer: Both the arithmetic and the geometric mean calculate a value between two given numbers. The arithmetic mean of two numbers a and b is $\frac{a+b}{2}$, and the geometric mean of two numbers a and b is $\sqrt{a b}$. The two means will be equal when $a=b$.
Justification:

$$
\begin{aligned}
\frac{a+b}{2} & =\sqrt{a b} \\
\left(\frac{a+b}{2}\right)^{2} & =a b \\
\frac{(a+b)^{2}}{4} & =a b \\
(a+b)^{2} & =4 a b \\
a^{2}+2 a b+b^{2} & =4 a b \\
a^{2}-2 a b+b^{2} & =0 \\
(a-b)^{2} & =0 \\
a-b & =0 \\
a & =b
\end{aligned}
$$

55. 10 57. C
56. $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=3$, so $\triangle A B C \sim \triangle D E F$ by SSS Similarity.
57. $\angle M \cong \angle Q$ and $\frac{P M}{S Q}=$
$\frac{M N}{Q R}=\frac{1}{2}$, so $\triangle M N P \sim$
$\triangle Q R S$ by SAS Similarity.

58. octagon 65. $x=34, y= \pm 5 \quad$ 67. hexagonal pyramid; base: $A B C D E F$, faces: $A B C D E F, A G F, F G E$, $E G D, D G C, C G B, B G A$; edges: $\overline{A F}, \overline{F E}, \overline{E D}, \overline{D C}, \overline{C B}$, $\overline{B A}, \overline{A G}, \overline{F G}, \overline{E G}, \overline{D G}, \overline{C G}$, and $\overline{B G}$; vertices: A, B, C, D, E, F, and G 69. cone; base: circle Q; vertex: P
59. $\frac{16 \sqrt{3}}{3}$
60. $\frac{3 \sqrt{55}}{11}$

Lesson 8-2

1. 12
(3) The side opposite the right angle is the hypotenuse, so $c=16$.
$a^{2}+b^{2}=c^{2}$
$4^{2}+x^{2}=16^{2}$
$16+x^{2}=256$ $x^{2}=240 \quad$ Subtract 16 from each side.
$x=\sqrt{240}$ Take the positive square root of each side.
$x=4 \sqrt{15} \quad$ Simplify.
$x \approx 15.5$ Use a calculator.
2. D 7. yes; obtuse
3. 20 11. $\sqrt{21} \approx 4.6$
$26^{2} \stackrel{?}{=} 16^{2}+18^{2}$
$676>256+324$
4. $\frac{\sqrt{10}}{5} \approx 0.6$
(15) 16 and 30 are both multiples of $2: 16=2 \cdot 8$ and $30=2 \cdot 15$. Since $8,15,17$ is a Pythagorean triple, the missing hypotenuse is $2 \cdot 17$ or 34 .
5. 70 19. about 3 ft
6. yes; obtuse
7. yes; right
$21^{2} \stackrel{?}{=} 7^{2}+15^{2}$
$20.5^{2} \stackrel{?}{=} 4.5^{2}+20^{2}$
$420.25=20.25+400$
$27.15 \quad 29.4 \sqrt{6} \approx 9.8$
8. yes; acute

$$
7.6^{2} \stackrel{?}{=} 4.2^{2}+6.4^{2}
$$

$57.76<17.64+40.96$
31. acute; $X Y=\sqrt{29}, Y Z=\sqrt{20}, X Z=\sqrt{13} ;(\sqrt{29})^{2}<$ $(\sqrt{20})^{2}+(\sqrt{13})^{2}$ 33. right; $X Y=6, Y Z=10, X Z=8$; $6^{2}+8^{2}=10^{2}$
35. Given: $\triangle A B C$ with sides of measure a, b, and c, where $c^{2}=a^{2}+b^{2}$

Prove: $\triangle A B C$ is a right triangle.

Proof:

Draw $\overline{D E}$ on line ℓ with measure equal to a. At D, draw line $m \perp \overline{D E}$. Locate point F on m so that $D F=b$. Draw $\overline{F E}$ and call its measure x. Because $\triangle F E D$ is a right triangle, $a^{2}+b^{2}=x^{2}$. But $a^{2}+$
$b^{2}=c^{2}$, so $x^{2}=c^{2}$ or $x=c$. Thus, $\triangle A B C \cong \triangle F E D$ by SSS. This means $\angle C \cong \angle D$. Therefore, $\angle C$ must be a right angle, making $\triangle A B C$ a right triangle.
37. Given: In $\triangle A B C$, $c^{2}>a^{2}+b^{2}$ where c is the length of the longest side.

Prove: $\triangle A B C$ is an obtuse triangle.
Proof:

Statements (Reasons)

1. In $\triangle A B C, c^{2}>a^{2}+b^{2}$ where c is the length of the longest side. In $\triangle P Q R, \angle R$ is a right angle. (Given)
2. $a^{2}+b^{2}=x^{2}$ (Pythagorean Theorem)
3. $c^{2}>x^{2}$ (Substitution Property)
4. $c>x$ (A property of square roots)
5. $m \angle R=90$ (Definition of a right angle)
6. $m \angle C>m \angle R$ (Converse of the Hinge Theorem)
7. $m \angle C>90$ (Substitution Property of Equality)
8. $\angle C$ is an obtuse angle. (Definition of an obtuse angle)
9. $\triangle A B C$ is an obtuse triangle. (Definition of an obtuse triangle)
10. $P=36$ units; $A=60$ square units ${ }^{2} \quad 41.15$
(43) Scale Width to Length

$$
\begin{aligned}
\frac{16}{9} & =\frac{41 \text { in. }}{x \text { in. }} & & \text { Write a proportion. } \\
16 \cdot x & =9 \cdot 41 & & \text { Cross Product Property } \\
16 x & =369 & & \text { Simplify. } \\
x & =\frac{369}{16} & & \text { Divide each side by } 16 .
\end{aligned}
$$

The length of the television is about 23 inches.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \quad \text { Pythagorean Theorem } \\
\left(\frac{369}{16}\right)^{2}+41^{2} & =c^{2} \quad a=\frac{369}{16} \text { and } b=41 \\
\sqrt{\left(\frac{369}{16}\right)^{2}+41^{2}} & =c \quad \text { Take the positive square root of each side. } \\
47.0 & \approx c \quad \text { Use a calculator. }
\end{aligned}
$$

The screen size is about 47 inches.
(45) The side opposite the right angle is the hypotenuse, so $c=x$.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} & & \text { Pythagorean Theorem } \\
8^{2}+(x-4)^{2} & =x^{2} & & a=8 \text { and } b=x-4 \\
64+x^{2}-8 x+16 & =x^{2} & & \text { Find } 8^{2} \text { and }(x-4)^{2} \\
-8 x+80 & =0 & & \text { Simplify. } \\
80 & =8 x & & \text { Add } 8 x \text { to each side. } \\
10 & =x & & \text { Divide each side by } 8 .
\end{aligned}
$$

47. $\frac{1}{2} \quad$ 49. $5.4 \quad$ 51. Right; sample answer: If you double or halve the side lengths, all three sides of the new triangles are proportional to the sides of the original triangle. Using the Side-Side-Side Similarity Theorem, you know that both of the new triangles are similar to the original triangle, so they are both right.

48. D
49. 250 units
57.6
50. $6 \sqrt{5} \approx 13.4$
51. 1 in. $=2 \mathrm{ft} ; 6$ in. $\times 4$ in. 63. yes; $A A$
52. Given: $\overline{F G} \perp \ell ; \overline{F H}$ is any nonperpendicular segment from F to ℓ.

Prove: $F H>F G$

Proof:

Statements (Reasons)

1. $\overline{F G} \perp \ell$ (Given)
2. $\angle 1$ and $\angle 2$ are right angles. (\perp lines form right angles.)
3. $\angle 1 \cong \angle 2$ (All right angles are congruent.)
4. $m \angle 1=m \angle 2$ (Definition of congruent angles)
5. $m \angle 1>m \angle 3$ (Exterior Angle Inequality Thm.)
6. $m \angle 2>m \angle 3$ (Substitution Property.)
7. $F H>F G$ (If an \angle of a \triangle is $>$ a second \angle, then the side opposite the greater \angle is longer than the side opposite the lesser \angle.)
67.50
69.40
8. $\frac{7 \sqrt{5}}{5}$
9. $2 \sqrt{3}$
10. 2

Lesson 8-3

1. $5 \sqrt{2}$
2. 22
3. $x=14 ; y=7 \sqrt{3}$
4. Yes; sample answer: The height of the triangle is about $3 \frac{1}{2} \mathrm{in}$., so since the height of the plaque is less than the diameter of the opening, it will fit. 9. $\frac{15 \sqrt{2}}{2}$ or $7.5 \sqrt{2}$
(11) In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse is $\sqrt{2}$ times the length of a leg.
$h=x \sqrt{2}$
Theorem 8.8
$=18 \sqrt{3} \cdot \sqrt{2}$
Substitution
$=18 \sqrt{6}$
$\sqrt{3} \cdot \sqrt{2}=\sqrt{6}$
$\begin{array}{llll}\text { 13. } 20 \sqrt{2} & \text { 15. } \frac{11 \sqrt{2}}{2} & 17.8 \sqrt{2} \text { or } 11.3 \mathrm{~cm} & \text { 19. } x=10 ;\end{array}$ $\begin{array}{lll}y=20 & \text { 21. } x=\frac{17 \sqrt{3}}{2} ; y=\frac{17}{2} \quad \text { 23. } x=\frac{14 \sqrt{3}}{3} \text {; } ; \text {; } ; \text {, } \quad \text {. }\end{array}$
$y=\frac{28 \sqrt{3}}{3}$
5. $16 \sqrt{3}$ or 27.7 ft
27.22 .6 ft
(29) In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse is 2 times the length of a leg.

$$
\begin{aligned}
h & =x \sqrt{2} & & \text { Theorem } 8.8 \\
6 & =x \sqrt{2} & & \text { Substitution } \\
\frac{6}{\sqrt{2}} & =x & & \text { Divide each side by } \sqrt{2} . \\
\frac{6}{\sqrt{2} \cdot \frac{\sqrt{2}}{\sqrt{2}}} & =x & & \text { Rationalize the denominator. } \\
\frac{6 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} & =x & & \text { Multiply. } \\
\frac{6 \sqrt{2}}{2} & =x & & \sqrt{2} \cdot \sqrt{2}=2 \\
3 \sqrt{2} & =x & & \text { Simplify. } \\
h & =x \sqrt{2} & & \text { Theorem } 8.8 \\
y & =6 \sqrt{2} & & \text { Substitution }
\end{aligned}
$$

31. $x=5 ; y=10$
32. $x=45 ; y=12 \sqrt{2}$
(35) In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the length of the hypotenuse is 2 times the length of the shorter leg.
$h=2 s$
Theorem 8.9
$=2(25)$ or 50 Substitution
The zip line's length is 50 feet.
33. $x=9 \sqrt{2} ; y=6 \sqrt{3} ; z=12 \sqrt{3}$
34. $7.5 \mathrm{ft} ; 10.6 \mathrm{ft} ; 13.0 \mathrm{ft}$
35. $(6,9)$
36. $(4,-2)$
(45) a.

b. Measure the sides of the triangles to the nearest tenth of a centimeter. Find the ratios to the nearest tenth of a centimeter. Sample answer:

Triangle	Length				Ratio	
$A B C$	$A C$	2.4 cm	$B C$	3.2 cm	$\frac{B C}{A C}$	1.3
$M N P$	$M P$	1.7 cm	$N P$	2.2 cm	$\frac{N P}{M P}$	1.3
$X Y Z$	$X Z$	3.0 cm	$Y Z$	3.9 cm	$\frac{Y Z}{X Z}$	1.3

c. Sample answer: In a right triangle with a 50° angle, the ratio of the leg opposite the 50° angle to the hypotenuse will always be the same, 1.3.
47. Sample answer: Let ℓ represent the length. $\ell^{2}+w^{2}=$ $(2 w)^{2} ; \ell^{2}=3 w^{2}$; $\ell=w \sqrt{3}$.

49.37.9 51. B
53. $(-13,-3)$
$55.15 \mathrm{ft} \quad 57 . x \approx 16.9$, $y \approx 22.6, z \approx 25.0$ 59. 36, 90, 54 61.45, 63, 72
63. $\angle 1, \angle 4, \angle 11$
65. $\angle 2, \angle 6, \angle 9, \angle 8, \angle 7$
67. 12.0

Lesson 8-4

1. $\frac{16}{20}=0.80$
2. $\frac{12}{20}=0.60$
3. $\frac{16}{20}=0.80$
4. $\frac{\sqrt{3}}{2} \approx 0.87$
5. 27.44 11. about 1.2 ft
6. 44.4
7. $R S \approx 6.7$;
$m \angle R \approx 42 ; m \angle T \approx 48$
(17) $\sin J=\frac{\text { opp }}{\text { hyp }}$
$\cos J=\frac{\text { adj }}{\text { hyp }}$

$$
=\frac{56}{65}
$$

$=\frac{33}{65}$
≈ 0.86

$$
\approx 0.51
$$

$\tan J=\frac{\text { opp }}{\text { adj }}$
$\sin L=\frac{\text { opp }}{\text { hyp }}$

$$
=\frac{56}{33}
$$

$$
=\frac{33}{65}
$$

$$
\approx 1.70
$$

$$
\approx 0.51
$$

$\cos L=\frac{\text { adj }}{\text { hyp }}$
$\tan L=\frac{\text { opp }}{\text { adj }}$
$=\frac{56}{65}$
$=\frac{33}{56}$
≈ 0.86
≈ 0.59
19. $\frac{84}{85}=0.99 ; \frac{13}{85}=0.15 ; \frac{84}{13}=6.46 ; \frac{13}{85}=0.15 ; \frac{84}{85}=$ $0.99 ; \frac{13}{84}=0.15 \quad$ 21. $\frac{\sqrt{3}}{2}=0.87 ; \frac{2 \sqrt{2}}{4 \sqrt{2}}=0.50 ; \frac{2 \sqrt{6}}{2 \sqrt{2}}=$ $\sqrt{3}=1.73 ; \frac{2 \sqrt{2}}{4 \sqrt{2}}=0.50 ; \frac{\sqrt{3}}{2}=0.87 ; \frac{\sqrt{3}}{3}=0.58$
23. $\frac{\sqrt{3}}{2} \approx 0.87 \quad$ 25. $\frac{1}{2}$ or $0.5 \quad$ 27. $\frac{1}{2}$ or 0.5
29. 28.7
$31.57 .2 \quad 33.17 .4$
(35) Let $m \angle A=55$ and let x be the height of the roller coaster.

$$
\begin{aligned}
\sin A & =\frac{\text { opp }}{\text { hyp }} & & \text { Definition of sine ratio } \\
\sin 55 & =\frac{x}{98} & & \text { Substitution } \\
98 \cdot \sin 55 & =x & & \text { Multiply each side by } 98 . \\
80 & \approx x & & \text { Use a calculator. }
\end{aligned}
$$

The height of the roller coaster is about 80 feet.
37. 61.4
39. 28.5
41.21 .8
43. $W X=15.1$;
$X Z=9.8 ; m \angle W=33$
45. $S T=30.6 ; m \angle R=58$;
$m \angle T=32$
(47) $J L=\sqrt{[-2-(-2)]^{2}+[4-(-3)]^{2}}=7$
$K J=\sqrt{[-2-(-7)]^{2}+[-3-(-3)]^{2}}=5$
$\tan K=\frac{\text { opp }}{\text { adj }}$
Definition of tangent ratio
$=\frac{7}{5}$
$m \angle K=\tan ^{-1}\left(\frac{7}{5}\right) \approx 54.5$
Substitution
49. 51.3
51. 13.83 in.; 7.50 in 2
$53.8 .74 \mathrm{ft} ; 3.41 \mathrm{ft}^{2}$
55. 0.92
(57) The triangle is isosceles, so two sides measure 32 and the two smaller triangles each have a side that measures x. Let $m \angle A=54$.

$$
\begin{aligned}
\cos A & =\frac{\mathrm{adj}}{\mathrm{hyp}} & & \text { Definition of cosine ratio } \\
\cos 54 & =\frac{x}{32} & & \text { Substitution } \\
32 \cdot \cos 54 & =x & & \text { Multiply each side by } 32 . \\
18.8 & \approx x & & \text { Simplify. } \\
\sin A & =\frac{\mathrm{opp}}{\text { hyp }} & & \text { Definition of sine ratio } \\
\sin 54 & =\frac{y}{32} & & \text { Substitution } \\
32 \cdot \sin 54 & =y & & \text { Multiply each side by } 32 . \\
25.9 & \approx y & & \text { Simplify. }
\end{aligned}
$$

59. $x=9.2 ; y=11.7$

61a. A

61b. Sample answer:

Triangle	Trigonometric Ratios				Sum of Ratios Squared	
	$\cos A$	0.677	$\sin A$	0.742	$(\cos A)^{2}+$ $(\sin A)^{2}$	1
	$\cos C$	0.742	$\sin C$	0.677	$(\cos C)^{2}+$ $(\sin C)^{2}$	1
$M N P$	$\cos M$	0.406	$\sin M$	0.906	$(\cos M)^{2}+$ $(\sin M)^{2}$	1
	$\cos P$	0.906	$\sin P$	0.406	$(\cos P)^{2}+$ $(\sin P)^{2}$	1
	$\cos X$	0.667	$\sin X$	0.75	$(\cos X)^{2}+$ $(\sin X)^{2}$	1
	$\cos Z$	0.75	$\sin Z$	0.667	$(\cos Z)^{2}+$ $(\sin Z)^{2}$	1

61c. Sample answer: The sum of the cosine squared and the sine squared of an acute angle of a right triangle is 1. 61d. $(\sin X)^{2}+(\cos X)^{2}=1$
61e. Sample answer:
$(\sin A)^{2}+(\cos A)^{2} \xlongequal{2} 1 \quad$ Conjecture

$$
\begin{array}{rll}
\left(\frac{y}{r}\right)^{2}+\left(\frac{x}{r}\right)^{2} \stackrel{2}{=} 1 & \text { sin } A=\frac{y}{r}, \cos A=\frac{x}{r} \\
\frac{y^{2}}{r^{2}}+\frac{x^{2}}{r^{2}} \stackrel{\imath}{=} 1 & \text { Simplify. } \\
\frac{y^{2}+x^{2}}{r^{2}} \stackrel{\imath}{=} 1 & \text { Combine fractions with like } \\
\frac{r^{2}}{r^{2}} \stackrel{\imath}{=} 1 & \text { denominathaors. } \\
1=1 & \text { Simplify. }
\end{array}
$$

63. Sample answer: Yes; since the values of sine and cosine are both calculated by dividing one of the legs of a right triangle by the hypotenuse, and the hypotenuse is always the longest side of a right triangle, the values will always be less than 1 . You will always be dividing the smaller number by the larger number. 65. Sample answer: To find the measure of an acute angle of a right triangle, you can find the ratio of the leg opposite the angle to the hypotenuse and use a calculator to find the inverse sine of the ratio, you can find the ratio of the leg adjacent to the angle to the hypotenuse and use a calculator to find the inverse cosine of the ratio, or you can find the ratio of the leg opposite the angle to the leg adjacent to the angle and use a calculator to find the inverse tangent of the ratio. 67. H 69.E 71. $x=7 \sqrt{2} ; y=14$
64. yes; right
$17^{2} \stackrel{?}{=} 8^{2}+15^{2}$
65. yes; obtuse
$289=64+225$
$35^{2} \stackrel{?}{=} 30^{2}+13^{2}$
$1225>900+169$
66. no; $8.6>3.2+5.3 \quad 79.5 \frac{7}{15} \mathrm{~h}$ or 5 h 28 min 81. $x=1, y=\frac{3}{2} \quad 83.260$
85.18.9
87.157.1

Lesson 8-5

1. $27.5 \mathrm{ft} \quad 3.14 .2 \mathrm{ft}$

$$
\begin{aligned}
\tan A & =\frac{B C}{A C} & & \tan =\frac{\text { opposite }}{\text { adjacent }} \\
\tan x^{\circ} & =\frac{348.5}{155} & & m \angle A=x, B C=350-1.5 \text { or } \\
x & =\tan ^{-1}\left(\frac{348.5}{155}\right) & & \text { Solve for } x . \\
x & \approx 66.0 & & \text { Use a calculator. }
\end{aligned}
$$

The angle of elevation is about 66°.
7. 14.8°
(9) Make a sketch.

$$
\tan 30=\frac{x}{5}+D C \quad \tan =\frac{\text { opposite }}{\text { adjacent }}
$$

$(5+D C) \tan 30=x \quad$ Solve for x.

$$
\begin{aligned}
& \tan 40=\frac{x}{D C} \quad \tan =\frac{\text { opposite }}{\text { adjacent }} \\
& D C \tan 40=x \quad \text { Solve for } x . \\
& D C \tan 40=(5+D C) \tan 30 \\
& \text { Substitution } \\
& D C \tan 40=5 \tan 30+D C \tan 30 \\
& \text { Distributive } \\
& \text { Property } \\
& D C \tan 40-D C \tan 30=5 \tan 30 \quad \text { Subtract } D C \tan 30 \\
& \text { from each side. } \\
& D C(\tan 40-\tan 30)=5 \tan 30 \quad \text { Factor } D C . \\
& D C=\frac{5 \tan 30}{\tan 40-\tan 30} \\
& \text { Divide each side by } \\
& \tan 40-\tan 30 \text {. } \\
& \begin{array}{lll}
& D C \approx 11.0 & \text { Use a calculator. } \\
\tan A=\frac{B C}{A C} & \tan =\frac{\text { opposite }}{\text { adjacent }} \\
\tan 30 & =\frac{x}{16.0} & A=30, B C=x, A C=5+11.0 \text { or } \\
& 16.0
\end{array}
\end{aligned}
$$

$16.0 \tan 30=x \quad$ Multiply each side by 16.0.

$$
9.3 \approx x \quad \text { Use a calculator. }
$$

The platform is about 9.3 feet high.
11. about 1309 ft
13. 16.6°
15. 240.2 ft
(17) Make a sketch.

$$
\begin{aligned}
\tan A & =\frac{B C}{A C} & & \tan =\frac{\text { opposite }}{\text { adjacent }} \\
\tan 38^{\circ} & =\frac{121}{x} & & m \angle A=38, B C=124-3 \text { or } 121, \\
x & =\frac{121}{\tan 38^{\circ}} & & \text { Solve for } x . \\
x & \approx 154.9 & & \text { Use a calculator. }
\end{aligned}
$$

You should place the tripod about 154.9 feet from the monument.
19a. $74.8^{\circ} \quad$ 19b. 110.1 m
(21) Make two sketches.

$\tan x^{\circ}=\frac{0.3}{8.5}$
$\tan =\frac{o p p}{a d j}$
$x=\tan ^{-1}\left(\frac{0.3}{8.5}\right)$
Solve for x.
$x \approx 2.02$
Use a calculator.

José throws at an angle of depression of 2.02°.

$$
\begin{aligned}
\tan x^{\circ} & =\frac{0.7}{8.5} & & \tan =\frac{\mathrm{opp}}{\mathrm{adj}} \\
x & =\tan ^{-1}\left(\frac{0.7}{8.5}\right) & & \text { Solve for } x . \\
x & \approx 4.71 & & \text { Use a calculator. }
\end{aligned}
$$

Kelsey throws at an angle of elevation of 4.71°.
23. Rodrigo; sample answer: Since your horizontal line of sight is parallel to the other person's horizontal line of sight, the angles of elevation and depression are congruent according to the Alternate Interior Angles Theorem. 25. True; sample answer: As a person moves closer to an object, the horizontal distance decreases, but the height of the object is constant. The tangent ratio will increase, and therefore the measure of the angle also increases. 27. Sample answer: If you sight something with a 45° angle of elevation, you don't have to use trigonometry to determine the height of the object. Since the legs of a $45^{\circ}-45^{\circ}-90^{\circ}$ are congruent, the height of the object will be the same as your horizontal distance from the object. $\quad 29.6500 \mathrm{ft} 31 . \mathrm{B}$
33. $\frac{20}{15}=1.33$
35. $\frac{15}{20}=0.75$
37. $\frac{20}{25}=0.80$
39. Given: $\overline{C D}$ bisects $\angle A C B$.

By construction, $\overline{A E} \| \overline{C D}$.
Prove: $\frac{A D}{D B}=\frac{A C}{B C}$

Statements (Reasons)

1. $\overline{C D}$ bisects $\angle A C B$. By construction, $\overline{A E} \| \overline{C D}$. (Given)
2. $\frac{A D}{D B}=\frac{E C}{B C}$ (Triangle Proportionality Theorem)
3. $\angle 1 \cong \angle 2$ (Definition of Angle Bisector)
4. $\angle 3 \cong \angle 1$ (Alternate Interior Angle Theorem)
5. $\angle 2 \cong \angle E$ (Corresponding Angle Postulate)
6. $\angle 3 \cong \angle E$ (Transitive Prop.)
7. $\overline{E C} \cong \overline{A C}$ (Isosceles \triangle Thm.)
8. $E C=A C$ (Def. of congruent segments)
9. $\frac{A D}{D B}=\frac{A C}{B C}$ (Substitution)
10. $(7,4)$
11. $(-5,6)$
12. 2 47. 2.1

Lesson 8-6

1. 6.1
(3) By the Triangle Angle Sum Theorem, the remaining angle measures $180-(60+55)$ or 65 .

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} & & \text { Law of Sines } \\
\frac{\sin 65^{\circ}}{73} & =\frac{\sin 60^{\circ}}{x} & & m \angle A=65, a=73, \\
x \sin 65^{\circ} & =73 \sin 60^{\circ} & & \text { Cross Products Property } \\
x & =\frac{73 \sin 60^{\circ}}{\sin 65^{\circ}} & & \text { Divide each side by } \sin 65^{\circ} . \\
x & \approx 69.8 & & \text { Use a calculator. }
\end{aligned}
$$

5.8.3 7. $47.1 \mathrm{ft} \quad$ 9. $m \angle N=42, M P \approx 35.8, N P \approx 24.3$
11. $m \angle D \approx 73, m \angle E \approx 62, m \angle F \approx 45 \quad 13.4 .1 \quad 15.22 .8$
17.15.1 19.2.0 21.2.8 in.
(23) $a^{2}=b^{2}+c^{2}-2 b c \cos A \quad$ Law of Cosines
$x^{2}=1.2^{2}+3.0^{2}-2(1.2)(3.0) \cos 123^{\circ}$ Substitution
$x^{2}=10.44-7.2 \cos 123^{\circ} \quad$ Simplify.
$x=\sqrt{10.44-7.2 \cos 123^{\circ}} \quad$ Take the square root of each side. Use a calculator.
25. 98 27. 112 29.126.2 ft \quad 31. $m \angle B=34, A B \approx 9.5$, $C A \approx 6.7$
(33)

$$
\begin{aligned}
& j^{2}=k^{2}+\ell^{2}-2 k \ell \cos J \quad \text { Law of Cosines } \\
& 29.7^{2}=30.0^{2}+24.6^{2}-2(30.0)(24.6) \cos J \\
& j=29.7, k=30.0 \text {, } \\
& \ell=24.6 \\
& 882.09=1505.16-1476 \cos J \quad \text { Simplify. } \\
& -623.07=-1476 \cos J \quad \text { Subtract } 1505.16 \\
& \text { from each side. } \\
& \frac{-623.07}{-1476}=\cos J \quad \text { Divide each side by } \\
& m \angle J=\cos ^{-1}\left(\frac{623.07}{1476}\right) \quad \text { Use the inverse } \\
& \text { cosine ratio. } \\
& m \angle J \approx 65 \quad \text { Use a calculator. } \\
& \frac{\sin J}{j}=\frac{\sin K}{k} \quad \text { Law of Sines } \\
& \frac{\sin 65^{\circ}}{29.7}=\frac{\sin K}{30.0} \\
& 30.0 \sin 65^{\circ}=29.7 \sin K \quad \text { Cross Products Property } \\
& \frac{30.0 \sin 65^{\circ}}{29.7}=\sin K \quad \text { Divide each side by 29.7. } \\
& m \angle K=\sin ^{-1}\left(\frac{30.0 \sin 65^{\circ}}{29.7}\right) \begin{array}{l}
\text { Use the inverse sine } \\
\text { ratio. }
\end{array} \\
& m \angle K \approx 66 \quad \text { Use a calculator. }
\end{aligned}
$$

By the Triangle Angle-Sum Theorem, $m \angle L \approx$ $180-(65+66)$ or 49.
35. $m \angle G=75, G H \approx 19.9, G J \approx 11.8$ 37. $m \angle P \approx 35$, $m \angle R \approx 75, R P \approx 14.6$ 39. $m \angle C \approx 23, m \angle D \approx 67$,
$m \angle E \approx 90$
41. $m \angle A=35, A B \approx 7.5, B C \approx 9.8$
43. $\approx 96.2 \mathrm{ft}$

45 a . Def. of sine 45 b . Mult. Prop.
45c. Subst.
45d. Div. Prop.
47. 24.3
(49)

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
x^{2} & =60^{2}+63^{2}-2(60)(63) \cos 48^{\circ} \\
x^{2} & =7569-7560 \cos 48^{\circ} \\
x & =\sqrt{7569-7560 \cos 48^{\circ}}
\end{aligned}
$$

$$
x \approx 50.1
$$

Law of Cosines Substitution Simplify.
Take the square root of each side. Use a calculator.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} & & \text { Law of Sines } \\
\frac{\sin 37^{\circ}}{50.1} & =\frac{\sin 87^{\circ}}{y} & & m \angle A=37^{\circ}, a=x=50.1, \\
y \sin 37^{\circ} & =50.1 \sin 87^{\circ} & & \text { Cross Products Property } \\
y & =\frac{50.1 \sin 87^{\circ}}{\sin 37^{\circ}}, & & \text { Divide each side by } \sin 37^{\circ} . \\
y & \approx 83.1 & & \text { Use a calculator. }
\end{aligned}
$$

By the Triangle Angle-Sum Theorem, the angle opposite side z measures $180-(37+87)$ or 56 .

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} & & \text { Law of Sines } \\
\frac{\sin 37^{\circ}}{50.1} & =\frac{\sin 56^{\circ}}{z} & & m \angle A=37^{\circ}, a=x=50.1, \\
z \sin 37^{\circ} & =50.1 \sin 56^{\circ} & & \text { Cross Products Property } \\
z & =\frac{50.1 \sin 56^{\circ}}{\sin 37^{\circ}} & & \text { Divide each side by } \sin 37^{\circ} . \\
z & \approx 69.0 & & \text { Use a calculator. }
\end{aligned}
$$

perimeter $=60+63+y+z$

$$
\approx 60+63+83.1+69.0 \text { or } 275.1
$$

(51) $a^{2}=b^{2}+c^{2}-2 b c \cos A \quad$ Law of Cosines

$$
\begin{aligned}
x^{2} & =8^{2}+6^{2}-2(8)(6) \cos 71.8^{\circ} \\
x^{2} & =100-96 \cos 71.8^{\circ} \\
x & =\sqrt{100-96 \cos 71.8^{\circ}} \\
x & \approx 8.4 \mathrm{in} .
\end{aligned}
$$

Substitution Simplify.
Take the square root of each side. Use a calculator.
53a.

53b. $h=A B \sin B \quad$ 53c. $A=\frac{1}{2}(B C)(A B \sin B)$
53d. 57.2 units $^{2} \quad$ 53e. $A=\frac{1}{2}(B C)(C A \sin C)$
55.5.6

57a. Sample

59. A 61.325.6 63.269.6 ft 65.45 67. Never;
sample answer: Since an equilateral triangle has three congruent sides and a scalene triangle has three noncongruent sides, the ratios of the three pairs of sides can never be equal. Therefore, an equilateral triangle and a scalene triangle can never be similar.
69. $Q(a, a), P(a, 0)$
71. $\sqrt{80} \approx 8.9$
73. 8.5

Lesson 8-7

3.

(5) $\overrightarrow{Y Z}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle$

$$
=\langle 5-0,5-0\rangle
$$

$$
=\langle 5,5\rangle
$$

7. $\sqrt{20} ; \approx 296.6^{\circ}$
8. $\langle-1,6\rangle$

Component form of a vector

$$
\left(x_{1}, y_{1}\right)=(0,0) \text { and }
$$

$$
\left(x_{2}, y_{2}\right)=(5,5)
$$

Simplify.
11. $\approx 354.3 \mathrm{mi} / \mathrm{h}$ at angle of 8.9° east of north
13.

1 in. : 5 m
15.

17.

23. $\langle 5,0\rangle$
25. $\langle-6,-3\rangle$
27. $\langle-3,-6\rangle$
29. $\sqrt{34} ; \approx 31.0^{\circ} \quad 31 . \sqrt{50} ; \approx 171.9^{\circ}$
(33) Use the distance formula to find the magnitude.
$|\vec{r}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad$ Distance Formula

$$
\begin{array}{ll}
=\sqrt{(-3-0)^{2}+(-6-0)^{2}} & \left(x_{1}, y_{1}\right)=(0,0) \text { and } \\
& \left(x_{2}, y_{2}\right)=(-3,-6) \\
=\sqrt{45} \text { or about } 6.7 & \text { Simplify. }
\end{array}
$$

Use the inverse tangent function to find θ.
$\tan \theta=\frac{6}{3}$
$\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}$

$$
\theta=\tan ^{-1} \frac{6}{3} \approx 63.4^{\circ} \quad \text { Def. of inverse tangent }
$$

The direction of \vec{r} is about $180^{\circ}+63.4^{\circ}$ or 243.4°.
35. $\langle 5,3\rangle$

39. $\langle 9,3\rangle$

37. $\langle-1,5\rangle$

41a.

41b. In component form, the vectors representing Amy's hikes due east and due south are $\langle 2,0\rangle$ and $\langle 0,-3\rangle$, respectively. So, the resultant vector is $\langle 2,0\rangle$ $+\langle 0,-3\rangle$ or $\langle 2,-3\rangle$. The resultant distance is about 3.6 mi . The direction of \vec{r} is about $90^{\circ}-56.3^{\circ}$ or 33.7° east of south.
43. $\langle 4,-4\rangle \quad$ 45. $\langle 26,5\rangle \quad$ 47.2.3 ft/s \quad 49. Sometimes; sample answer: Parallel vectors can either have the same or opposite direction.
51. $k(\vec{a}+\vec{b})=k\left(\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle\right)$

$$
\begin{aligned}
& =k\left\langle x_{1}+x_{2}, y_{1}+y_{2}\right\rangle \\
& =\left\langle k\left(x_{1}+x_{2}\right), k\left(y_{1}+y_{2}\right)\right\rangle \\
& =\left\langle k x_{1}+k x_{2}, k y_{1}+k y_{2}\right\rangle \\
& =\left\langle k x_{1}, k y_{1}\right\rangle+\left\langle k x_{2}, k y_{2}\right\rangle \\
& =k\left\langle x_{1}, y_{1}\right\rangle+k\left\langle x_{2}, y_{2}\right\rangle \\
& =k \vec{a}+k \vec{b}
\end{aligned}
$$

53. The initial point of the resultant starts at the initial point of the first vector in both methods. However, in the parallelogram method, both vectors start at the same initial point, whereas, in the triangle method, the resultant connects the initial point of the first vector and the terminal point of the second. The resultant is the diagonal of the parallelogram formed using the parallelogram method. 55. B 57. D 59. $72.0 \quad 61.376 .4 \mathrm{ft} \quad 63.30 \quad 65.30$
67.60
54. $\Delta \mathrm{s} 1-4$,
$\Delta \mathrm{s}$ 5-12, $\Delta \mathrm{s}$ 13-20
Chapter 8 Study Guide and Review
55. false, geometric 3 .false, sum $\quad 5$. true \quad 7. true
56. false, Law of Cosines
11.6
57. $\frac{8}{3}$
58. 50 ft
59. $9 \sqrt{3} \approx 15.6$
60. yes; acute

$$
\begin{aligned}
& 16^{2} \stackrel{?}{=} 13^{2}+15^{2} \\
& 256<169+225
\end{aligned}
$$

21. 18.4 m
22. $x=4 \sqrt{2}, y=45^{\circ}$
23. $\frac{5}{13}, 0.38$
24. $\frac{12}{13}, 0.92$
25. $\frac{5}{12}, 0.42$
26. 32.2
27. 63.4° and 26.6°
28. 86.6 feet
29. 15.2 39. $\langle-6,-5\rangle$
30. $\langle-8,1\rangle$

CHAPTER 9
 Iransformations and Symmetry

Chapter 9 Get Ready

1. rotation 3. translation $5 .\langle-16,-28\rangle$
2. reduction; $\frac{1}{2}$

Lesson 9-1
1.

3.

5.

7.

9.

11.

(13) Draw a line through each vertex that is perpendicular to line t. Measure the distance from point A to line t. Then locate A^{\prime} the same distance from line t on the opposite side. Repeat to locate points B^{\prime}, C^{\prime}, and D^{\prime}. Then connect vertices $A^{\prime}, B^{\prime}, C^{\prime}$ and D^{\prime} to form the reflected image.

15.

21.

19.
23.

(25) Multiply the x-coordinate of each vertex by -1 .
(x, y)
$\rightarrow \quad(-x, y)$
$J(-4,6) \quad \rightarrow \quad J^{\prime}(4,6)$
$K(0,6) \quad \rightarrow \quad K^{\prime}(0,6)$
$L(0,2) \quad \rightarrow \quad L^{\prime}(0,2)$
$M(-4,2) \quad \rightarrow \quad M^{\prime}(4,2)$
Graph $J K L M$ and its image $J^{\prime} K^{\prime} L^{\prime} M^{\prime}$

27.

29.

31.

33.

a. The reflections of the zebras are shown in the water. So, the water separates the zebras and their reflections. b. The water is a flat surface that extends in all directions. It represents a finite plane.
37.

39.

(41) In the reflection, the x-coordinates stay the same, but the y-coordinates are opposites. The equation of the reflected image is $-y=\frac{1}{2} x^{2}$ or $y=-\frac{1}{2} x^{2}$.

43.

45. Jamil; sample answer: When you reflect a point across the x-axis, the reflected point is in the same place horizontally, but not vertically. When $(2,3)$ is reflected across the x-axis, the coordinates of the reflected point are $(2,-3)$ since it is in the same location horizontally, but the other side of the x-axis vertically. 47. (a, b) 49. The slope of the line connecting the two points is $\frac{3}{5}$. The Midpoint Formula can be used to find the midpoint between the two points, which is $\left(\frac{3}{2}, \frac{3}{2}\right)$. Using the point-slope form, the equation of the line is $y=$ $-\frac{5}{3} x+4$. (The slope of the bisector is $-\frac{5}{3}$ because it is the negative reciprocal of the slope $\frac{3}{5}$.) $\quad 51$. Construct
P, Q, R collinear with Q between P and R. Draw line ℓ, then construct perpendicular lines from P, Q, and R to line ℓ. Show equidistance or similarity of slope.
53. B 55. E 57. $\langle 3,2\rangle$
59. about 536 ft 61. $A B>F D$
63. $m \angle F B A>m \angle D B F$
65. $2 \sqrt{13} \approx 7.2,146.3^{\circ}$
67. $2 \sqrt{122} \approx 22.1,275.2^{\circ}$

Lesson 9-2

1.

5.

13.

(15) The vector indicates a translation 2 units left and 5 units up.

$$
\begin{array}{lll}
(x, y) & \rightarrow & (x-2, y+5) \\
M(4,-5) & \rightarrow & M^{\prime}(2,0) \\
N(5,-8) & \rightarrow & N^{\prime}(3,-3) \\
P(8,-6) & \rightarrow & P^{\prime}(6,-1)
\end{array}
$$

Graph $\triangle M N P$ and its image $\triangle M^{\prime} N^{\prime} P^{\prime}$.

17.

19.

(21) -12 represents a horizontal change of 12 yards left and 17 represents a vertical change of 17 yards up. A vector that indicates a translation 12 units left and 17 units up is $\langle-12,17\rangle$.
23. $\langle 3,-5\rangle$ 25. They move to the right 13 seats and back one row; $\langle 13,-1\rangle$.
(27) The translation vector $\langle-2,0\rangle$ represents a horizontal shift 2 units left. The equation of the reflected image is $y=-[x-(-2)]^{3}$ or $y=-(x+2)^{3}$.

29a.

29b.

29c.

Distance Between Corresponding Points (cm)		Distance Between Parallel Lines (cm)	
A and $A^{\prime \prime}, B$ and $B^{\prime \prime}, C$ and $C^{\prime \prime}$	4.4	ℓ and m	2.2
D and $D^{\prime \prime}, E$ and $E^{\prime \prime}, F$ and $F^{\prime \prime}$	5.6	n and p	2.8
J and $J^{\prime \prime}, K$ and $K^{\prime \prime}, L$ and $L^{\prime \prime}$	2.8	q and r	1.4

29d. Sample answer: The composition of two reflections in vertical lines can be described by a horizontal translation that is twice the distance between the two vertical lines. 31. $y=m(x-a)+$ $2 b ; 2 b-m a$ 33. Sample answer: Both vector notation and function notation describe the distance a figure is translated in the horizontal and vertical directions. Vector notation does not give a rule in terms of initial location, but function notation does. For example, the translation a units to the right and b units up from the point (x, y) would be written $\langle a, b\rangle$ in vector notation and $(x, y) \longrightarrow(x+a, y+b)$ in function notation.
39.

43. $\vec{c}+\vec{d}$

45.

$47.100 \quad 49.80$
51. obtuse; 110
53. obtuse; 140

Lesson 9-3

(3) Multiply the x - and y-coordinates by -1 .
$(x, y) \quad \rightarrow \quad(-x,-y)$
$D(-2,6) \quad \rightarrow \quad D^{\prime}(2,-6)$
$F(2,8) \quad \rightarrow \quad F^{\prime}(-2,-8)$
$G(2,3) \quad \rightarrow \quad G^{\prime}(-2,-3)$
Graph $\triangle D F G$ and its image $\triangle D^{\prime} F^{\prime} G^{\prime}$.

5.

9.

15.

19.

11. $120^{\circ} ; 360^{\circ} \div 6$ petals $=$ 60° per petal. Two petal turns is 2.60° or 120°. 13. $154.2^{\circ} ; 360^{\circ} \div 7$ petals $=$ 51.4° per petal. Three petal turns is $3 \cdot 51.4^{\circ}$ or 154.2°.
17.

21a. 10°
21b. about 1.7 seconds
23. 125°

25. $y=-x+2$; parallel 27. $y=-x-2$; collinear
29. x-intercept: $y=2 x+4 ; y$-intercept: $y=2 x+4$
(31) After 31 seconds, the ride will have rotated $31 \cdot 0.25$ or 7.75 times. So, she will be in the bottom position of the ride, with the car having the center at $(0,-4)$. After 31 seconds, the car will have rotated $31 \cdot 0.5$ or 15.5 times. So, she will be in the position directly across from her starting position. Her position after 31 seconds would be $(2,-4)$.
(33) a

b. Sample answer: Let the x-axis be line n and the y-axis be line p. Draw $\triangle D E F$ with vertices $D(-4,1), E(-2,3)$, and $F(0,1)$. Reflect $\triangle D E F$ in the line n to get $\triangle D^{\prime} E^{\prime} F^{\prime}$ with vertices $D^{\prime}(-4,-1)$,
$E^{\prime}(-2,-3)$, and $F^{\prime}(0,-1)$. Reflect $\triangle D^{\prime} E^{\prime} F^{\prime}$ in the line p to get $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ with vertices $D^{\prime \prime}(4,-1)$, $E^{\prime \prime}(2,-3)$, and $F^{\prime \prime}(0,-1)$.

Sample answer: Let the line $y=-x$ be line q and the line $y=0.5$ be line r. Draw $\triangle M N P$ with vertices $M(0,-4), N(1,2)$, and $P(3,-5)$. Reflect $\triangle M N P$ in the line q to get $\triangle M^{\prime} N^{\prime} P^{\prime}$ with vertices $M^{\prime}(4,0), N^{\prime}(2,-1)$, and $P^{\prime}(5,-3)$. Reflect $\triangle M^{\prime} N^{\prime} P^{\prime}$ in the line r to get $\triangle M^{\prime \prime} N^{\prime \prime} P^{\prime \prime}$ with vertices $M^{\prime \prime}(4,1)$, $N^{\prime \prime}(2,2)$, and $P^{\prime \prime}(5,4)$.

c.

Angle of Rotation Between Figures		Angle Between Intersecting Lines	
$\triangle A B C$ and $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$	90°	ℓ and m	45°
$\triangle D E F$ and $\triangle D^{\prime \prime} E^{\prime \prime} F^{\prime}$	180°	n and p	90°
$\triangle M N P$ and $\triangle M^{\prime \prime} N^{\prime} P^{\prime}$	90°	q and r	45°

d. Sample answer: The measure of the angle of rotation about the point where the lines intersect is twice the measure of the angle between the two intersecting lines.
35. Sample answer: $(-1,2)$; Since $\triangle C C^{\prime} P$ is isosceles and the vertex angle of the triangle is formed by the angle of rotation, both $m \angle P C C^{\prime}$ and $m \angle P C^{\prime} C$ are 40° because the base angles
 of isosceles triangles are congruent. When you construct a 40° angle with a vertex at C and a 40° angle with a vertex at C^{\prime}, the intersection of the rays forming the two angles intersect at the point of rotation, or $(-1,2)$.
37. No; sample answer: When a figure is reflected about the x-axis, the x-coordinates of the transformed figure remain the same, and the y-coordinates are negated. When a figure is rotated 180° about the origin, both the
x - and y-coordinates are negated. Therefore, the transformations are not equivalent. 39. D 41. J
43.50 mi

47. reflection 49. rotation or reflection

Lesson 9-4
1.

3.

5.

rotation clockwise 100° about the point where lines m and p intersect.
(7) translation along $\langle 2,0\rangle$ reflection in x-axis

(x, y)	$\rightarrow(x+2, y)$	(x, y)	$\rightarrow(x,-y)$
$R(1,-4)$	$\rightarrow R^{\prime}(3,-4)$	$R^{\prime}(3,-4)$	$\rightarrow R^{\prime \prime}(3,4)$
$S(6,-4)$	$\rightarrow S^{\prime}(8,-4)$	$S^{\prime}(8,-4)$	$\rightarrow S^{\prime \prime}(8,4)$
$T(5,-1)$	$\rightarrow T^{\prime}(7,-1)$	$T^{\prime}(7,-1)$	$\rightarrow T^{\prime \prime}(7,1)$

Graph $\triangle R S T$ and its image $\triangle R^{\prime \prime} S^{\prime \prime} T^{\prime \prime}$.

9.

11.

13.

15.

17.

horizontal translation 4 cm to the right.

21. translation 23. reflection
(25) rotation 90° about origin reflection in x-axis

(x, y)	$\rightarrow(-y, x)$	$(x, y) \rightarrow(x,-y)$
$(-2,-5)$	$\rightarrow(5,-2)$	$(5,-2) \rightarrow(5,2)$
$(0,1)$	$\rightarrow(-1,0)$	$(-1,0) \rightarrow(-1,0)$

Graph line y^{\prime} through points at $(5,-2)$ and $(-1,0)$. Graph line $y^{\prime \prime}$ through points at $(5,2)$ and $(-1,0)$.

27. $A^{\prime \prime}(3,1), B^{\prime \prime}(2,3), C^{\prime \prime}(1,0)$
(29) A translation occurs from Step 1 to Step 2. A rotation 90° counterclockwise occurs from Step 2 to Step 3. So, the transformations are a translation and a 90° rotation.
31. $(x+5.5, y)$ reflected in the line that separates the left prints from the right prints 33 . double reflection 35 . rotation 180° about the origin and reflection in the x-axis
37. Given: Lines ℓ and m intersect at point P. A is any point not on ℓ or m.
Prove: a. If you reflect point A in line m, and then reflect its image A^{\prime} in line $\ell, A^{\prime \prime}$ is the image of A after a rotation about point P.
b. $m \angle A P A^{\prime \prime}=2(m \angle S P R)$

Proof: We are given that line ℓ and line m intersect at point P and that A is not on line ℓ or line π. Reflect A over line m to A^{\prime} and reflect A^{\prime} over line ℓ to $A^{\prime \prime}$. By the definition
 of reflection, line m is the perpendicular bisector of $\overline{A A^{\prime}}$ at R, and line ℓ is the perpendicular bisector of $\overline{A^{\prime} A^{\prime \prime}}$ at $S \cdot \overline{A R} \cong \overline{A^{\prime} R}$ and $\overline{A^{\prime} S} \cong \overline{A^{\prime \prime} S}$ by the definition of a perpendicular bisector. Through any two points there is exactly one line, so we can draw auxiliary segments $\overline{A P}, \overline{A^{\prime} P}$, and $\overline{A^{\prime \prime} P} . \angle A R P$, $\angle A^{\prime} R P, \angle A^{\prime} S P$ and $\angle A^{\prime \prime} S P$ are right angles by the definition of perpendicular bisectors. $\overline{R P} \cong \overline{R P}$ and $\overline{S P} \cong \overline{S P}$ by the Reflexive Property. $\triangle A R P \cong$ $\triangle A^{\prime} R P$ and $\triangle A^{\prime} S P \cong \triangle A^{\prime \prime} S P$ by the $S A S$ Congruence Postulate. Using CPCTC, $\overline{A P} \cong \overline{A^{\prime} P}$ and $\overline{A^{\prime} P} \cong \overline{A^{\prime \prime} P}$, and $\overline{A P} \cong \overline{A^{\prime \prime} P}$ by the Transitive Property. By the definition of a rotation, $A^{\prime \prime}$ is the image of A after a rotation about point P. Also using CPCTC, $\angle A P R \cong \angle A^{\prime} P R$ and $\angle A^{\prime} P S \cong \angle A^{\prime \prime} P S$. By the definition of congruence, $m \angle A P R=m \angle A^{\prime} P R$ and $m \angle A^{\prime} P S=m \angle A^{\prime \prime} P S . m \angle A P R+m \angle A^{\prime} P R+$ $m \angle A^{\prime} P S+m \angle A^{\prime \prime} P S=m \angle A P A^{\prime \prime}$ and $m \angle A^{\prime} P S+$ $m \angle A^{\prime} P R=m \angle S P R$ by the Angle Addition Postulate. $m \angle A^{\prime} P R+m \angle A^{\prime} P R+m \angle A^{\prime} P S+$ $m \angle A^{\prime} P S=m \angle A P A^{\prime \prime}$ by Substitution, which simplifies to 2 $\left(m \angle A^{\prime} P R+m \angle A^{\prime} P S\right)=m \angle A P A^{\prime \prime}$. By Substitution, $2(m \angle S P R)=m \angle A P A^{\prime \prime}$.
39. Sample answer: No; there are not invariant points in a glide reflection because all of the points are translated along a vector. Perhaps for compositions of transformations, there may be invariant points when a figure is rotated and reflected, rotated twice, or reflected twice. 41. Yes; sample answer: If a segment with endpoints (a, b) and (c, d) is to be reflected about the x-axis, the coordinates of the endpoints of the reflected image are $(a,-b)$ and $(c,-d)$. If the segment is then reflected about the line $y=x$, the coordinates of the endpoints of the final image are $(-b, a)$ and $(-d, c)$. If the original image is first reflected about $y=x$, the coordinates of the endpoints of the reflected image are (b, a) and (d, c). If the segment is then reflected about the x-axis, the coordinates of the endpoints of the final image are $(b,-a)$ and $(d,-c)$.
(43) Sample answer: When two rotations are performed on a single image, the order of the rotations does not affect the final image when the two rotations are centered at the same point. For example, if $\triangle A B C$ is rotated 45° clockwise about the origin and then rotated 60° clockwise about the origin, $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is the same as if the figure were first rotated 60° clockwise about the origin and then rotated 45° clockwise about the origin. If $\triangle A B C$ is rotated 45° clockwise about the origin
and then rotated 60° clockwise about $P(2,3)$, $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is different than if the figure were first rotated 60° clockwise about $P(2,3)$ and then rotated 45° clockwise about the origin. So, the order of the rotations sometimes affects the location of the final image.
45. A 47. H
49.

51.

53.

55.

57.

Lesson 9-5

3. yes; 1
5. yes; $2 ; 180$

(7) a. There is no plane in which the dome can be reflected onto itself horizontally. So, there are no horizontal planes of symmetry. The dome has $18 \cdot 2$ or 36 vertical planes of symmetry. b. The dome has order 36 symmetry and magnitude $360^{\circ} \div 36$ or 10°.
9. no 11. yes; 6

13. yes; 1

15. no
17. yes; 1

19. yes; $3 ; 120^{\circ}$

(21) No; there is no rotation between 0° and 360° that maps the shape onto itself. So, the figure does not have rotational symmetry.
23. yes; $8 ; 45^{\circ}$

25. yes; $8 ; 45^{\circ}$
27. both
29. both
31. no horizontal, infinitely many vertical
33. 1 horizontal, infinitely many vertical
(35) Figure $A B C D$ is a square. It has 4 lines of symmetry and has order 4 symmetry and magnitude $360^{\circ} \div 4$ or 90°. So, it has line symmetry and rotational symmetry.
37. line and rotational
39. rotational; 2; 180 ${ }^{\circ}$; line symmetry; $y=-x$

41. rotational; $2 ; 180^{\circ}$

43. plane and axis; 180

45a. 3
45b. 3
45c.

Polygon	Lines of Symmetry	Order of Symmetry
equilateral triangle	3	3
square	4	4
regular pentagon	5	5
regular hexagon	6	6

45d. Sample answer: A regular polygon with n sides has n lines of symmetry and order of symmetry n.
47. Sample answer: $(-1,0)$, $(2,3),(4,1)$, and $(1,-2)$

49.
 Sample answer: An isosceles triangle has line symmetry from the vertex angle to the base of the triangle, but it does not have rotational symmetry because it cannot be rotated from 0° to 360° and map onto itself. 51. B 53. H
55.

57. $(7,-7)$
59. reduction; $\frac{1}{2}$
61. enlargement; 3

Lesson 9-6

1.

(3) The figure increases in size from B to B^{\prime}, so it is an enlargement.

$$
\frac{\text { image length }}{\text { preimage length }}=\frac{Q B^{\prime}}{Q B}
$$

$$
=\frac{8}{6} \text { or } \frac{4}{3}
$$

$$
Q B+B B^{\prime}=Q B^{\prime}
$$

$$
6+x=8
$$

$$
x=2
$$

5.

7.

9.

15. enlargement; $2 ; 4.5 \quad$ 17. reduction; $\frac{3}{4} ; 3.5$
19. $15 \times$; The insect's image length in millimeters is $3.75 \cdot 10$ or 37.5 mm . The scale factor of the dilation is $\frac{37.5}{2.5}$ or 15 .
(21) Multiply the x - and y-coordinates of each vertex by the scale factor, 0.5 .

$$
\begin{array}{lll}
(x, y) & \rightarrow & (0.5 x, 0.5 y) \\
J(-8,0) & \rightarrow & J^{\prime}(-4,0) \\
K(-4,4) & \rightarrow & K^{\prime}(-2,2) \\
L(-2,0) & \rightarrow & L^{\prime}(-1,0)
\end{array}
$$

Graph $J K L$ and its image $J^{\prime} K^{\prime} L^{\prime}$.

23.

27a.

25.

27b.

27c. no 27d. Sometimes; sample answer: For the order of a composition of a dilation centered at the origin and a reflection to be unimportant, the line of reflection must contain the origin, or must be of the form $y=m x$. 29. No; sample answer: The measures of the sides of the rectangles are not proportional, so they are not similar and cannot be a dilation.

$$
\text { a. } \begin{aligned}
T & =P h+2 B & & \text { Surface area of a prism } \\
& =(16)(4)+2(12) & & P=16 \mathrm{~cm}, h=4 \mathrm{~cm}, B=12 \mathrm{~cm}^{2} \\
& =88 \mathrm{~cm}^{2} & & \text { Simplify. } \\
V & =B h & & \text { Volume of a prism } \\
& =(12)(4) & & B=12 \mathrm{~cm}^{2}, h=4 \mathrm{~cm} \\
& =48 \mathrm{~cm}^{3} & & \text { Simplify. }
\end{aligned}
$$

b. Multiply the dimensions by the scale factor 2 : length $=6 \cdot 2$ or 12 cm , width $=2 \cdot 2$ or 4 cm , height $=4 \cdot 2$ or 8 cm .

$$
\begin{aligned}
T & =P h+2 B & & \text { Surface area of a prism } \\
& =(32)(8)+2(48) & & P=32 \mathrm{~cm}, h=8 \mathrm{~cm}, B=48 \mathrm{~cm}^{2} \\
& =352 \mathrm{~cm}^{2} & & \text { Simplify. }
\end{aligned}
$$

$V=B h \quad$ Volume of a prism

$$
\begin{array}{ll}
=(48)(8) & B=48 \mathrm{~cm}^{2}, h=8 \mathrm{~cm} \\
=384 \mathrm{~cm}^{3} & \text { Simplify } .
\end{array}
$$

c. Multiply the dimensions by the scale factor $\frac{1}{2}$: length $=6 \cdot \frac{1}{2}$ or 3 cm , width $=2 \cdot \frac{1}{2}$ or 1 cm ,
height $=4 \cdot \frac{1}{2}$ or 2 cm .

$$
\begin{aligned}
T & =P h+2 B & & \text { Surface area of a prism } \\
& =(8)(2)+2(3) & & P=8 \mathrm{~cm}, h=2 \mathrm{~cm}, B \\
& =22 \mathrm{~cm}^{2} & & \text { Simplify. }
\end{aligned}
$$

$V=B h \quad$ Volume of a prism

$$
\begin{array}{ll}
=(3)(2) & B=3 \mathrm{~cm}^{2}, h=2 \mathrm{~cm} \\
=6 \mathrm{~cm}^{3} & \text { Simplify. }
\end{array}
$$

d. surface area of preimage: $88 \mathrm{~cm}^{2}$
surface area of image with scale factor $2: 352 \mathrm{~cm}^{2}$ or $(88 \cdot 4) \mathrm{cm}^{2}$
surface area of image with scale factor $\frac{1}{2}: 22 \mathrm{~cm}^{2}$ or $\left(88 \cdot \frac{1}{4}\right) \mathrm{cm}^{2}$
The surface area is 4 times greater after dilation with scale factor $2, \frac{1}{4}$ as great after dilation with scale factor $\frac{1}{2}$.
volume of preimage: $48 \mathrm{~cm}^{3}$
volume of image with scale factor $2: 384 \mathrm{~cm}^{3}$ or $(48 \cdot 8) \mathrm{cm}^{3}$
volume of image with scale factor $\frac{1}{2}: 6 \mathrm{~cm}^{3}$ or $\left(48 \cdot \frac{1}{8}\right) \mathrm{cm}^{2}$
The volume is 8 times greater after dilation with scale factor $2 ; \frac{1}{8}$ as great after dilation with scale factor $\frac{1}{2}$.
e. The surface area of the preimage would be multiplied by r^{2}. The volume of the preimage would be multiplied by r^{3}.

(33)

$$
\text { a. } \begin{aligned}
k & =\frac{\text { diameter of image }}{\text { diameter of preimage }} \\
& =\frac{2 \mathrm{~mm}}{1.5 \mathrm{~mm}} \\
& =\frac{2}{1 \frac{1}{2}} \\
& =2 \cdot \frac{2}{3} \\
& =\frac{4}{3} \text { or } 1 \frac{1}{3}
\end{aligned}
$$

$$
\text { b. } \begin{aligned}
A & =\pi r^{2} & & \text { Area of a circle } \\
& =\pi(0.75)^{2} & & r=1.5 \div 2 \text { or } 0.75 \\
& \approx 1.77 \mathrm{~mm}^{2} & & \text { Use a calculator. }
\end{aligned}
$$

$$
\begin{aligned}
A & =\pi r^{2} & & \text { Area of a circle } \\
& =\pi(1)^{2} & & r=2 \div 2 \text { or } 1 \\
& \approx 3.14 \mathrm{~mm}^{2} & & \text { Use a calculator. }
\end{aligned}
$$

35. $\frac{11}{5}$

36. $y=4 x-3$

39a. Always; sample answer: Since a dilation of 1 maps an image onto itself, all four vertices will remain invariant under the dilation. 39b. Always; sample answer: Since the rotation is centered at B, point B will always remain invariant under the rotation.
39c. Sometimes: sample answer: If one of the vertices is on the x-axis, then that point will remain invariant under reflection. If two vertices are on the x-axis, then the two vertices located on the x-axis will remain invariant under reflection. 39d. Never; when a figure is translated, all points move an equal distance. Therefore, no points can remain invariant under translation. 39e. Sometimes; sample answer: If one of the vertices of the triangle is located at the origin, then that vertex would remain invariant under the dilation. If none of the points on $\triangle X Y Z$ are located at the origin, then no points will remain invariant under the dilation. 41. Sample answer: Translations, reflections, and rotations produce congruent figures because the sides and angles of the preimage are congruent to the corresponding sides and angles of the image. Dilations produce similar figures, because the angles of the preimage and the image are congruent and the sides of the preimage are proportional to the corresponding sides of the image. A dilation with a scale factor of 1 produces an equal figure because the image is mapped onto its corresponding parts in the preimage.
43. A 45. D
47. yes; 1

49. translation along $\langle-1,8\rangle$ and reflection in the y-axis
$51.2 \sqrt{51} \mathrm{ft} \approx 14.3 \mathrm{ft}$
53.34 .6
55. 107.1

Chapter 9 Study Guide and Review

1. composition of transformations
2. dilation
3. line of reflection
4. translation
5. reflection
6.

13.

15.

19.

23.

27. yes; 2

17.

21. 90°

25. Sample answer: translation right and down, translation of result right and up.

31. 4 33. reduction; $8.25 ; 0.45$

CHAPTER 10 Circles

Chapter 10 Get Ready

1. 130
2. 15.58
3. 82.8
4. \$5.85
5. 8.5 ft
6. $-3,4$

Lesson 10-1

1. $\odot N \quad 3.8 \mathrm{~cm}$
2. 14 in.
3. $22 \mathrm{ft} ; 138.23 \mathrm{ft}$
4. $4 \pi \sqrt{13} \mathrm{~cm}$
5. $\overline{S U}$
6. 8.1 cm
(15) $d=2 r$

$$
=2(14) \text { or } 28 \text { in. Substitute and simplify. }
$$

$17.3 .7 \mathrm{~cm} \quad 19.14 .6 \quad 21.30 .6 \quad 23.13 \mathrm{in}$.; 81.68 in .
25.39.47 ft; $19.74 \mathrm{ft} \quad 27.830 .23 \mathrm{~m} ; 415.12 \mathrm{~m}$
(29) $a^{2}+b^{2}=c^{2} \quad$ Pythagorean Theorem

$$
\begin{aligned}
(6 \sqrt{2})^{2}+(6 \sqrt{2})^{2} & =c^{2} & & \text { Substitution } \\
144 & =c^{2} & & \text { Simplify. }
\end{aligned}
$$

$12=c \quad$ Take the positive square root of each side.
The diameter is 12π feet.

$$
\begin{aligned}
C & =\pi d & & \text { Circumference formula } \\
& =\pi(12) & & \text { Substitution } \\
& =12 \pi \mathrm{ft} & & \text { Simplify. }
\end{aligned}
$$

31. 10π in.
32. 14π yd

35a. 31.42 ft
35b. 4 ft
37. $22.80 \mathrm{ft} ; 71.63 \mathrm{ft}$
39. $0.25 x ; 0.79 x$
41. neither
(43) The radius is 3 units, or $3 \cdot 25=75$ feet.

$$
\begin{aligned}
C & =2 \pi r & & \text { Circumference formula } \\
& =2 \pi(75) & & \text { Substitution } \\
& =150 \pi & & \text { Simplify. } \\
& \approx 471.2 \mathrm{ft} & & \text { Use a calculator. }
\end{aligned}
$$

45a. Sample answer:

45b. Circle
Circumference

Radius (cm)	(cm)
0.5	3.14
1	6.28
2	12.57

45c. They all have the same shape-circular.
45d. The ratio of their circumferences is also 2.
45e. $\left(C_{B}\right)=\frac{b}{a}\left(C_{A}\right)$
45f. 4 in.

$$
\text { (47) } \begin{aligned}
\text { a. } C & =2 \pi r & & \text { Circumference formula } \\
& =2 \pi(30) & & \text { Substitution } \\
& =60 \pi & & \text { Simplify. }
\end{aligned}
$$

$$
\begin{aligned}
C & =2 \pi r & & \text { Circumference formula } \\
& =2 \pi(5) & & \text { Substitution } \\
& =10 \pi & & \text { Simplify. }
\end{aligned}
$$

$60 \pi-10 \pi=50 \pi \approx 157.1 \mathrm{mi}$
b. If $r=5, C=10 \pi$; if $r=10, C=20 \pi$; if $r=15$, $C=30 \pi$, and so on. So, as r increases by 5 ,
C increases by 10π or by about 31.4 miles.
49a. $8 r$ and $6 r$; Twice the radius of the circle, $2 r$ is the side length of the square, so the perimeter of the square is $4(2 r)$ or $8 r$. The regular hexagon is made up of six equilateral triangles with side length r, so the perimeter of the hexagon is $6(r)$ or $6 r$. 49b. less; greater; $6 r<C$ $<8 r$ 49c. $3 d<C<4 d$; The circumference of the circle is between 3 and 4 times its diameter. 49d. These limits will approach a value of πd, implying that $C=\pi d$. 51. Always; a radius is a segment drawn between the center of the circle and a point on the circle. A segment drawn from the center to a point inside the circle will always have a length less than the radius of the circle.
53. $\frac{8 \pi}{\sqrt{3}}$ or $\frac{8 \pi \sqrt{3}}{3}$
55. 40.8
57. J
59.

63. no 65. no
67. True; sample answer: Since the hypothesis is true and the conclusion is true, then the statement is true for the conditions. $69.90 \quad \mathbf{7 1 . 2 0}$

Lesson 10-2

1. 170
2. major arc; 270
3. semicircle; 180
4. 147
5. $123 \quad 11.13 .74 \mathrm{~cm}$
(13) $65+70+x=360$ Sum of central angles $135+x=360$ Simplify.
$x=225$ Subtract 135 from each side.
6. 40 17. minor arc; 125 19. major arc; 305
$\begin{array}{lll}\text { 21. semicircle; } 180 & \text { 23. major arc; } 270 & \text { 25a. 280.8; } 36\end{array}$
25b. major arc; minor arc 25c. No; no categories share the same percentage of the circle. 27.60
7. 300
31.180
8. 220
35.120
(37) $\ell=\frac{x}{360} \cdot 2 \pi r \quad$ Arc length equation

$$
\begin{array}{ll}
=\frac{112}{360} \cdot 2 \pi(4.5) & \text { Substitution. } \\
\approx 8.80 \mathrm{~cm} & \text { Use a calculator. }
\end{array}
$$

39. 17.02 in. $\quad 41.12 .04 \mathrm{~m}$ 43. The length of the arc would double. $45.40 .84 \mathrm{in} . \quad 47.9 .50 \mathrm{ft} \quad 49.142$
(51)

$$
\begin{aligned}
\text { a. } \begin{array}{rlrl}
m \overparen{A B} & =m \angle A C B & \overparen{A B} \text { is a minor arc. } \\
& =180-(22+22) & \text { Angle Addition Postulate } \\
& =180-44 \text { or } 136 & \text { Simplify. } \\
\text { b. } \ell= & \frac{x}{360} \cdot 2 \pi r & \text { Arc length equation } \\
= & \frac{136}{360} \cdot 2 \pi(62) & & \text { Substitution. } \\
\approx & 147.17 \mathrm{ft} & \text { Use a calculator. }
\end{array}
\end{aligned}
$$

53)

$$
\begin{aligned}
\tan \angle J M L & =\frac{12}{5} \\
m \angle J M L & =\tan ^{-1}\left(\frac{12}{5}\right) \\
& \approx 67.4^{\circ} \\
m \overparen{J L} & =m \angle J M L \approx 67.4^{\circ}
\end{aligned}
$$

b.

$$
\begin{aligned}
\tan \angle K M L & =\frac{5}{12} \\
m \angle K M L & =\tan ^{-1}\left(\frac{5}{12}\right) \\
& \approx 22.6^{\circ}
\end{aligned}
$$

$$
m \overparen{K L}=m \angle K M L \approx 22.6^{\circ}
$$

c. $m \angle J M K=m \angle J M L-m \angle K M L$

$$
\begin{aligned}
& \approx 67.4-22.6 \\
& \approx 44.8^{\circ}
\end{aligned}
$$

$$
m \overparen{K K}=m \angle J M K \approx 44.8^{\circ}
$$

d. $r=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad$ Distance Formula

$$
=\sqrt{(5-0)^{2}+(12-0)^{2}}
$$

$$
\left(x_{1}, y_{1}\right)=(0,0) \text { and }
$$

$$
\left(x_{2}, y_{2}\right)=(5,12)
$$

$$
=13
$$

Simplify.

$$
\begin{aligned}
\ell & =\frac{x}{360} \cdot 2 \pi r & & \text { Arc length equation } \\
& =\frac{67.4}{360} \cdot 2 \pi(13) & & \text { Substitution } \\
& \approx 15.29 \text { units } & & \text { Use a calculator. }
\end{aligned}
$$

e. $\ell=\frac{x}{360} \cdot 2 \pi r \quad$ Arc length equation
$=\frac{44.8}{360} \cdot 2 \pi(13) \quad$ Substitution
≈ 10.16 units Use a calculator.
55. Selena; the circles are not congruent because they do not have congruent radii. So, the arcs are not congruent. 57. Never; obtuse angles intersect arcs between 90° and 180° 59. $m \overparen{L M}=150, m \overparen{M N}=90$, $m \overparen{N L}=120 \quad 61.175 \quad 63 . \mathrm{B} \quad 65 . \mathrm{H} \quad 67 . J \quad 69.6 .2$
71.

73. $x=\frac{50}{3} ; y=10 ;$
$z=\frac{40}{3} \quad 75.10,-10$
77. $46.1,-46.1$

Lesson 10-3
(1) $\overparen{S T}$ is a minor arc, so $m \overparen{S T}=93 \cdot \overline{R S}$ and $\overline{S T}$ are congruent chords, so the corresponding arcs $\overparen{R S}$ and $\overparen{S T}$ are congruent.

$$
\begin{aligned}
\overparen{R S} & \cong \overparen{S T} & & \text { Corresponding arcs are congruent. } \\
m \overparen{R S} & =m \widehat{S T} & & \text { Definition of congruent arcs } \\
x & =93 & & \text { Substitution }
\end{aligned}
$$

$\begin{array}{lllll}3.3 & 5.3 .32 & 7.21 & 9.127 & 11.7\end{array}$
(13) $\overline{K L}$ and $\overline{A J}$ are congruent chords in congruent circles, so the corresponding $\operatorname{arcs} \overparen{K L}$ and $\overparen{A J}$ are congruent.
$\overparen{K L} \cong \overparen{A J} \quad$ Corresponding arcs are congruent.
$m \overparen{K L}=m \overparen{A J} \quad$ Definition of congruent arcs
$5 x=3 x+54 \quad$ Substitution
$2 x=54 \quad$ Subtract $3 x$ from each side.
$x=27 \quad$ Divide each side by 2.
15.122.5 ${ }^{\circ} \quad$ 17.5.34 $\quad 19.6 .71$
(21) $D E+E C=D C \quad$ Segment Addition Postulate
$15+E C=88 \quad$ Substitution
$E C=73$ Subtract 15 from each side.
$E C^{2}+E B^{2}=C B^{2} \quad$ Pythagorean Theorem
$73^{2}+E B^{2}=88^{2} \quad$ Substitution
$E B^{2}=2415$ Subtract 73^{2} from each side.
$E B \approx 49.14$ the positive square root of each side.
$E B=\frac{1}{2} A B \quad \overline{D C} \perp \overline{A B}$, so $\overline{D C}$ bisects $\overline{A B}$. $2 E B=A B \quad$ Multiply each side by 2.
$2(49.14) \approx A B \quad$ Substitution $98.3 \approx A B \quad$ Simplify.
23. 4
25. Proof:

Because all radii are congruent, $\overline{Q P} \cong \overline{P R} \cong \overline{S P} \cong$ $\overline{P T}$. You are given that $\overline{Q R} \cong \overline{S T}$, so $\triangle P Q R \cong$ $\triangle P S T$ by SSS. Thus, $\angle Q P R \cong \angle S P T$ by CPCTC. Since the central angles have the same measure, their intercepted arcs have the same measure and are therefore congruent.
Thus, $\overparen{Q R} \cong \overparen{S T}$.
27. Each arc is 90°, and each chord is 2.12 ft .
29. Given: $\odot L, \overline{L X} \perp \overline{F G}, \overline{L Y} \perp \overline{J H}$,
$\overline{\overline{L X}} \cong \overline{L Y}$
Prove: $\overline{F G} \cong \overline{J H}$
Proof:

Statements (Reasons)

1. $\overline{L G} \cong \overline{L H}$ (All radii of a \odot are \cong.)
2. $\overline{L X} \perp \overline{F G}, \overline{L Y} \perp \overline{J H}, \overline{L X} \cong \overline{L Y}$ (Given)
3. $\angle L X G$ and $\angle L Y H$ are right $\stackrel{\leqslant}{ }$. (Def. of \perp lines)
4. $\triangle X G L \cong \triangle Y H L$ (HL)
5. $\overline{X G} \cong \overline{Y H}$ (СРСТС)
6. $X G=Y H$ (Def. of \cong segments)
7. $2(X G)=2(Y H)$ (Multiplication Property)
8. $\overline{L X}$ bisects $\overline{F G} ; \overline{L Y}$ bisects $\overline{J H}$. (A radius \perp to a chord bisects the chord.)
9. $F G=2(X G), J H=2(Y H)$ (Def. of seg. bisector)
10. $F G=J H$ (Substitution)
11. $\overline{F G} \cong \overline{J H}$ (Def. of \cong segments)
(31) Since $\overline{A B} \perp \overline{C E}$ and $\overline{D F} \perp \overline{C E}, \overline{C E}$ bisects $\overline{A B}$ and $\overline{D F}$.
Since $\overline{A B} \cong \overline{D F}, A B=D F$.
$C B=\frac{1}{2} A B \quad$ Definition of bisector
$C B=\frac{1}{2} D F \quad$ Substitution
$C B=D E \quad$ Definition of bisector
$9 x=2 x+14$ Substitution
$7 x=14 \quad$ Subtract $2 x$ from each side.
$x=2 \quad$ Divide each side by 7.
33.5 35. About $17.3 ; P$ and Q are equidistant from the endpoints of $\overline{A B}$ so they both lie on the perpendicular bisector of $\overline{A B}$, so $\overline{P Q}$ is the perpendicular bisector of $\overline{A B}$. Hence, both segments of $\overline{A B}$ are 5 . Since $\overline{P S}$ is perpendicular to chord $\overline{A B}$, $\angle P S A$ is a right angle. So, $\triangle P S A$ is a right triangle.
By the Pythagorean Theorem, $P S=\sqrt{(P A)^{2}-(A S)^{2}}$.
By substitution, $P S=\sqrt{11^{2}-5^{2}}$ or $\sqrt{96}$.
Similarly, $\triangle A S Q$ is a right triangle with
$S Q=\sqrt{(A Q)^{2}-(A S)^{2}}=\sqrt{9^{2}-5^{2}}$ or $\sqrt{56}$.
Since $P Q=P S+S Q, P Q=\sqrt{96}+\sqrt{56}$ or about 17.3.
37a. Given: $\overline{C D}$ is the perpendicular bisector of chord $\overline{A B}$ in $\odot X$.
Prove: $\overline{C D}$ contains point X.
Proof:
Suppose X is not on $\overline{C D}$. Draw $\overline{X E}$ and radii $\overline{X A}$ and $\overline{X B}$. Since $\overline{C D}$ is the perpendicular bisector of $\overline{A B}, E$ is the midpoint of $\overline{A B}$ and
 $\overline{A E} \cong \overline{E B}$. Also, $\overline{X A} \cong \overline{X B}$, since all radii of a \odot are $\cong \overline{X E} \cong \overline{X E}$ by the Reflexive Property. So, $\triangle A X E \cong \triangle B X E$ by SSS. By CPCTC, $\angle X E A \cong$ $\angle X E B$. Since they also form a linear pair $\angle X E A$ and $\angle X E B$ are right angles. So, $\overline{X E} \perp \overline{A B}$. By definition $\overline{X E}$ is the perpendicular bisector of $\overline{A B}$. But $\overline{C D}$ is also the perpendicular bisector of $\overline{A B}$. This contradicts the uniqueness of a perpendicular bisector of a segment. Thus, the assumption is false, and center X must be on $\overline{C D}$.
37b. Given: $\operatorname{In} \odot X, X$ is on $\overline{C D}$ and $\overline{F G}$ bisects $\overline{C D}$ at O. Prove: Point O is point X. Proof:
Since point X is on $\overline{C D}$ and C and D are on $\odot X, \overline{C D}$ is a diameter of $\odot X$. Since $\overline{F G}$
 bisects $\overline{C D}$ at O, O is the midpoint of $\overline{C D}$. Since the midpoint of a diameter is the center of a circle, O, is the center of the circle. Therefore, point O is point X.
12. No; sample answer: In a circle with a radius of 12, an arc with a measure of 60 determines a chord of length 12. (the triangle related to a central angle of 60 is equilateral.) If the measure of the arc is tripled to 180 , then the chord determined by the arc is a diameter and has a lenth of $2(12)$ or 24 , which is not three times as long as the original chord.
41.F 43. E 45.170
47.275 in.
13. yes; obtuse
$31^{2} \stackrel{?}{=} 20^{2}+21^{2}$
14. ± 11
$961>400+441$
Lesson 10-4
1.30 $3.66 \quad 5.54$
15. Given: $\overline{R T}$ bisects $\overline{S U}$.

Prove: $\triangle R V S \cong \triangle U V T$

Proof:

Statements (Reasons)

1. $\overline{R T}$ bisects $\overline{S U}$. (Given)
2. $\overline{S V} \cong \overline{V U}$ (Def. of segment bisector)
3. $\angle S R T$ intercepts $\overparen{S T}$. $\angle S U T$ intercepts $\overparen{S T}$. (Def. of intercepted arc)
4. $\angle S R T \cong \angle S U T$ (Inscribed \triangleq of same arc are \cong.)
5. $\angle R V S \cong \angle U V T$ (Vertical \triangleq are \cong.)
6. $\triangle R V S \cong \triangle U V T$ (AAS)
$9.25 \quad 11.162$
(13) $m \overparen{N P}+m \overparen{P Q}+m \overparen{Q N}=360$ Addition Theorem

$$
120+100+m \widetilde{Q N}=360 \text { Substitution }
$$

$$
220+m \overparen{Q N}=360 \quad \text { Simplify. }
$$

$$
m \angle \widetilde{Q N}=140 \text { Subtract } 220 \text { from each side. }
$$

$$
\begin{aligned}
m \angle P & =\frac{1}{2} m \overparen{Q N} & & \angle P \text { intercepts } \overparen{Q N} . \\
& =\frac{1}{2}(140) \text { or } 70 & & \text { Substitution }
\end{aligned}
$$

$15.140 \quad 17.32 \quad 19.20$
21. Given: $m \angle T=\frac{1}{2} m \angle S$

Prove: $m \overparen{m \text { TUR }}=2 m \overparen{U R S}$
Proof:
$m \angle T=\frac{1}{2} m \angle S$ means

that $m \angle S=2 m \angle T$. Since $m \angle S=\frac{1}{2} m \overparen{T U R}$ and $m \angle T=\frac{1}{2} m \overparen{U R S}$, the equation becomes $\frac{1}{2} m \overparen{T U R}=2\left(\frac{1}{2} m \overparen{U R S}\right)$. Multiplying each side of the equation by 2 results in $m \overparen{T U R}=2 m \overparen{U R S}$.
$\begin{array}{llll}23.30 & 25.12 .75 & 27.135 & 29.106\end{array}$
31. Given: Quadrilateral $A B C D$ is inscribed in $\odot O$. Prove: $\angle A$ and $\angle C$ are supplementary. $\angle B$ and $\angle D$ are supplementary. Proof: By arc addition and the definitions of arc measure and the sum of central angles,
$m \overparen{D C B}+m \overparen{D A B}=360$. Since
$m \angle C=\frac{1}{2} m \overparen{D A B}$ and
$m \angle A=\frac{1}{2} m \overparen{D C B}, m \angle C+m \angle A=\frac{1}{2}(m \overparen{D C B}+$
$m \overparen{D A B}$, but $m \overparen{D C B}+m \overparen{D A B}=360$, so $m \angle C+$ $m \angle A=\frac{1}{2}(360)$ or 180 . This makes $\angle C$ and $\angle A$ supplementary. Because the sum of the measures of the interior angles of a quadrilateral is 360, $m \angle A+m \angle C+m \angle B+m \angle D=360$. But $m \angle A+$ $m \angle C=180$, so $m \angle B+m \angle D=180$, making them supplementary also.
(33) Since all the sides of the sign are congruent, all the corresponding arcs are congruent.
$8 m \overparen{Q R}=360$, so $m \overparen{Q R}=\frac{360}{8}$ or 45 .
$m \angle R L Q=\frac{1}{2} m \overparen{Q R}$

$$
=\frac{1}{2}(45) \text { or } 22.5
$$

35. 135
36. Proof:

Statements (Reasons)

1. $m \angle A B C=m \angle A B D+m \angle D B C(\angle$ Addition Postulate)
2. $m \angle A B D=\frac{1}{2} m \overparen{A D}$
$m \angle D B C=\frac{1}{2} m \overparen{D C}$ (The measure of an inscribed \angle whose side is a diameter is half the measure of the intercepted arc (Case 1).)
3. $m \angle A B C=\frac{1}{2} m \overparen{A D}+\frac{1}{2} m \overparen{D C}$ (Substitution)
4. $m \angle A B C=\frac{1}{2}(m \overparen{A D}+m \overparen{D C})$ (Factor)
5. $m \overparen{A D}+m \overparen{D C}=m \overparen{A C}$ (Arc Addition Postulate)
6. $m \angle A B C=\frac{1}{2} m \overparen{A C}$ (Substitution)
(39) Use the Inscribed Angle Theorem to find the measures of $\angle F A E$ and $\angle C B D$. Then use the definition of congruent arcs and the Multiplication Property of Equality to help prove that the angles are congruent.
Given: $\angle F A E$ and $\angle C B D$ are inscribed; $\overparen{E F} \cong \overparen{D C}$
Prove: $\angle F A E=\angle C B D$

Proof:

Statements (Reasons)

1. $\angle F A E$ and $\angle C B D$ are inscribed; $\overparen{E F} \cong \overparen{D C}$ (Given)
2. $m \angle F A E=\frac{1}{2} m \overparen{E F} ; m \angle C B D=$ $\frac{1}{2} m \overparen{D C}$ (Measure of an inscribed
$\angle=$ half measure of intercepted arc.)
3. $m \overparen{E F}=m \overparen{D C}$ (Def. of \cong arcs)
4. $\frac{1}{2} m \overparen{E F}=\frac{1}{2} m \overparen{D C}$ (Mult. Prop.)
5. $m \angle F A E=m \angle C B D$ (Substitution)
6. $\angle F A E \cong \angle C B D($ Def. of $\cong \angle \leqslant)$

41a.

41b. Sample answer: $m \angle A=$ $30, m \angle D=30 ; m \overparen{A C}=60$, $m \overparen{B D}=60$; The arcs are congruent because they have equal measures.
41c. Sample answer: In a circle, two parallel chords cut congruent arcs.

41d. 70; 70 43. Always; rectangles have right angles at each vertex, therefore opposite angles will be inscribed in a semicircle. 45. Sometimes; a rhombus can be inscribed in a circle as long as it is a square. Since the opposite angles of rhombi that are not squares are not supplementary, they can not be inscribed in a circle. 47. $\frac{\pi}{2} \quad 51$. A $\quad 53 . d=17 \mathrm{in}$., $r=8.5 \mathrm{in}$., $C=17 \pi$ or about 53.4 in . $55.48 \quad 57.24$
59.107
61.144
63.54
65. $\frac{1}{2}$

Lesson 10-5

1. no common tangent
(3) $F G^{2}+G E^{2} \stackrel{?}{=} F E^{2}$

$$
\begin{aligned}
36^{2}+15^{2} & \stackrel{?}{=}(24+15)^{2} \\
1521 & =1521
\end{aligned}
$$

$\triangle E F G$ is a right triangle with right angle $E G F$. So $\overline{F G}$ is perpendicular to radius $\overline{E G}$ at point G. Therefore, by Theorem $10.10, \overline{F G}$ is tangent to $\odot E$.
5. 16 7. $x=250 ; y=275 ; 1550 \mathrm{ft}$

13. yes; $625=$ 625
(15) $X Y^{2}+Y Z^{2} \stackrel{?}{=} X Z^{2}$

$$
\begin{aligned}
8^{2}+5^{2} & =(3+5)^{2} \\
89 & \neq 64
\end{aligned}
$$

Since $\triangle X Y Z$ is not a right triangle, $\overline{X Y}$ is not perpendicular to radius $\overline{\mathrm{YZ}}$. So, $\overline{X Y}$ is not tangent to \odot Z.
(17) $\overrightarrow{Q P}$ is tangent to $\odot N$ at P. So, $\overrightarrow{Q P} \perp \overrightarrow{P N}$ and $\triangle P Q N$ is a right triangle.
$Q P^{2}+P N^{2}=Q N^{2} \quad$ Pythagorean Theorem

$$
\begin{array}{rlrl}
24^{2}+10^{2} & =x^{2} & & Q P=24, P N=10, \text { and } Q N=x \\
576+100 & =x^{2} & & \text { Multiply. } \\
676 & =x^{2} & & \text { Simplify. } \\
26 & =x & & \text { Take the positive square root of each } \\
& & \text { side. }
\end{array}
$$

19.9 21.4 23a. 37.95 in. 23b. 37.95 in. 25. 8; 52 cm 27.8.06
29. Given: Quadrilateral $A B C D$ is circumscribed about \odot.
Prove: $A B+C D=A D+B C$

Statements (Reasons)

1. Quadrilateral $A B C D$ is circumscribed about $\odot P$. (Given)
2. Sides $\overline{A B}, \overline{B C}, \overline{C D}$, and $\overline{D A}$ are tangent to $\odot P$ at points H, G, F, and E, respectively. (Def. of circumscribed)
3. $\overline{E A} \cong \overline{A H} ; \overline{H B} \cong \overline{B G} ; \overline{G C} \cong \overline{C F} ; \overline{F D} \cong \overline{D E}$ (Two segments tangent to a circle from the same exterior point are \cong.)
4. $A B=A H+H B, B C=B G+G C, C D=C F+F D$, $D A=D E+E A$ (Segment Addition)
5. $A B+C D=A H+H B+C F+F D ; D A+B C=$ $D E+E A+B G+G C$ (Substitution)
6. $A B+C D=A H+B G+G C+F D ; D A+B C=$
$F D+A H+B G+G C$ (Substitution)
7. $A B+C D=F D+A H+B G+G C$
(Commutative Prop. of Add.)
8. $A B+C D=D A+B C$ (Substitution)
(31)

$$
\begin{array}{rlrl}
4000^{2}+x^{2} & =(4000+435)^{2} & & \text { Pythagorean Theorem } \\
x^{2} & =3,669,225 & & \text { Subtract } 4000^{2} \text { from each side. } \\
x & \approx 1916 \mathrm{mi} & & \text { Take the positive square } \\
& & \text { root of each side. }
\end{array}
$$

33. Proof: Assume that ℓ is not tangent to $\odot S$. Since ℓ intersects $\odot S$ at T, it must intersect the circle in another place. Call this point Q. Then $S T=S Q$. $\triangle S T Q$ is isosceles, so $\angle T \cong \angle Q$. Since $\overline{S T} \perp \ell, \angle T$ and $\angle Q$ are right angles. This contradicts that a triangle can only have one right angle.
34. Sample answer: Using the Pythagorean Theorem, $2^{2}+x^{2}=10^{2}$, so $x \approx 9.8$. Since $P Q S T$ is a rectangle, $P Q=x=9.8$.

35. Sample answer:

circumscribed

inscribed

39. No; sample answer: From a point outside the circle, two tangents can be drawn. From a point on the circle, one tangent can be drawn. From a point inside the circle, no tangents can be drawn because a line would intersect the circle in two points.
41. $6 \sqrt{2}$ or about 8.5 in.
$\begin{array}{lllll}\text { 43. } D & \text { 45. } 61 & \text { 47.71 } & \text { 49.109 } & \text { 51. Yes; } \triangle A E C \sim \\ \triangle B D C \text { by AA Similarity. } & 53.110 & 55.58\end{array}$
Lesson 10-6
$\begin{array}{lll}1.110 & 3.73 & 5.248\end{array}$
(7) Draw and label a diagram.

$$
\begin{aligned}
m \angle B & =\frac{1}{2}(m \overparen{C D A}-m \overparen{C A}) & & \text { Theorem } 10.14 \\
& =\frac{1}{2}[(360-165)-165] & & \text { Substitution } \\
& =\frac{1}{2}(195-165) \text { or } 15 & & \text { Simplify. }
\end{aligned}
$$

9. 71.5
(11)

$$
\begin{aligned}
51 & =\frac{1}{2}(m \overparen{R Q}+m \overparen{N P}) & & \text { Theorem } 10.12 \\
51 & =\frac{1}{2}(m \overparen{R Q}+74) & & \text { Substitution } \\
102 & =m \overparen{R Q}+74 & & \text { Multiply each side by } 2 . \\
28 & =m \overparen{R Q} & & \text { Subtract } 74 \text { from each side. }
\end{aligned}
$$

13. 144
14. 125

17a. 100
17b. 20
19. 74
21.185
23. $22 \quad$ 25. 168
(27) $3=\frac{1}{2}[(5 x-6)-(4 x+8)]$

Theorem 10.14
$6=(5 x-6)-(4 x+8)$
$6=x-14$
$20=x$
Multiply each side by 2.
Simplify.
Add 14 to each side.

29a. $145 \quad$ 29b. 30

31. Statements (Reasons)

1. $\overrightarrow{F M}$ is a tangent to the circle and $\overrightarrow{F L}$ is a secant to the circle. (Given)
2. $m \angle F L H=\frac{1}{2} m \overparen{H G}, m \angle L H M=\frac{1}{2} m \overparen{L H}$ (The meas. of an inscribed $\angle=\frac{1}{2}$ the measure of its intercepted arc.)
3. $m \angle L H M=m \angle F L H+m \angle F$ (Exterior $\&$ Th.)
4. $\frac{1}{2} m \overparen{L H}=\frac{1}{2} m \overparen{H G}+m \angle F$ (Substitution)
5. $\frac{1}{2} m \overparen{L H}-\frac{1}{2} m \overparen{H G}=m \angle F$ (Subtraction Prop.)
6. $\frac{1}{2}(m \overparen{L H}-m \overparen{H G})=m \angle F$ (Distributive Prop.)

33a. Proof: By Theorem 10.10, $\overline{O A} \perp \overline{A B}$. So, $\angle F A E$ is a right \angle with measure 90 , and $\overparen{F C A}$ is a semicircle with measure of 180 . Since $\angle C A E$ is acute, C is in the interior of $\angle F A E$. By the Angle and Arc Addition Postulates, $m \angle F A E=m \angle F A C+m \angle C A E$ and $m \overparen{F C A}=m \overparen{F C}+m \overparen{C A}$. By substitution, $90=m \angle F A C+m \angle C A E$ and $180=m \overparen{F C}+m \overparen{C A}$. So, $90=\frac{1}{2} m \overparen{F C}+\frac{1}{2} m \overparen{C A}$ by Division Prop., and $m \angle F A C+m \angle C A E=\frac{1}{2} m \overparen{F C}+\frac{1}{2} m \overparen{C A}$ by substitution. $m \angle F A C=\frac{1}{2} m \overparen{F C}$ since $\angle F A C$ is inscribed, so substitution yields $\frac{1}{2} m \overparen{F C}+$ $m \angle C A E=\frac{1}{2} m \overparen{F C}+\frac{1}{2} m \overparen{C A}$.
By Subt. Prop., $m \angle C A E=\frac{1}{2} m \overparen{C A}$. 33b. Use same reasoning to prove $m \angle C A B=\frac{1}{2} m \overparen{C D A}$
(35) a. Sample answer:

b. Sample answer:

	Circle 1	Circle 2	Circle 3
$\overparen{C D}$	25	15	5
$\overparen{A B}$	50	50	50
x	37.5	32.5	27.5

c. As the measure of $\overparen{C D}$ gets closer to 0 , the
measure of x approaches half of $m \overparen{A B} ; \angle A E B$ becomes an inscribed angle.
d. Theorem 10.12 states that if two chords intersect in the interior of a circle, then the measure of an angle formed is one half the sum of the measure of the arcs intercepted by the angle and its vertical angle. Use this theorem to write an equation relating $x, m \overparen{A B}$, and $m \overparen{C D}$. Then let $m \overparen{C D}=0$ and simplify. The result is Theorem 10.6, the Inscribed Angle Theorem.

$$
\begin{aligned}
& x=\frac{1}{2}(m \overparen{A B}+m \overparen{C D}) \\
& x=\frac{1}{2}(m \overparen{A B}+0) \\
& x=\frac{1}{2} m \overparen{A B}
\end{aligned}
$$

37.15

39a. $m \angle G \leq 90 ; m \angle G<90$ for all values except when $\overrightarrow{L G} \perp \overrightarrow{G H}$ at G, then $m \angle G=90$. 39b. $m \overparen{K H}=$ $56 ; m H J=124$; Because a diameter is involved the intercepted arcs measure $(180-x)$ and x degrees.
Hence, solving $\frac{180-x-x}{2}=34$ leads to the answer.
41. Sample answer: Using Theorem $10.14,60^{\circ}=$ $\frac{1}{2}\left[\left(360^{\circ}-x\right)-x\right]$ or 120°; repeat for 50° to get 130°. The third arc can be found by adding 50° and 60° and subtracting from 360° to get 110°. 43. J \quad 45. B $\quad 47.8$
49. Given: $\widehat{M H T}$ is a semicircle. $\overline{R H} \perp \overline{T M}$.
Prove: $\frac{T R}{R H}=\frac{T H}{H M}$

Proof:

Statements (Reasons)

1. $\widehat{M H T}$ is a semicircle; $\overline{R H} \perp \overline{T M}$. (Given)
2. $\angle T H M$ is a right angle. (If an inscribed \angle intercepts a semicircle, the \angle is a rt. \angle.)
3. $\angle T R H$ is a right angle. (Def. of \perp lines)
4. $\angle T H M \cong \angle T R H$ (All rt. angles are \cong.)
5. $\angle T \cong \angle T$ (Reflexive Prop.)
6. $\triangle T R H \sim \triangle T H M$ (AA Sim.)
7. $\frac{T R}{R H}=\frac{T H}{H M}($ Def. of $\sim \triangle \mathrm{s})$
8. 54.5°
9. $-4,-9$
10. $0,-5$
11. -6

Lesson 10-7

1.2 3.5

(5)

Let T be the endpoint of $\overline{Q T}$, the diameter that passes through point S.
$P S \cdot S R=Q S \cdot S T \quad$ Theorem 10.15

$$
\begin{aligned}
10 \cdot 10 & =6 \cdot S T & & \text { Substitution } \\
100 & =6 S T & & \text { Simplify. } \\
\frac{50}{3} & =S T & & \text { Divide each side by } 6 .
\end{aligned}
$$

So, the diameter of the circle is $6+\frac{50}{3}$ or $\frac{68}{3}$ centimeters.

$$
\begin{aligned}
C & =\pi d & & \text { Circumference formula } \\
& =\pi\left(\frac{68}{3}\right) & & \text { Substitution } \\
& \approx 71.21 \mathrm{~cm} & & \text { Use a calculator. }
\end{aligned}
$$

$\begin{array}{lll}7.5 & 9.14 & 11.3 .1\end{array}$
(13) $C D^{2}=C B \cdot C A$ $12^{2}=x \cdot(x+12)$ $144=x^{2}+12 x$ $0=x^{2}+12 x-144$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$=\frac{-12 \pm \sqrt{12^{2}-4(1)(-144)}}{2(1)} \quad \begin{aligned} & a=1, b=12, \\ & c=-144\end{aligned}$
$=\frac{-12 \pm \sqrt{720}}{2}$
≈ 7.4

Theorem 10.17
Substitution
Simplify.
144 from each side.
Quadratic Formula

Disregard the negative solution. Use a calculator.
15. 13 in. 17.7.1 19. $a=15 ; b \approx 11.3 \quad$ 21. $c \approx 22.8$; $d \approx 16.9$
(23) Inscribed angles that intercept the same arc are congruent. Use this theorem to find two pairs of congruent angles. Then use AA Similarity to show that two triangles in the figure are similar. Finally, use the definition of similar triangles to write a proportion. Find the cross products.

Proof:

Statements (Reasons)

1. $\overline{A C}$ and $\overline{D E}$ intersect at B. (Given)
2. $\angle A \cong \angle D, \angle E \cong \angle C$ (Inscribed $\&$ that intercept the same arc are \cong.)
3. $\triangle A B E \sim \triangle D B C$ (AA Similarity)
4. $\frac{A B}{B D}=\frac{E B}{B C}($ Def. of $\sim \triangle \mathrm{s})$
5. $A B \cdot B C=E B \cdot B D$ (Cross products)
6. Proof:

Statements (Reasons)

1. tangent $\overline{J K}$ and secant $\overline{J M}$ (Given)
2. $m \angle K M L=\frac{1}{2} m \overparen{K L}$ (The measure of an inscribed \angle equals half the measure of its intercept arc.)
3. $m \angle J K L=\frac{1}{2} m \overparen{K L}$ (The measure of an \angle formed by a secant and a tangent $=$ half the measure of its intercepted arc.)
4. $m \angle K M L=m \angle J K L$ (Substitution)
5. $\angle K M L \cong m \angle J K L$ (Definition of $\cong \measuredangle$)
6. $\angle J \cong \angle J$ (Reflexive Property)
7. $\triangle J M K \sim \triangle J K L$ (AA Similarity)
8. $\frac{J K}{J L}=\frac{J M}{J K}$ (Definition of $\sim \triangle \mathrm{s}$)
9. $J K^{2}=J L \cdot J M$ (Cross products)
10. Sample answer: When two secants intersect in the exterior of a circle, the product equation equates the product of the exterior segment measure and the whole segment measure for each secant. When a secant and a tangent intersect, the product involving the tangent segment becomes (measure of tangent segments) ${ }^{2}$ because the exterior segments and the whole segments are the same segment.
11. Sometimes; they are equal when the chords are perpendicular. 31. Sample answer: The product of the parts on one intersecting chord equals the product of the parts of the other chord. 33.G $35 . \mathrm{E}$
12.

41.

45. $y=2 x+8$
47. $y=\frac{2}{9} x+\frac{1}{3}$
43.

39.

49. $y=-\frac{1}{12} x+1$ Lesson 10-8

1. $(x-9)^{2}+y^{2}=25$
(3) $r=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad$ Distance Formula

$$
\begin{array}{ll}
=\sqrt{(2-0)^{2}+(2-0)^{2}} & \left(x_{1}, y_{1}\right)=(0,0) \text { and } \\
=\sqrt{8} & \left(x_{2}, y_{2}\right)=(2,2) \\
\text { Simplify. }
\end{array}
$$

$$
\begin{array}{rll}
(x-h)^{2}+(y-k)^{2} & =r^{2} & \text { Equation of a circle } \\
(x-0)^{2}+(y-0)^{2} & =(\sqrt{8})^{2} & \begin{array}{l}
h=0, k=0, \text { and } \\
\\
x^{2}+y^{2}
\end{array}=8 \\
& r=\sqrt{8} \\
\text { Simplify. }
\end{array}
$$

5. $(x-2)^{2}+(y-1)^{2}=4$
6. $(3,-2) ; 4$
7. $\begin{aligned} & (2,-1) ;(x-2)^{2}+ \\ & (y+1)^{2}=40\end{aligned}$

8. $(1,2),(-1,0)$
9. $x^{2}+y^{2}=16$
10. $(x+2)^{2}+y^{2}=64$
11. $(x+3)^{2}+(y-6)^{2}=9$
12. $(x+5)^{2}+(y+1)^{2}=9$
(21) The third ring has a radius of $15+15+15$ or 45 miles.

$$
\begin{array}{rlrl}
(x-h)^{2}+(y-k)^{2} & =r^{2} & & \text { Equation of a circle } \\
(x-0)^{2}+(y-0)^{2} & =45^{2} & h=0, k=0, \text { and } r=45 \\
x^{2}+y^{2} & =2025 & & \text { Simplify }
\end{array}
$$

23. $(0,0) ; 6$

(25) Write equation in standard form. $x^{2}+y^{2}+8 x-4 y=-4 \quad$ Original equation

$$
\left.\begin{array}{rl}
x^{2}+8 x+y^{2}-4 y & =-4 \\
x^{2}+8 x+16+y^{2}-4 y+4 & =-4+20 \\
& \begin{array}{l}
\text { Isolate and group } \\
\text { like terms. }
\end{array} \\
\text { Complete the }
\end{array}\right\} \text { squares. }
$$

So $h=-4, k=2$, and $r=4$. The center is at $(-4,2)$ and the radius is 4 .

27. $(x-3)^{2}+(y-3)^{2}=13$
29. $(-2,-1),(2,1)$

31. $(-2,-4),(2,0)$
33. $\left(\frac{\sqrt{2}}{2}, \frac{3 \sqrt{2}}{2}\right)$,
$\left(-\frac{\sqrt{2}}{2},-\frac{3 \sqrt{2}}{2}\right)$
35. $(x-3)^{2}+y^{2}=25$

37a. $x^{2}+y^{2}=810,000 \quad$ 37b. 3000 ft
39a. $(x+4)^{2}+(y-5)^{2}=36$

39b. The circle represents the boundary of the delivery region. All homes within the circle get free delivery. Consuela's home at $(0,0)$ is located outside the circle, so she cannot get free delivery.
(41) The radius of a circle centered at the origin and containing the point $(0,-3)$ is 3 units. Therefore, the equation of the circle is $(x-0)^{2}+(y-0)^{2}=$ 3^{2} or $x^{2}+y^{2}=9$. The point $(1,2 \sqrt{2})$ lies on the circle, since evaluating $x^{2}+y^{2}=9$ for $x=1$ and $y=2 \sqrt{2}$ results in a true equation.

$$
\begin{aligned}
1^{2}+(2 \sqrt{2})^{2} & =9 \\
1+8 & =9 \\
9 & =9 \checkmark
\end{aligned}
$$

43. $(x+5)^{2}+(y-2)^{2}=36 \quad$ 45. $(x-8)^{2}+(y-2)^{2}=$ 16 ; the first circle has its center at $(5,-7)$. If the circle is shifted 3 units right and 9 units up, the new center is at $(8,2)$, so the new equation becomes $(x-8)^{2}+$ $(y-2)^{2}=16 . \quad 47 a .4 \quad 47 b-c$. Method 1: Draw a circle of radius 200 centered on each station. Method 2: Use the Pythagorean Theorem to identify pairs of stations that are more than 200 miles apart. Using Method 2, plot the points representing the stations on a graph. Stations that are more than 4 units apart on the graph will be more than 200 miles apart and will thus be able
to use the same frequency. Assign station A to the first frequency. Station B is within 4 units of station A, so it must be assigned the second frequency. Station C is within 4 units of both stations A and B, so it must be assigned a third frequency. Station D is also within 4 units of stations A, B, and C, so it must be assigned a fourth frequency. Station E is $\sqrt{29}$ or about 5.4 units away from station A, so it can share the first frequency. Station F is $\sqrt{29}$ or about 5.4 units away from station B, so it can share the second frequency. Station G is $\sqrt{32}$ or about 5.7 units away from station C, so it can share the third frequency. Therefore, the least number of frequencies that can be assigned is 4. 49. ($-6.4,4.8$) $\begin{array}{llllll}\text { 51. A } & 53 . \text { Step } 1 & 55.3 & 57.5 .6 & 59.53 & 61.28 .3 \mathrm{ft}\end{array}$ $63.32 \mathrm{~cm} ; 64 \mathrm{~cm}^{2}$

Chapter 10 Study Guide and Review

1. false, chord 3. true 5. true 7. false, two
2. false, congruent $\quad 11 . \overline{D M}$ or $\overline{D P} \quad 13.13 .69 \mathrm{~cm}$;
$6.84 \mathrm{~cm} \quad 15.34 .54 \mathrm{ft} ; 17.27 \mathrm{ft} \quad 17.163 \quad 19 \mathrm{a} .100 .8$
$\begin{array}{lllll}19 b & 18 & 19 \text { c. minor arc } & 21.131 & \text { 23.50.4 }\end{array} \quad$ 25.56
3.

29. $97 \quad 31.214 \quad 33.4 \quad$ 35. $(x+2)^{2}+(y-4)^{2}=$

25 37. The radius of the circle is $19+15$ or
34 inches, and (h, k) is $(0,0)$. Therefore the equation is $(x-0)^{2}+(y-0)^{2}=34^{2}$ or $x^{2}+y^{2}=34^{2}$.

CHAPTER 11
 Areas of Polygons and Circles

Chapter 11 Get Ready
$\begin{array}{lllllll}1.5 & 3.20 & 5.11 \mathrm{ft} & 7.123 & 9.78 & 11.11 & 13.3 \sqrt{2} \mathrm{~cm}\end{array}$
Lesson 11-1

1. 56 in., $180 \mathrm{in}^{2} \quad 3.64 \mathrm{~cm}, 207.8 \mathrm{~cm}^{2} \quad 5.43 .5 \mathrm{in}$., $20 \mathrm{in}^{2}$ 7.28 .5 in., 33.8 in $^{2} 9.11 \mathrm{~cm}$
(11) Perimeter $=21+17+21+17$ or 76 ft

Use the Pythagorean Theorem to find the height.
$8^{2}+h^{2}=17^{2} \quad$ Pythagorean Theorem
$64+h^{2}=289 \quad$ Simplify.
$h^{2}=225$ Subtract 64 from each side.
$h=15$ Take the positive square root of each side.
$A=b h \quad$ Area of a parallelogram

$$
=21(15) \text { or } 315 \mathrm{ft}^{2} \quad b=21 \text { and } h=15
$$

$13.69 .9 \mathrm{~m}, 129.9 \mathrm{~m}^{2} \quad 15.174 .4 \mathrm{~m}, 1520 \mathrm{~m}^{2} \quad 17.727 .5 \mathrm{ft}^{2}$
$19.338 .4 \mathrm{~cm}^{2} \quad 21.480 \mathrm{~m}^{2}$
(23)

$$
\cos 26^{\circ}=\frac{h}{158} \quad \cos =\frac{\text { adjacent }}{\text { hypotenuse }}
$$

$158 \cos 26^{\circ}=h \quad$ Multiply each side by 158. $142 \approx h \quad$ Use a calculator.

$$
\begin{array}{rlrl}
A & =b h & \text { Area of a parallelogram } \\
& \approx 394(142) \text { or } 55,948 \mathrm{mi}^{2} & b=394 \text { and } h=142
\end{array}
$$

25. $b=12 \mathrm{~cm} ; h=3 \mathrm{~cm} \quad 27 . b=11 \mathrm{~m} ; h=8 \mathrm{~m}$
26. 1 pint yellow, 3 pints of blue $31.9 .19 \mathrm{in} . ; 4.79 \mathrm{in}^{2}$
(33) Graph the parallelogram then measure the length of the base and the height and calculate the area.

35a. 10.9 units 2
35b. $\sqrt{s(s-a)(s-b)(s-c)} \xlongequal{=} \frac{1}{2} b h$

$$
\begin{aligned}
\sqrt{15(15-5)(15-12)(15-13)} & \stackrel{?}{2}(5)(12) \\
\sqrt{15(10)(3)(2)} & \stackrel{?}{=} 30 \\
\sqrt{900} & \stackrel{?}{=} 30 \\
30 & =30
\end{aligned}
$$

37.15 units 2; Sample answer: I inscribed the triangle in a 6-by-6 square. I found the area of the square and subtracted the areas of the three right triangles inside the square that were positioned around the given triangle. The area of the given triangle is the difference, or 15 units 2. 39. Sample answer: The area will not change as K moves along line p. Since lines m and p are parallel, the perpendicular distance between them is constant. That means that no matter where K is on line p, the perpendicular distance to line p, or the height of the triangle, is always the same. Since point J and L are not moving, the distance between them, or the length of the base, is constant. Since the height of the triangle and the base of the triangle are both constant, the area will always be the same. 41. Sample answer: To find the area of the parallelogram, you can measure the height $\overline{P T}$ and then measure one of the bases $\overline{P Q}$ or $\overline{S R}$ and multiply the height by the base to get the area. You can also measure the height $\overline{S W}$ and measure one of the bases $\overline{Q R}$ or $\overline{P S}$ and then multiply the height
by the base to get the area. It doesn't matter which side you choose to use as the base, as long as you use the height that is perpendicular to that base to calculate the $\begin{array}{llll}\text { area. 43. } 6 & \text { 45. B 47. } x^{2}+y^{2}=36 & \text { 49. }(x-1)^{2}+\end{array}$ $(y+4)^{2}=17 \quad$ 51.5.6 \quad 53. Sample answer: if each pair of opposite sides are parallel, the quadrilateral is a parallelogram. $55.9 \quad 57.12$

Lesson 11-2

1. $132 \mathrm{ft}^{2}$
$3.178 .5 \mathrm{~m}^{2}$
5.8 cm
2. 6.3 ft
3. $678.5 \mathrm{ft}^{2}$
11.136 in $^{2} \quad 13.137 .5 \mathrm{ft}^{2}$

$$
\text { (15 } \begin{aligned}
A & =\frac{1}{2} d_{1} d_{2} & & \text { Area of a kite } \\
& =\frac{1}{2}(4.8)(10.2) & & d_{1}=4.8 \text { and } d_{2}=10.2 \\
& =24.48 & & \text { Simplify. }
\end{aligned}
$$

The area is about 24.5 square microns.
17. $784 \mathrm{ft}^{2}$
(19) Let x represent the length of one diagonal. Then the length of the other diagonal is $3 x$.

$$
\begin{aligned}
A & =\frac{1}{2} d_{1} d_{2} & & \text { Area of a rhombus } \\
168 & =\frac{1}{2}(x)(3 x) & & A=168, d_{1}=x, \text { and } d_{2}=3 x \\
168 & =\frac{3}{2} x^{2} & & \text { Simplify. } \\
112 & =x^{2} & & \text { Multiply each side by } \frac{2}{3} . \\
\sqrt{112} & =x & & \text { Take the positive square root of each side. }
\end{aligned}
$$

So the lengths of the diagonals are $\sqrt{112}$ or about 10.6 centimeters and $3(\sqrt{112})$ or about 31.7 centimeters.
21.4 m 23. The area of $\triangle H J F=\frac{1}{2} d_{1}\left(\frac{1}{2} d_{2}\right)$ and the area of $\triangle H G F=\frac{1}{2} d_{1}\left(\frac{1}{2} d_{2}\right)$. Therefore, the area of $\triangle H J F=\frac{1}{4} d_{1} d_{2}$, and the area of $\triangle H G F=\frac{1}{4} d_{1} d_{2}$. The area of kite $F G H J$ is equal to the area of $\triangle H J F+$ the area of $\triangle H G F$ or $\frac{1}{4} d_{1} d_{2}+\frac{1}{4} d_{1} d_{2}$. After simplification, the area of kite $F G H J$ is equal to $\frac{1}{2} d_{1} d_{2}$. 25a. $24 \mathrm{in}^{2}$ each of yellow, red, orange, green, and blue; $20 \mathrm{in}^{2}$ of purple 25b. Yes; her kite has an area of $140 \mathrm{in}^{2}$, which is less than 200 in 2. 27.18 sq. units 29. The area of a trapezoid is $\frac{1}{2} h\left(b_{1}+b_{2}\right)$. So, $A=\frac{1}{2}(x+y)(x+y)$ or $\frac{1}{2}\left(x^{2}+x y+y^{2}\right)$. The area of $\Delta 1=\frac{1}{2}(y)(x)$, $\triangle 2=\frac{1}{2}(z)(z)$, and $\triangle 3=\frac{1}{2}(x)(y)$. The area of $\triangle 1+\triangle 2+\triangle 3=\frac{1}{2} x y+\frac{1}{2} z^{2}+\frac{1}{2} x y$. Set the area of the trapezoid equal to the combined areas of the triangles to get $\frac{1}{2}\left(x^{2}+2 x y+y^{2}\right)=\frac{1}{2} x y+\frac{1}{2} z^{2}+\frac{1}{2} x y$. Multiply by 2 on each side: $x^{2}+2 x y+y^{2}=2 x y+z^{2}$. When simplified, $x^{2}+y^{2}=z^{2}$.
(31) The length of the base of the triangle is $\frac{12-8}{2}$ or 2. Use trigonometry to find the height of the triangle (and trapezoid).

$$
\tan 30=\frac{\text { opposite }}{\text { adjacent }}
$$

$$
\frac{\sqrt{3}}{3}=\frac{2}{h}
$$

$$
\begin{aligned}
\sqrt{3} h & =6 \\
h & =\frac{6}{\sqrt{3}} \\
h & =2 \sqrt{3}
\end{aligned}
$$

Use the Pythagorean Theorem to find the hypotenuse of the triangle.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
2^{2}+(2 \sqrt{3})^{2} & =c^{2} \\
4+12 & =c^{2} \\
16 & =c^{2} \\
4 & =c
\end{aligned}
$$

Find the perimeter and area of the trapezoid.
perimeter $=12+8+4+4$

$$
\begin{aligned}
& =28 \mathrm{in} . \\
& =\frac{28}{12} \mathrm{ft} \\
& \approx 2.3 \mathrm{ft}
\end{aligned}
$$

$$
\text { area }=\frac{1}{2}\left(b_{1}+b_{2}\right) h
$$

$$
=\frac{1}{2}(8+12)(2 \sqrt{3})
$$

$$
=20 \sqrt{3 \mathrm{in}^{2}}
$$

$$
=20 \sqrt{3 \mathrm{in}^{2}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in.}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{in} .}
$$

$$
=\frac{20 \sqrt{3}}{144} \mathrm{ft}^{2}
$$

$$
\approx 0.2 \mathrm{ft}^{2}
$$

33a.

33b.

33c.

\boldsymbol{x}	\boldsymbol{P}
2 cm	26.1 cm
4 cm	25.4 cm
6 cm	25.3 cm
8 cm	25.4 cm
10 cm	26.1 cm

33d.

33e. Sample answer: Based on the graph, the perimeter will be minimized when $x=6$. This value is significant because when $x=6$, the figure is a rhombus. 35.7.2 37. Sometimes; sample answer: If the areas are equal, it means that the products of the diagonals are equal. The only time that the
perimeters will be equal is when the diagonals are also equal, or when the two rhombi are congruent.
39. A 41.J 43. 17.5 units 2
45. $x^{2}+y^{2}=1600$
47. $x=9 ; y=9 \sqrt{3}$
49. always
51. never
53. 18.8 in.; 28.3 in 2
$55.36 .4 \mathrm{ft} ; 105.7 \mathrm{ft}^{2}$

Lesson 11-3

1. $1385.4 \mathrm{yd}^{2}$
(3) $A=\pi r^{2} \quad$ Area of a circle

$$
74=\pi r^{2} \quad A=74
$$

$23.55 \approx r^{2} \quad$ Divide each side by π.
$4.85 \approx r \quad$ Take the positive square root of each side.
So, the diameter is $2 \cdot 4.85$ or about 9.7 millimeters.
$\begin{array}{llll}\text { 5. } 4.5 \text { in }^{2} & \text { 7a. } 10.6 \text { in }^{2} & \text { 7b. } \$ 48 & 9.78 .5 \mathrm{yd}^{2}\end{array}$
11.14.2 in 2
$13.78 .5 \mathrm{ft}^{2}$
15.10 .9 mm
17. 8.1 ft
(19) $A=\frac{x}{360} \cdot \pi r^{2} \quad$ Area of a sector

$$
\begin{aligned}
& =\frac{72}{360} \cdot \pi(8)^{2} \quad x=72 \text { and } r=8 \\
& \approx 40.2 \mathrm{~cm}^{2} \quad \text { Use a calculator. }
\end{aligned}
$$

$21.322 \mathrm{~m}^{2} \quad 23.284 \mathrm{in}^{2} \quad 25 a .1 .7 \mathrm{~cm}^{2}$ each 25b. about $319.4 \mathrm{mg} \quad 27.13 \quad 29.9 .8$
(31) a. $C=\pi d \quad$ Circumference of a circle
$2.5=\pi d \quad C=2.5$
$0.8 \mathrm{ft} \approx d \quad$ Divide each side by π.
b. age $=$ diameter \cdot growth factor

$$
=0.8 \cdot 4.5 \text { or } 3.6 \mathrm{yr}
$$

$33.53 .5 \mathrm{~m}^{2} \quad 35.10 .7 \mathrm{~cm}^{2} \quad 37.7 .9 \mathrm{in}^{2} \quad 39.30 \mathrm{~mm}^{2}$
(41) The area equals the area of the large semicircle with a radius of 6 in . plus the area of a small semicircle minus 2 times the area of a small semicircle. The radius of each small semicircles is 2 in .

$$
\begin{aligned}
A & =\frac{1}{2} \pi(6)^{2}+\frac{1}{2} \pi(2)^{2}-2\left[\frac{1}{2} \pi(2)^{2}\right] \\
& =18 \pi+2 \pi-4 \pi \\
& =16 \pi \\
& \approx 50.3 \mathrm{in}^{2}
\end{aligned}
$$

43a. $A=\frac{x \pi r^{2}}{360}-r^{2}\left[\sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right)\right]$

43b.

\boldsymbol{x}	\boldsymbol{A}
10	0.1
20	0.5
30	1.7
40	4.0
45	5.6
50	7.7
60	13.0
70	20.3
80	29.6
90	41.1

43c.
Area and Central Angles

43d. Sample answer: From the graph, it looks like the area would be about 15.5 when x is 63°. Using the formula, the area is 15.0 when x is 63°. The values are very close because I used the formula to create the graph. 45. $449.0 \mathrm{~cm}^{2}$ 47. Sample answer: You can find the shaded area of the circle by subtracting x from 360° and using the resulting measure in the formula for the area of a sector. You could also find the shaded area by finding the area of the entire circle, finding the area of the unshaded sector using the formula for the area of a sector, and subtracting the area of the unshaded sector from the area of the entire circle. The method in which you find the ratio of the area of a sector to the area of the whole circle is more efficient. It requires less steps, is faster, and there is a lower probability for error. 49. Sample answer: If the radius of the circle doubles, the area will not double. If the radius of the circle doubles, the area will be four times as great. Since the radius is squared, if you multiply the radius by 2 , you multiply the area by 2^{2}, or 4 . If the arc length of a sector is doubled, the area of the sector is doubled. Since the arc length is not raised to a power, if the arc length is doubled, the area would also be twice as large. 51. $x=56 ; m \angle M T Q=$ 117; $m \angle P T M=63 \quad 53$. E $\quad 55.13 .2 \mathrm{~cm}, 26.4 \mathrm{~cm}$
57. $178.2 \mathrm{ft}^{2}$
59.7
61.31

Lesson 11-4

1. center: point F, radius: $\overline{F D}$, apothem: $\overline{F G}$, central angle: $\angle C F D, 90^{\circ} \quad 3.162$ in $^{2} \quad 5.239 \mathrm{ft}^{2}$
(7) a. The blue area equals the area of the center circle with a radius of 3 ft plus 2 times the quantity of the area a rectangle 19 ft by 12 ft minus the area of a semicircle with a radius of 6 ft .
Area
$=$ Area of circle $+2 \cdot$ Area of rectangle Area of semicircle
$=\pi r^{2} \quad+2 \cdot \quad\left(\ell w-\frac{1}{2} \pi r^{2}\right)$
$=\pi(3)^{2}+2\left[\left(19(12)-\frac{1}{2} \pi(6)^{2}\right]\right.$
$=9 \pi+2(228-18 \pi)$
$=9 \pi+456-36 \pi$
$=456-27 \pi$
$\approx 371 \mathrm{ft}^{2}$
b. The red area equals the area of the center circle with a radius of 6 ft minus the center circle with a radius of 3 ft plus 2 times the area of a circle with a radius of 6 ft .
Area
$=$ Area of large circle - Area of small circle

$$
+2 \cdot \text { Area of circle }
$$

$=\quad \pi r^{2} \quad-\quad \pi r^{2}+2 \cdot \pi r^{2}$
$=\pi(6)^{2}-\pi(3)^{2}+2 \pi(6)^{2}$
$=36 \pi-9 \pi+72 \pi$
$=99 \pi$
$\approx 311 \mathrm{ft}^{2}$
9. center: point R, radius: $\overline{R L}$, apothem: $\overline{R S}$, central angle: $\angle K R L, 60^{\circ} \quad 11.59 .4 \mathrm{~cm}^{2} \quad 13.584 .2 \mathrm{in}^{2}$
(15) The figure can be separated into a rectangle with a length of 12 cm and a width of 10 cm and a triangle with a base of 12 cm and a height of $16 \mathrm{~cm}-10 \mathrm{~cm}$ or 6 cm .
Area of figure $=$ Area of rectangle + Area of triangle

$$
\begin{aligned}
& =\quad \ell w \quad+\quad \frac{1}{2} b h \\
& =12(10)+\frac{1}{2}(12)(6) \\
& =120+36 \text { or } 156 \mathrm{~cm}^{2}
\end{aligned}
$$

17.55.6 in ${ }^{2}$ 19.42.1 yd 21 a. 29.7 in., 52.3 in 2 21b. 16
23.1.9 in ${ }^{2} \quad 25 a .50 .9 \mathrm{ft}^{2} 25 \mathrm{~b} .4$ boxes 27.58 .1 mm ;
$232.4 \mathrm{~mm}^{2}$
29) To find the area of the shaded region, find the area of the rectangle 8 units by 4 units minus the area of the semicircle with a radius of 2 units minus the area of the trapezoid with bases 4 units and 2 units and height 2 units.
Area of figure
$=$ Area of rectangle - Area of semicircle

- Area of trapezoid

$$
\begin{aligned}
& =\quad \ell w \quad-\frac{1}{2} \pi r^{2}-\frac{1}{2} h\left(b_{1}+b_{2}\right) \\
& =8(4)-\frac{1}{2} \pi(2)^{2}-\frac{1}{2}(2)(4+2) \\
& =32-2 \pi-6 \\
& =26-2 \pi \\
& \approx 19.7 \text { units }^{2}
\end{aligned}
$$

31.24 units $^{2} \quad 33.0 .43 \mathrm{in}^{2} ; 0.56 \mathrm{in}^{2} ; 0.62 \mathrm{in}^{2} ; 0.65 \mathrm{in}^{2}$; Sample answer: When the perimeter of a regular polygon is constant, as the number of sides increases, the area of the polygon increases.
35. Chloe; sample answer: The measure of each angle of a regular hexagon is 120°, so the segments from the center to each vertex form 60° angles. The triangles formed by the segments from the center to each vertex are equilateral, so each side of the hexagon is 11 in . The perimeter of the hexagon is 66 in . Using trigonometry, the length of the apothem is about 9.5 in . Putting the values into the formula for the area of a regular polygon and simplifying, the area is about $313.5 \mathrm{in}^{2}$.
37. Sample answer:

39. Sample answer: You can decompose the figure into shapes of which you know the area formulas. Then, you can sum all of the areas to find the total area of the figure. 41.F 43.D $45.254 .5 \mathrm{~cm}^{2}$
$47.490 .9 \mathrm{~mm}^{2} \quad 49.272 \mathrm{in}^{2}$ 51. semicircle; 180
53. major arc; $270 \quad 55.30$

1. $9 \mathrm{yd}^{2} \quad 3 . \frac{5}{3} ; 35$
2. 5.28 in 2
(7) The scale factor between the parallelograms is $\frac{7.5}{15}$ or $\frac{1}{2}$, so the ratio of their areas is $\left(\frac{1}{2}\right)^{2}$ or $\frac{1}{4}$. $\frac{\text { small figure }}{\text { area of }}=\frac{1}{4}$

Write a proportion.

> large figure

$$
\frac{60}{\begin{array}{l}
\text { area of } \\
\text { large figure }
\end{array}}=\frac{1}{4}
$$

Substitution

$$
\begin{aligned}
& 60 \cdot 4=\text { area of large figure } \cdot 1 \quad \text { Cross multiply. } \\
& 240=\text { area of large figure Simplify. }
\end{aligned}
$$

So the area of the large parallelogram is $240 \mathrm{ft}^{2}$.
$9.672 \mathrm{~cm}^{2}$
11. $\frac{4}{5} ; 17.5$
13. $\frac{3}{2} ; 36$
15a. 4 in.

15b. Larger; sample answer: The area of a circular pie pan with an 8 in . diameter is about $50 \mathrm{in}^{2}$. The area of the larger pan is $52.6 \mathrm{in}^{2}$, and the area of the smaller pan is $41.6 \mathrm{in}^{2}$. The area of the larger pan is closer to the area of the circle, so Kaitlyn should choose the larger pan to make the recipe. 17a. If the area is doubled, the radius changes from 24 in . to 33.9 in. 17b. If the area is tripled, the radius changes from 24 in . to 41.6 in . $\mathbf{1 7}$ c. If the area changes by a factor of x, then the radius changes from 24 in. to $24 \sqrt{x}$ in.
(19) Area of $\triangle J K L=\frac{1}{2} b h$

$$
=\frac{1}{2}(5)(6) \text { or } 15 \text { square units }
$$

The scale factor between the triangles is $\frac{5}{3}$, so the ratio of their areas is $\left(\frac{5}{3}\right)^{2}$ or $\frac{25}{9}$.

$$
\begin{array}{rlr}
\frac{\text { area of } \Delta J K L}{\text { area of } \Delta J^{\prime} K^{\prime} L^{\prime}} & =\frac{25}{9} \quad \text { Write a proportion. } \\
\frac{15}{\Delta J^{\prime} K^{\prime} L^{\prime}} & =\frac{25}{9} \quad \text { Area of } \Delta \mathrm{JKL}=15 \\
15 \cdot 9 & =\text { area of } \Delta J^{\prime} K^{\prime} L^{\prime} \cdot 25 & \text { Cross multiply. } \\
5.4 & =\text { area of } \Delta J^{\prime} K^{\prime} L^{\prime} & \begin{array}{l}
\text { Divide each } \\
\text { side by } 25 .
\end{array}
\end{array}
$$

So the area of $\Delta J^{\prime} K^{\prime} L^{\prime}$ is 5.4 units 2.
21. area of $A B C D=18$; area of $A^{\prime} B^{\prime} C^{\prime} D^{\prime} \approx 56.2$
(23) a. Sample answer: The graph is misleading because the tennis balls used to illustrate the number of participants are similar circles. When the diameter of the tennis ball increases, the area of the tennis ball also increases. For example, the diameter of the tennis ball representing 1995 is about 2.6 and the diameter of the tennis ball representing 2000 is about 3 . So, the rate of increase in the diameters is $\frac{3-2.6}{2000-1995}$ or about 8%. The area of the circle representing 1995 is $\pi(1.3)^{2}$ and the area of the circle representing 2000 is $\pi(1.5)^{2}$. So, the rate of increase in the areas is $\frac{2.25 \pi-1.69 \pi}{2000-1995}$ or about 35%. The area of the tennis ball increases at a greater rate than the diameter of the tennis ball, so it looks like the number of participants in high school tennis is increasing more than it actually is.
b. Sample answer: If you use a figure with a constant width to represent the participation in each year and only change the height, the graph would not be misleading. For example, use rectangles of equal width and height that varies. 25. Neither; sample answer: In order to find the area of the enlarged circle, you can multiply the radius by the scale factor and substitute it into the area formula, or you can multiply the area formula by the scale factor squared. The formula for the area of the enlargment is $A=\pi(k r)^{2}$ or $A=k^{2} \pi r^{2}$.
27. $P_{\text {enlarged }}=Q \sqrt{R} \quad$ 29. Sample answer: If you know the area of the original polygon and the scale factor of the enlargement, you can find the area of the enlarged polygon by multiplying the original area by the scale factor squared. 31. J 33. E
35. $66.3 \mathrm{~cm}^{2} \quad 37.37 .4$ in $^{2} \quad 39.142 .5$
41. both
43. $\overline{L P}$
45. $\overline{B M}, \overline{A L}, \overline{E P}, \overline{O P}, \overline{P L}, \overline{L M}, \overline{M N}$

Chapter 11 Study Guide and Review

1. false; height 3. false; radius 5 . true 7. false; height of a parallelogram 9 . false; base $11 . P=50 \mathrm{~cm}$; $\mathrm{A}=60 \mathrm{~cm}^{2} \quad 13 . P=13.2 \mathrm{~mm} ; A=6 \mathrm{~mm}^{2} \quad 15.132 \mathrm{ft}^{2}$ 17. $96 \mathrm{~cm}^{2} \quad 19.336 \mathrm{~cm}^{2} \quad 21.1 .5 \mathrm{~m}^{2} \quad 23.59 \mathrm{in}^{2}$
2. $166.3 \mathrm{ft}^{2} \quad 27.65 .0 \mathrm{~m}^{2} \quad$ 29. $\approx 695 \mathrm{in}^{2} \quad$ 31. $\frac{1}{2} ; 8$
3. area of $\triangle R S T=18$ square units; area of $\triangle R^{\prime} S^{\prime} T^{\prime}=$ 4.5 square units 35.16 .4 miles

CHAPTER 12
 Extending Surface Area and Volume

Chapter 12 Get Ready
$\begin{array}{lllll}\text { 1. true } & \text { 3.true } & 5 . t r u e & 7.168 \text { in }^{2} & 9.176 \text { in }^{2} \\ \text { 11. } \\ \pm 15\end{array}$
Lesson 12-1

1. Sample answer:

2.

$\mathbf{5 a}$. slice vertically $\mathbf{5 b}$. slice horizontally an angle 7. triangle
(9) Sample answer: First mark the corner of the solid. Then draw 4 units down, 1 unit to the left, and 3 units to the right. Draw a triangle for the top of the solid. Draw segments 4 units down from each vertex for the
vertical edges. Connect the appropriate vertices. Use a dashed line for the hidden edge.
11.

13.

15) a. The cross section is a four-sided figure with opposite sides parallel and congruent and with all angles right angles. So, the cross section is a rectangle.
b. To make the cross section of a triangle, cut off the corner of the clay through one of the vertices to the opposite face of the figure.
17. hexagon 19. trapezoid
21. Make a vertical cut. 23. Make an angled cut.
25. Sample answer:
27. Sample answer:

29a-b. Sample answer:

29c. Sample answer: The first drawing shows a view of the object from the bottom. The second drawing shows a view of the object from the top.
(31) Top view: There are two rows and 3 columns when viewed from above. Use dark segments to indicate that there are different heights. Left view: The figure is 3 units high and two units wide. Front view: The first column is 3 units high, the second is 2 units high, and the third is 1 unit high. Right view: The figure is 3 units high and 2 units wide. Use dark segments to indicate that there are two breaks in this surface.
33a. Sample answer:

left view

33b. Make a horizontal cut through the bottom part of the figure or make a vertical cut through the left side of the figure.

33c. The front view of the solid is the cross section when a vertical cut is made lengthwise. The right view of the solid is the cross section when a vertical cut is made through the right side of the figure. 35. Sample answer: A cone is sliced at an angle through its lateral side and base.
37. Sample answer:

39. The cross section is a triangle. There are six different ways to slice the pyramid so that two equal parts are formed because the figure has six planes of symmetry. In each case, the cross section is an isosceles triangle. Only the side lengths of the triangles change. 41a. inner side of deck $=$ circumference of pool $=81.64 \div \pi \approx 26 \mathrm{ft}$; outer side of deck $=26+3+3=32 \mathrm{ft}$; outer perimeter of deck $=$ $4 \times 32=128 \mathrm{ft} \quad 41 \mathrm{~b}$. area of deck $=(2 \times 3 \times 32)+(2 \times$ $3 \times 26)=348$ square feet $\quad 43$. E \quad 45. $\frac{3}{2}$; 9
47. about $3.6 \mathrm{yd}^{2} \quad 49.28 .9$ in.; 66.5 in 2

Lesson 12-2

1. $112.5 \mathrm{in}^{2} \quad 3 . L=288 \mathrm{ft}^{2} ; S=336 \mathrm{ft}^{2} \quad 5 . L \approx 653.5 \mathrm{yd}^{2}$; $S \approx 1715.3 \mathrm{yd}^{2}$
(7) $S=2 \pi r h+2 \pi r^{2} \quad$ Surface area of a cylinder
$286.3=2 \pi(3.4) h+2 \pi(3.4)^{2} \quad$ Replace S with 286.3 and r with 3.4.
$286.3 \approx 21.4 h+72.6$
Use a calculator to simplify.
Subtract 72.6 from each side.
Divide each side by 21.4.
$213.7 \approx 21.4 h$
$10.0 \approx h$
The height of the can is about 10.0 cm .
(9) Find the missing side length of the base.

$$
\begin{aligned}
c^{2} & =4^{2}+3^{2} & & \text { Pythagorean Theorem } \\
c^{2} & =25 & & \text { Simplify. } \\
c & =5 & & \text { Take the square root of each side. } \\
L & =P h & & \text { Lateral area of a prism } \\
& =(4+3+5) 2 & & \text { Substitution } \\
& =24 & & \text { Simplify. }
\end{aligned}
$$

The lateral area is $24 \mathrm{ft}^{2}$.

$$
\begin{aligned}
S & =P h+2 B \\
& =(4+3+5)(2)+2\left(\frac{1}{2} \cdot 4 \cdot 3\right) \\
& =24+12 \text { or } 36
\end{aligned}
$$

Surface area of a prism
Substitution
Simplify.
The surface area is $36 \mathrm{ft}^{2}$.
11. Sample answer: $L=64 \mathrm{in}^{2} ; S=88 \mathrm{in}^{2}$
13. $L=11.2 \mathrm{~m}^{2} ; S=13.6 \mathrm{~m}^{2} \quad 15 . L=1032 \mathrm{~cm}^{2}$;
$S=1932 \mathrm{~cm}^{2}(18 \times 25$ base $) ; L=1332 \mathrm{~cm}^{2} ; S=$
$1932 \mathrm{~cm}^{2}(25 \times 12$ base $) ; L=1500 \mathrm{~cm}^{2} ; S=1932 \mathrm{~cm}^{2}$
(18×12 base) 17. $L=1484.8 \mathrm{~cm}^{2} ; S=1745.2 \mathrm{~cm}^{2}$
19. $L \approx 282.7 \mathrm{~mm}^{2} ; S \approx 339.3 \mathrm{~mm}^{2} \quad 21 . L \approx 155.8 \mathrm{in}^{2}$; $S \approx 256.4 \mathrm{in}^{2} 23.42 .5 \mathrm{~m}^{2} 25 . r=9.2 \mathrm{~cm}$
(27)

$$
\begin{aligned}
S & =2 \pi r h+2 \pi r^{2} & & \text { Surface area of a cylinder } \\
256 \pi & =2 \pi r(8)+2 \pi r^{2} & & \text { Replace } S \text { with } 256 \pi \text { and } h \\
128 & =8 r+r^{2} & & \text { with } 8 . \\
0 & =r^{2}+8 r-128 & & \text { Subide each side by } 2 \pi . \\
0 & =(r+16)(r-8) & & \text { Factor. } 128 \text { from each side. } \\
r+16 & =0 \quad \text { or } r-8=0 & & \text { Zero Product Property } \\
r & =-16 \quad r=8 & &
\end{aligned}
$$

Since the radius cannot be negative, $r=8$. So, the diameter is $8 \cdot 2$ or 16 millimeters.

29a. First, find the area of the sector and double it. Then find 73% of the the lateral area of the cylinder. Next, find the areas of the two rectangles formed by the radius and height when a portion is cut. Last, find the sum of all the areas. 29b. $283.7 \mathrm{in}^{2}$
31. $L=1392.0 \mathrm{~cm}^{2} ; S=2032 \mathrm{~cm}^{2}$ 33. about $299.1 \mathrm{~cm}^{2}$
(35) The composite figure has trapezoid bases. The trapezoids have bases 20 cm and 13 cm and a height of 21 cm . To find the length of the fourth side of the trapezoid x, use the Pythagorean Theorem.

$$
\begin{aligned}
x^{2} & =21^{2}+7^{2} & & \text { Pythagorean Theorem } \\
x^{2} & =490 & & \text { Simplify. } \\
x & \approx 22.136 & & \text { Take the square root of each side. }
\end{aligned}
$$

$$
\begin{aligned}
S= & P h+2 B \quad \text { Surface area of a prism } \\
\approx & (21+13+22.136+20)(28)+ \\
& 2\left[\frac{1}{2}(21)(20+13)\right] \quad \text { Substitution } \\
\approx & 2131.8+693 \text { or } 2824.8 \mathrm{~cm}^{2} \quad \text { Simplify. }
\end{aligned}
$$

$37.1059 .3 \mathrm{~cm}^{2}$ 39. Derek; sample answer: $S=2 \pi r^{2}+2 \pi r h$, so the surface area of the cylinder is $2 \pi(6)^{2}+2 \pi(6)(5)$ or $132 \pi \mathrm{~cm}^{2} \quad 41$. To find the surface area of any solid figure, find the area of the base (or bases) and add to the area of the lateral faces of the figure. The lateral faces and bases of a rectangular prism are rectangles. Since the bases of a cylinder are circles, the lateral faces of a cylinder is a rectangle. 43. $\frac{\sqrt{3}}{2} \ell^{2}+3 \ell h$; the area of an equilateral triangle of side ℓ is $\frac{\sqrt{3}}{4} \ell^{2}$ and the perimeter of the triangle is 3ℓ. So, the total surface area is $\frac{\sqrt{3}}{2} \ell^{2}+$ 3lh. 45. A 47. H

51. One 9-inch cake; Nine minicakes have the same top area as one 9-inch cake, but nine minicakes cost $9(\$ 4)$ or $\$ 36$ while the 9-inch cake is only $\$ 15$, so the 9 -inch cake is a better buy.
53. 2.5 in. 55. 20.5

Lesson 12-3

1. $L=384 \mathrm{~cm}^{2} ; S=640 \mathrm{~cm}^{2}$ 3. $L \approx 207.8 \mathrm{~m}^{2}$; $S \approx 332.6 \mathrm{~m}^{2} 5 . L \approx 188.5 \mathrm{~m}^{2} ; S \approx 267.0 \mathrm{~m}^{2}$

$$
\begin{aligned}
L & =\frac{1}{2} P \ell & & \text { Lateral area of a regular pyramid } \\
& =\frac{1}{2}(8)(5) & & P=2 \cdot 4 \text { or } 8, \ell=5 \\
& =20 \mathrm{~m}^{2} & & \text { Simplify. } \\
S & =\frac{1}{2} P \ell+B & & \text { Surface area of a regular pyramid } \\
& =20+4 & & \frac{1}{2} P \ell=20, B=4 \\
& =24 \mathrm{~m}^{2} & & \text { Simplify. }
\end{aligned}
$$

9. $L \approx 178.2 \mathrm{~cm}^{2} ; S \approx 302.9 \mathrm{~cm}^{2} 11 . L \approx 966.0 \mathrm{in}^{2} ; S \approx$ $1686.0 \mathrm{in}^{2} 13.139,440 \mathrm{ft}^{2} 15 . L \approx 357.6 \mathrm{~cm}^{2} ; S \approx$ $470.7 \mathrm{~cm}^{2}$ 17. $L \approx 241.1 \mathrm{ft}^{2} ; S \approx 446.1 \mathrm{ft}^{2}$
(19) Use the Pythagorean Theorem to find the slant height ℓ.

$$
\begin{array}{rlr}
c^{2}=a^{2}+b^{2} & \text { Pythagorean Theorem } \\
\ell^{2}=20^{2}+82.5^{2} & a=20, b=82.5, c=\ell \\
\ell^{2}=7206.25 & \text { Simplify. } \\
\ell=\sqrt{7206.25} & \text { Take the square root of each side. }
\end{array}
$$

$$
\begin{aligned}
L & =\frac{1}{2} P \ell & & \text { Lateral area of a regular pyramid } \\
& =\frac{1}{2}(660)(\sqrt{7206.25}) & & P=154 \cdot 4 \text { or } 660, \ell=6 \\
& \approx 28,013.6 \mathrm{yd}^{2} & & \text { Use a calculator. }
\end{aligned}
$$

$21.34 \quad 23.5 \mathrm{~mm} \quad 25.16 \mathrm{~cm} \quad 27.266 \pi \mathrm{ft}^{2}$
29a. nonregular pyramid with a square base
29b. Sample answer:
31. Sample answer:

(33) The lateral area of a cone is $L=\pi r \ell$. The radius is half the diameter, or 7.5 mm . Find the slant height ℓ.

$\sin 32^{\circ}=\frac{\text { opposite }}{\text { hypotenuse }}$
$\sin 32^{\circ}=\frac{7.5}{\ell}$
$\ell=\frac{7.5}{\sin 32^{\circ}}$ or about 14.15 mm
$L=\pi(7.5)(14.15)$ or about $333.5 \mathrm{~mm}^{2}$.
The surface area of a cone is $S=L+\pi r^{2}$.
$S=333.5+\pi(7.5)^{2}$ or about $510.2 \mathrm{~mm}^{2}$.

35a. Sample answer:
35b.

Slant Height (units)	Lateral Area (units) 2
1	6
3	18
9	54

35c. The lateral area is tripled. 35d. The lateral area is multiplied by 3^{2} or 9 . 37. Always; if the heights and radii are the same, the surface area of the cylinder will be greater since it has two circular bases and additional lateral area. 39. Sample answer: a square pyramid with a base edge of 5 units and a slant height of 7.5 units 41. Use the apothem, the height, and the Pythagorean Theorem to find the slant height ℓ of the pyramid. Then use the central angle of the n-gon and the apothem to find the length of one side of the n-gon. Then find the perimeter. Finally, use $S=\frac{1}{2} P \ell+B$ to find the surface area. The area of the base B is $\frac{1}{2} P a . \quad 43.3299 \mathrm{~mm}^{2}$ 45. D
47.

49.

51.

53.

$55.57 \mathrm{~m}, 120 \mathrm{~m}^{2}$
57.183 .1 in., $1887 \mathrm{in}^{2}$

Lesson 12-4

1. $108 \mathrm{~cm}^{3}$

3
$3.26 .95 \mathrm{~m}^{3}$
$5.206 .4 \mathrm{ft}^{3}$
$7.1025 .4 \mathrm{~cm}^{3}$ 9.D
(11) $V=B h$

Volume of a prism

$$
\begin{aligned}
& =38.5(14) \quad B=\frac{1}{2}(11)(7) \text { or } 38.5, h=14 \\
& =539 \mathrm{~m}^{3} \quad \text { Simplify } .
\end{aligned}
$$

13. $58.14 \mathrm{ft}^{3} \quad 15.1534 .25 \mathrm{in}^{3}$
(17) $V=\pi r^{2} h \quad$ Volume of a cylinder

$$
\begin{aligned}
& =\pi(6)^{2}(3.6) \quad \text { Replace } r \text { with } 12 \div 2 \text { or } 6 \text { and } h \text { with 3.6. } \\
& \approx 407.2 \mathrm{~cm}^{3} \quad \text { Use a calculator. }
\end{aligned}
$$

19. $2686.1 \mathrm{~mm}^{3} \quad 21.521 .5 \mathrm{~cm}^{3} \quad 23.3934 .9 \mathrm{~cm}^{3}$ $25.35 .1 \mathrm{~cm} \quad 27 a .0 .0019 \mathrm{lb} / \mathrm{in}^{3} \quad$ 27b. The plant should grow well in this soil since the bulk density of $0.0019 \mathrm{lb} / \mathrm{in}^{3}$ is close to the desired bulk density of $0.0018 \mathrm{lb} / \mathrm{in}^{3}$.

27c. 8.3 lb
29. $120 \mathrm{~m}^{3}$
(31) Find the volume of the cylinder with a height of 11.5 cm and a radius of $8.5 \div 2$ or 4.25 cm . Subtract from that the volume of the cylinder with a height of 11.5 cm and a radius of $6.5 \div 2$ or 3.25 cm . Add the volume of the bottom cylinder that has a height of 1 cm and a radius of $6.5 \div 2$ or 3.25 cm .
Volume $=$ Volume of large cylinder Volume of small cylinder + Volume of bottom

$$
\begin{aligned}
= & \pi r_{1}{ }^{2} h_{1}-\pi r_{2}{ }^{2} h_{1}+\pi r_{2}{ }^{2} h_{2} \\
= & \pi(4.25)^{2}(11.5)-\pi(3.25)^{2}(11.5)+ \\
& \pi(3.25)^{2}(1) \quad r_{1}=4.25, r_{2}=3.25, h_{1}=10.5, h_{2}=1 \\
\approx & 304.1 \mathrm{~cm}^{3} \quad \text { Use a calculator. }
\end{aligned}
$$

33.678 .6 in 3
$35.3,190,680.0 \mathrm{~cm}^{3} \quad 37.11 \frac{1}{4} \mathrm{in}$.
(39)

Each triangular prism has a base area of $\frac{1}{2}(8)(5.5)$
or $22 \mathrm{~cm}^{2}$ and a height of 10 cm . The volume of each triangular prism is $22 \cdot 10$ or $220 \mathrm{~cm}^{3}$. So, the volume of five triangular prisms is $220 \cdot 5$ or $1100 \mathrm{~cm}^{3}$.

41a.

41b. Greater than; a square with a side length of 6 m has an area of $36 \mathrm{~m}^{2}$. A circle with a diameter of 6 m has an area of 9π or $28.3 \mathrm{~m}^{2}$. Since the heights are the
same, the volume of the square prism is greater assuming $x>1$. 41c. Multiplying the radius by x; since the volume is represented by $\pi r^{2} h$, multiplying the height by x makes the volume x times greater. Multiplying the radius by x makes the volume x^{2} times greater. 43. Sample answer: The can holds $\pi(2)^{2}(5)$ or 20π in 3 of liquid. Therefore, the container holds $60 \pi \mathrm{in}^{3}$. 43a. base 3 in . by 5 in ., height 4π in. 43b. base 5 in. per side, height $\frac{12}{5} \pi$ in. 43c. base with legs measuring 3 in. and 4 in., height 10π in.
45. Sample answer:

47. Sample answer: Both formulas involve multiplying the area of the base by the height. The base of a prism is a polygon, so the expression representing the area varies, depending on the type of polygon it is. The base of a cylinder is a circle, so its area is πr^{2}.
49. F 51. C
$53.126 \mathrm{~cm}^{2} ; 175 \mathrm{~cm}^{2}$
55.205 in 2
57.11 .4 cm
59.9 .3 in.
$61.378 \mathrm{~m}^{2}$

Lesson 12-5

1. $75 \mathrm{in}^{3} \quad 3.62 .4 \mathrm{~m}^{3} \quad 5.51 .3 \mathrm{in}^{3} \quad 7.28 .1 \mathrm{~mm}^{3}$
2. $513,333.3 \mathrm{ft}^{3}$
(11) $V=\frac{1}{3} B h \quad$ Volume of a pyramid

$$
\begin{array}{ll}
=\frac{1}{3}(36.9)(8.6) & B=\frac{1}{2} \cdot 9 \cdot 8.2 \text { or } 36.9, h=8.6 \\
\approx 105.8 \mathrm{~mm}^{3} & \text { Simplify } .
\end{array}
$$

$13.233 .8 \mathrm{~cm}^{3} \quad 15.35 .6 \mathrm{~cm}^{3} \quad 17.235 .6 \mathrm{in}^{3}$
$19.1473 .1 \mathrm{~cm}^{3}$
21.1072.3 in ${ }^{3}$
(23) $V=\frac{1}{3} \pi r^{2} h$

Volume of a cone

$$
\begin{array}{ll}
=\frac{1}{3} \pi(4)^{2}(14) & \text { Replace } r \text { with } \frac{8}{2} \text { or } 4 \text { and } h \text { with } 14 . \\
\approx 234.6 \mathrm{~cm}^{3} & \text { Use a calculator. }
\end{array}
$$

25.32.2 $\mathrm{ft}^{3} \quad \mathbf{2 7 . 3 1 9 0 . 6} \mathrm{~m}^{3} \quad$ 29. about 13,333 BTUs

31a. The volume is doubled. 31b. The volume is multiplied by 2^{2} or 4 . 31c. The volume is multiplied by 2^{3} or 8 .
(33) $V=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
196 \pi & =\frac{1}{3} \pi r^{2}(12) \\
196 \pi & =4 \pi r^{2} \\
49 & =r^{2} \\
7 & =r
\end{aligned}
$$

Volume of a cone
Replace V with 196π and h with 12. Simplify.
Divide each side by 4π. Take the square root of each side.

The radius of the cone is 7 inches, so the diameter is $7 \cdot 2$ or 14 inches.
35a. Sample answer:

35b. The volumes are the same. The volume of a pyramid equals one third times the base area times the height. So, if the base areas of two pyramids are equal and their heights are equal, then their volumes are equal. 35 c . If the base area is multiplied by 5 , the volume is multiplied by 5 . If the height is multiplied by 5 , the volume is multiplied by 5 . If both the base area and the height are multiplied by 5, the volume is multiplied by $5 \cdot 5$ or 25. 37. Cornelio; Alexandra incorrectly used the slant height. 39. Sample answer: A square pyramid with a base area of 16 and a height of 12 , a prism with a square base of area 16 and height of 4 ; if a pyramid and prism have the same base, then in order to have the same volume, the height of the pyramid must be 3 times as great as the height of the prism. 41. A 43.F 45.1008.0 in^{3} $47.426,437.6 \mathrm{~m}^{3} \quad 49.30 .4 \mathrm{~cm}^{2} \quad 51.26 .6 \mathrm{ft}^{2}$

Lesson 12-6

1. $1017.9 \mathrm{~m}^{2}$
2. $452.4 \mathrm{yd}^{2}$
$5.4188 .8 \mathrm{ft}^{3} \quad 7.3619 .1 \mathrm{~m}^{3}$
9.277.0 $\mathrm{in}^{2} \quad 11.113 .1 \mathrm{~cm}^{2}$
13.680 .9 in 2
$15.128 \mathrm{ft}^{2}$
$17.530 .1 \mathrm{~mm}^{2}$
(19) $V=\frac{4}{3} \pi r^{3} \quad$ Volume of a sphere

$$
\begin{array}{ll}
=\frac{4}{3} \pi(1)^{3} \quad r=\frac{2}{2} \text { or } 1 \\
\approx 4.2 \mathrm{~cm}^{3} & \text { Use a calculator. }
\end{array}
$$

$21.2712 .3 \mathrm{~cm}^{3} \quad 23.179 .8$ in $^{3} \quad 25.77 .9 \mathrm{~m}^{3}$
27. $860,289.5 \mathrm{ft}^{3}$
(29) Surface area $=\frac{1}{2}$ - Area of sphere +

> Lateral area of cylinder + Area of circle
$=\frac{1}{2}\left(4 \pi r^{2}\right)+2 \pi r h+\pi r^{2}$
$=\frac{1}{2}(4 \pi)(4)^{2}+2 \pi(4)(5)+\pi(4)^{2}$
$\approx 276.5 \mathrm{in}^{2}$
Volume $=$ Volume of hemisphere +
Volume of cylinder
$=\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right)+\pi r^{2} h$
$=\frac{1}{2}\left(\frac{4}{3} \pi \cdot 4^{3}\right)+\pi(4)^{2}(5)$
$\approx 385.4 \mathrm{in}^{3}$
31a. $594.6 \mathrm{~cm}^{2} ; 1282.8 \mathrm{~cm}^{3} \quad 31 \mathrm{~b} .148 .7 \mathrm{~cm}^{2}$; $160.4 \mathrm{~cm}^{3} \quad$ 33. $\overline{D C} \quad 35 . \overline{A B} \quad 37 . \odot S$
39a. $\sqrt{r^{2}-x^{2}}$ 39b. $\pi\left(\sqrt{r^{2}-x^{2}}\right)^{2} \cdot y$ or $\pi y r^{2}-\pi y x^{2}$ 39 c . The volume of the disc from the cylinder is $\pi r^{2} y$ or $\pi y r^{2}$. The volume of the disc from the two cones is $\pi x^{2} y$ or $\pi y x^{2}$. Subtract the volumes of the discs from the cylinder and cone to get $\pi y r^{2}-\pi y x^{2}$, which is the expression for the volume of the disc from the sphere at height x. 39d. Cavalieri's Principle 39e. The volume of the cylinder is $\pi r^{2}(2 r)$ or $2 \pi r^{3}$. The volume of one cone is $\frac{1}{3} \pi r^{2}(r)$ or $\frac{1}{3} \pi r^{3}$, so the volume of the double napped cone is $2 \cdot \frac{1}{3} \pi r^{3}$ or $\frac{2}{3} \pi r^{3}$. Therefore,
the volume of the hollowed out cylinder, and thus the sphere, is $2 \pi r^{3}-\frac{2}{3} \pi r^{3}$ or $\frac{4}{3} \pi r^{3}$.
(41) Vertical: There is an infinite number of vertical planes that produce reflection symmetry. When any vertical plane intersects the hemisphere through a diameter, both sides of the hemisphere are mirror images.
Horizontal: There are no horizontal planes that produce reflection symmetry. When any horizontal plane intersects the hemisphere, the part on top will always be slightly smaller than the bottom. Rotation: There is an infinite number of angles of rotation. When the axis of rotation passes through the center of the sphere perpendicular to its base, the hemisphere can be mapped onto itself by a rotation of any angle between 0° and 360° in the axis.
(43) The surface area is divided by 3^{2} or 9 . The volume is divided by 3^{3} or $27.45 .587 .7 \mathrm{in}^{3}$
47.

49. 68.6
51. H
53. $58.9 \mathrm{ft}^{3}$
$55.232 .4 \mathrm{~m}^{3}$
 B, and G 65. $\overleftrightarrow{E F}$ and $\overleftrightarrow{A B}$ do not intersect. $\overleftrightarrow{A B}$ lies in plane \mathcal{P}, but only E lies in plane \mathcal{P}.

Lesson 12-7

1. $\overleftrightarrow{D H}, \overleftrightarrow{F J} \quad$ 3. $\triangle J K Q, \triangle L M P$
(5) Figure x does not go through the poles of the sphere. So, figure x is not a great circle and so not a line in spherical geometry.
2. The points on any great circle or arc of a great circle can be put into one-to-one correspondence with real numbers. 9. Sample answers: $\overleftrightarrow{W} \overleftrightarrow{W}$ and $\overleftrightarrow{X Y}, \overline{R Y}$ or $\overline{T Z}, \triangle R S T$ or $\triangle M P L \quad 11 a . \overleftrightarrow{A D}$ and $\overleftrightarrow{F C} \quad$ 11b. Sample answers: $\overline{B G}$ and $\overline{A H}$ 11c. Sample answers: $\triangle B C D$ $\begin{array}{llll}\text { and } \triangle A B F & \text { 11d. } \overline{Q D} \text { and } \overline{B L} & \text { 11e. } \overleftrightarrow{M J} & \text { 11f. } \overrightarrow{M B}\end{array}$ and $\overleftrightarrow{K F}$ 13. no
(15) Every great circle (line) is finite and returns to its original starting point. Thus, there exists no great circle that goes on infinitely in two directions.
3. Yes; If three points are collinear, any one of the three points is between the other two. 19.14 .0 in .; since 100 degrees is $\frac{5}{18}$ of 360 degrees, $\frac{5}{18} \times$ circumference of the great circle ≈ 14.0. 21a. about 913 mi ; the cities are 13.2° apart on the same great circle, so $\frac{13.2}{360} \times 2 \pi \times 3963$ give the distance between them. 21b. Yes; sample answer: Since the cities lie on a great circle, the distance between the cities can be expressed as the major arc or the minor arc. The sum of the two values is the circumference of Earth. 21c. No; sample answer:

Since lines of latitude do not go through opposite poles of the sphere, they are not great circles. Therefore, the distance cannot be calculated in the same way. 21d. Sample answer: Infinite locations. If Phoenix were a point on the sphere, then there are infinite points that are equidistant from that point.
(23) a. No; if $\overline{C D}$ were perpendicular to $\overline{D A}$, then $\overline{D A}$ would be parallel to $\overline{C B}$. This is not possible, since there are no parallel lines in spherical geometry. b. $D A<C B$ because $\overline{C B}$ appears to lie on a great circle. c. No; since there are no parallel lines in spherical geometry, the sides of a figure cannot be parallel. So, a rectangle, as defined in Euclidean geometry, cannot exist in non-Euclidean geometry.
25. Sample answer: In plane geometry, the sum of the measures of the angles of a triangle is 180. In spherical geometry, the sum of the measures of the angles of a triangle is greater than 180. In hyperbolic geometry, the sum of the measures of the angles of a triangle is less than 180. 27. Sometimes; sample answer: Since small circles cannot go through opposite poles, it is possible for them to be parallel, such as lines of latitude. It is also possible for them to intersect when two small circles can be drawn through three points, where they have one point in common and two points that occur on one small circle and not the other.

29. False; sample answer; Spherical geometry is nonEuclidean, so it cannot be a subset of Euclidean geometry. 31.C $\quad 33$. Sample answer: $\overline{B C} \quad 35.735 .4 \mathrm{~m}^{3}$ $37.1074 .5 \mathrm{~cm}^{3} \quad 39.78 .5 \mathrm{~m}^{3} \quad 41.0 .1 \mathrm{~m}^{3} \quad 43.2 .7 \mathrm{~cm}^{2}$ $45.322 .3 \mathrm{~m}^{2}$

Lesson 12-8
$\begin{array}{lll}\text { 1. } \text { similar; } 4: 3 & \text { 3. } 4: 25 & 5.220,893.2 \mathrm{~cm}^{3}\end{array}$
7. neither 9. similar; 6:5
(11) $\frac{\text { height of large cylinder }}{\text { height of small cylinder }}=\frac{35}{25}$ or $\frac{7}{5}$

The scale factor is $\frac{7}{5}$. If the scale factor is $\frac{a}{b^{3}}$, then the ratio of volumes is $\frac{a^{3}}{b^{3}}=\frac{7^{3}}{5^{3}}$ or $\frac{343}{125}$. So, the ratio of the volumes is $343: 125$.
$\begin{array}{lll}\text { 13. } 5: 1 & \text { 15a. } 10: 13 & \text { 15b. } 419.6 \mathrm{~cm}^{3}\end{array}$
(17) scale factor $=\frac{26 \mathrm{ft}}{14 \mathrm{in}}$. Write a ratio comparing the lengths.

$$
\begin{array}{ll}
=\frac{312 \mathrm{in} .}{14 \mathrm{in} .} & 26 \mathrm{ft}=26 \cdot 12 \text { or } 312 \mathrm{in} . \\
=\frac{156}{7} & \text { Simplify. }
\end{array}
$$

The scale factor is 156:7.
19.4.1 in. 21. $2439.6 \mathrm{~cm}^{3}$ 23. about 5.08 to 1
(25) $\frac{\text { area of smaller tent }}{\text { area of larger tent }}=\frac{9}{12.25}$

Write a ratio comparing the

$$
=\frac{3^{2}}{3.5^{2}}
$$

floor areas.

$$
\text { Write as } \frac{a^{2}}{b^{2}}
$$

The scale factor is 3:3.5.
ratio of diameters $\rightarrow \frac{6}{d}=\frac{3}{3.5} \leftarrow$ scale factor

$$
\begin{aligned}
6 \cdot 3.5 & =d \cdot 3 & & \text { Find the cross products. } \\
7 & =d & & \text { Solve for } d .
\end{aligned}
$$

So, the diameter of the larger tent is 7 feet.

$$
\begin{aligned}
V & =\frac{1}{2}\left(\frac{4}{3} \pi r^{3}\right) & & \text { Volume of a hemisphere } \\
& =\frac{1}{2}\left(\frac{4}{3} \pi \cdot 3.5^{3}\right) & & \text { Radius }=\frac{7}{2} \text { or } 3.5 \\
& \approx 89.8 & & \text { Use a calculator. }
\end{aligned}
$$

The volume of the larger tent is about $89.8 \mathrm{ft}^{3}$. 27. Laura; because she compared corresponding parts of the similar figures. Paloma incorrectly compared the diameter of X to the radius of Y. 29. Since the scale factor is $15: 9$ or $5: 3$, the ratio of the surface areas is $25: 9$ and the ratio of the volumes is $125: 27$. So, the surface area of the larger prism is $\frac{25}{9}$ or about 2.8 times the surface area of the smaller prism. The volume of the larger prism is $\frac{125}{27}$ or about 4.6 times the volume $\begin{array}{llll}\text { the smaller prism. } \quad 31.14 \mathrm{~cm} & 33 . \mathrm{B} & 35 . \sqrt{85} \approx 9.2 \mathrm{~km}\end{array}$ $\begin{array}{llllll}\text { 37. yes } & 39 . \text { yes } & 41.5 & 43.6 & 45.0 .31 & 47.0 .93\end{array}$

Chapter 12 Study Guide and Review

1. false, Spherical geometry 3. false, right cone
2. true 7. true 9.true 11.triangle 13. rectangle
3. Sample answer: $160 \mathrm{ft}^{2} ; 202 \mathrm{ft}^{2} \quad 17.113 .1 \mathrm{~cm}^{2}$;
$169.6 \mathrm{~cm}^{2} \quad 19.354 .4 \mathrm{~cm}^{2} ; 432.9 \mathrm{~cm}^{2} \quad 21.972 \mathrm{~cm}^{3}$
$23.3 .6 \mathrm{~cm}^{3} \quad 25.91,636,272 \mathrm{ft}^{3} \quad 27.1017 .9 \mathrm{~m}^{2}$
29.1708.6 in 31. $^{3} . \overleftrightarrow{F G}, \overleftrightarrow{D J} \quad$ 33. $\triangle C B D \quad$ 35. $\overline{K C}$
4. no 39. congruent 41. neither

CHAPTER 13
 Probability and Measurement

Chapter 13 Get Ready

1. $\frac{7}{8} \quad 3.1 \frac{11}{40}$
2. $\frac{3}{8} \quad 7.144$
3. $\frac{1}{2}$ or 50%
4. $\frac{1}{3}$ or 33%
5. $\frac{1}{5}$ or 20%
6. $\frac{11}{20}$ or 55%

Lesson 13-1

1. S, S
O, O
S, O O, S

Outcomes	Safe	Out
Safe	S, S	S, 0
Out	$0, S$	0,0

(5) Possible Outcomes
$=$ Appetizers \times Soups \times Salads \times Entrees \times Desserts
$=8 \times 4 \times 6 \times 12 \times 9$ or 20,736
7. S, S N, N

S, N N, S

Outcomes	Smithsonian	Natural
Smithsonian	S, S	S, N
Natural	N, S	N, N

9. $\mathrm{M}, 5 \mathrm{~T}, 5$

M, 6 T, 6

Outcomes	$\mathbf{5}$	$\mathbf{6}$
Monday	$\mathrm{M}, 5$	$\mathrm{M}, 6$
Thursday	$\mathrm{T}, 5$	$\mathrm{~T}, 6$

Day
Hour
Sample Space

11. O, O A, A

O, A A, O

Outcomes	Oil	Acrylic
Oil	0,0	$0, \mathrm{~A}$
Acrylic	$\mathrm{A}, 0$	$\mathrm{~A}, \mathrm{~A}$

13. $\mathrm{S}=$ sedan, $\mathrm{T}=$ truck, $\mathrm{V}=$ van, $\mathrm{L}=$ leather,
$\mathrm{F}=$ fabric, $\mathrm{P}=\mathrm{CD}$ player, $\mathrm{NP}=$ no CD player,
$R=$ sunroof, $N R=$ no sunroof
Sample Space

(15) Possible Outcomes $=$ Secretary \times Treasurer \times Vice President \times President $=3 \times 4 \times 5 \times 2$ or 120
17. 240 19. $\mathrm{H}=$ rhombus, $\mathrm{P}=$ parallelogram,
$\mathrm{R}=$ rectangle, $\mathrm{S}=$ square, $\mathrm{T}=$ trapezoid; $\mathrm{H}, \mathrm{P} ; \mathrm{H}, \mathrm{R}$; H, S; H, T; H, H; S, P; S, R; S, S; S, T; S, H

Outcomes	Rhombus	Square
Parallelogram	H, P	S, P
Rectangle	H, R	S, R
Square	H, S	S, S
Trapezoid	H, T	S, T
Rhombus	H, H	S, H
		mes
P R	S T	P
,		
H, P H, R H,S H, T H, H		

21. Sample answer: 6 different ways:
$4(x+6)+2(3)+2(x+4) ;$

$$
\begin{aligned}
& 2(x+11)+2(x+8)+2(x) \\
& 2(x+4)+2(x+9)+2(x+6) \\
& 2(x)+2(3)+4(x+8) \\
& 2(x)+2(x+8)+2(3)+2(x+8) ; \\
& 2(x)+2(3)+2(4)+2(x+6)+2(x+6)
\end{aligned}
$$

(23) a. The rolls that result in a sum of 8 are 2 and 6,3 and 5,4 and 4,5 and 3,6 and 2 . So, there are 5 outcomes.
b. The rolls that result in an odd sum are shown.

1,2	1,4	1,6
2,1	2,3	2,5
3,2	3,4	3,6
4,1	4,3	4,5
5,2	5,4	5,6
6,1	6,3	6,5

So, there are 18 outcomes.
25. $n^{3}-3 n^{2}+2 n$; Sample answer: There are n objects in the box when you remove the first object, so after you remove one object, there are $n-1$ possible outcomes. After you remove the second object, there are $n-2$ possible outcomes. The number of possible outcomes is the product of the number of outcomes of each experiment or $n(n-1)(n-2)$.
27. Sample answer: You can list the possible outcomes for one stage of an experiment in the columns and the possible outcomes for the other stage of the experiment in the rows. Since a table is two dimensional, it would be impossible to list the possible outcomes for three or more stages of an experiment. Therefore, tables can only be used to represent the sample space for a two-stage experiment. 29. $P=n^{k}$; Sample answer: The total number of possible outcomes is the product of the number of outcomes for each of the stages 1 through k. Since there are k stages, you are multiplying n by itself k times which is n^{k}. 31. B $33 . \mathrm{G} 35.130 \mathrm{~m}$ high, 245 m wide, and 465 m long 37 . Sample answer: $\overline{F C}$ 39. $1429.4 \mathrm{ft}^{2}, 1737.3 \mathrm{ft}^{2} \quad 41.1710 .6 \mathrm{~m}^{2}, 3421.2 \mathrm{~m}^{2}$
43. line
45. 12.5
47.12
49. 32

Lesson 13-2
$\begin{array}{lll}\text { 1. } \frac{1}{20} & \text { 3. } \frac{1}{420} & \text { 5. } \frac{1}{124,750}\end{array}$
(7) The number of possible outcomes is 50 !. The number of favorable outcomes is $(50-2)$! or 48 !. P (Alfonso 14, Colin 23)
$=\frac{48!}{50!} \quad \frac{\text { Number of favorable outcomes }}{\text { Number of possible outcomes }}$
$=\frac{48!}{50 \cdot 49 \cdot 48!}$! Expand 48 ! and divide out common factors.
$=\frac{1}{2450} \quad 1 \quad$ Simplify.
9. $\frac{1}{15,120}$
(11) There is a total of 10 letters. Of these letters, B occurs 2 times, A occurs 2 times, and L occurs 2 times. So, the number of distinguishable
permutations of these letters is
$\frac{10!}{2!\cdot 2!\cdot 2!}=\frac{3,628,800}{8}$ or $453,600 \quad$ Use a calculator.
There is only 1 favorable arrangementBASKETBALL. So, the probability that a permutation of these letters selected at random spells basketball is $\frac{1}{453,600}$.
13. $\frac{1}{7}$
15. $\frac{1}{10,626}$
17a. $\frac{1}{56}$
17b. $\frac{1}{40,320}$
17c. $\frac{1}{140}$
17d. $\frac{2}{7}$
19a. 720
19b. 5040
(21) Find the number of ways to choose the second letter times the number of ways to choose the third letter times the number of ways to choose the last two numbers.

$$
\begin{aligned}
\text { possible license plates } & ={ }_{2} C_{1} \cdot{ }_{3} C_{1} \cdot{ }_{10} C_{1} \cdot{ }_{10} C_{1} \\
& =2 \cdot 3 \cdot 10 \cdot 10 \text { or } 600
\end{aligned}
$$

23. $\frac{13}{261} \quad$ 25. Sample answer: A bag contains seven marbles that are red, orange, yellow, green, blue, purple, and black. The probability that the orange, blue, and black marbles will be chosen if three marbles are drawn at random can be calculated using a combination.

$$
\begin{aligned}
\text { 27. } \quad C(n, n-r) & \stackrel{?}{=} C(n, r) \\
\frac{n!}{[n-(n-r)!(n-r)!} & \stackrel{n}{2} \frac{n!}{(n-r)!r!} \\
\frac{n!}{r!(n-r)!} & \stackrel{n}{(n-r)!r!} \\
\frac{n!}{(n-r)!r!} & =\frac{n!}{(n-r)!r!}
\end{aligned}
$$

29. $C \quad$ 31.J $\quad 33.16 \quad 35.2 \quad 37.4 .5 \quad 39.3 \quad 41.1 \quad 43.5$

Lesson 13-3

$\begin{array}{llll}\text { 1. } \frac{1}{2}, 0.5 \text {, or } 50 \% & \text { 3. } \frac{13}{33}, \\ , & 39\end{array}$, or about $39 \% \quad$ 5. $\frac{1}{8}$,
0.125 , or $12.5 \% \quad$ 7. $\frac{13}{18}, 0.72$, or $72 \% \quad$ 9. $\frac{1}{9}, 0.11$, or 11% 11. $\frac{1}{6}, 0.17$, or about 17%
(13) You need to find the ratio of the area of the shaded region to the area of the entire region. The area of shaded region equals the area of the large semicircle minus the area of the small semicircle plus the area of the small semicircle. So, the area of the shaded region equals the area of the large semicircle. Since the area of the large semicircle equals half the total area, P (landing in shaded region) $=\frac{1}{2}, 0.5$, or 50%.
(15) $P($ pointer landing on yellow $)=\frac{44}{360}$ or about 12.2%
17. 69.4\%
19. 62.2\%
$\begin{array}{lll}\text { a point between } 10 \text { and } 20 & \text { 23. } \frac{1}{2}, ~ 0.5 \text {, or } 50 \%\end{array}$
25. 53.5% 27. Sample answer: The probability that a randomly chosen point will lie in the shaded region is ratio of the area of the sector to the area of the circle.
$P($ point lies in sector $)=\frac{\text { area of sector }}{\text { area of circle }}$
$\frac{x}{360} \stackrel{?}{=} \frac{\frac{x}{360} \cdot \pi r^{2}}{\pi r^{2}}$
$\frac{x}{360}=\frac{x}{360} \checkmark$
29. 0.24 or 24%
31. 0.33 or 33%
(33) volume of shallow region $=B h=(7 \cdot 20) \cdot 20$ or $2800 \mathrm{ft}^{3}$
volume of incline region $=B h=\frac{1}{2}(25)(7+20) \cdot 20$ or $6750 \mathrm{ft}^{3}$
volume of deep region $=B h=(20 \cdot 30) \cdot 20$
or $12,000 \mathrm{ft}^{3}$
P (bear swims in the incline region)
$=\frac{\text { volume of incline region }}{\text { volume of pool }}$
$=\frac{6750}{2800+6750+12,000}$
≈ 0.31 or 31%
35. 14.3% 37. No; sample answer: Athletic events should not be considered random because there are other factors involved, such as pressure and ability, that have an impact on the success of the event. 39. Sample answer: The probability of a randomly chosen point lying in the shaded region of the square on the left is found by subtracting the area of the unshaded square from the area of the larger square and finding the ratio of the difference of the areas to the area of the larger square. The probability is $\frac{1^{2}-0.75^{2}}{1^{2}}$ or 43.75%. The probability of a randomly chosen point lying in the shaded region of the square on the right is the ratio of the area of the shaded square to the area of the larger square, which is $\frac{0.4375}{1}$ or 43.75%. Therefore, the probability of a randomly chosen point lying in the shaded area of either square is the same. 41.F 43. C
45. D, D
G, G
D, G
G, D

Outcomes	Drums	Guitar
Drums	D, D	D, G
Guitar	G, D	G, G

47. 45 49. Square; each angle intercepts a semicircle, making them 90° angles. Each side is a chord of congruent arcs, so the chords are congruent.
$51.57 .1 \mathrm{~m}^{2} \quad 53.66 .3 \mathrm{~cm}^{2}$

Lesson 13-4

1. Sample answer: Use a spinner that is divided into two sectors, one containing 80% or 288° and the other containing 20% or 72°. Do 20 trials and record the results in a frequency table.

Outcome	Frequency
A	17
below an A	3
Total	20

Quiz Grades

The probability of Clara getting an A on her next quiz is 0.85 . The
(5) Sample answer: Use a spinner that is divided into two sectors, one containing 95% or 342° and the other containing 5% or 18°.
Sale: 95% of $360=342^{\circ}$
No Sale: 5% of $360=18^{\circ}$
Do 50 trials and record the results in a frequency table.

Outcome	Frequency
sale	46
no sale	4
Total	50

Sale Outcome

Based on the simulation, the experimental probability of Ian selling a game is 0.92 . The experimental probability of not selling a game is $1-0.92$ or 0.08 .
7. Sample answer: Use a spinner that is divided into 8 equal sectors, each 45°. Do 50 trials and record the results in a frequency table.

Outcome	Frequency
Category 1	3
Category 2	3
Category 3	6
Category 4	13
Category 5	4
Category 6	9
Category 7	7
Category 8	5
Total	50

The probability of landing on Categories 1 and 2 is 0.06 , Category 3 is 0.12 , Category 4 is 0.26 , Category 5 is 0.08 , Category 6 is 0.18 , Category 7 is 0.14 , and Category 8 is 0.1 .
9. Sample answer: Use a random number generator to generate integers 1 through 20, where $1-12$ represents a single, 13-17 represents a double, 18-19 represents a triple, and 20 represents

Outcome	Frequency
single	13
double	4
triple	2
home run	1
Total	20

11. Sample answer: Use a random number generator to generate integers 1 through 20, where $1-7$ represents blue, 8-13 represents red, 14-16 represents white, 17-19 represents black, and 20 represents all other colors. Do 50 trials and record the

The probability of the baseball player hitting a single is 0.65 , a double is 0.2 , a triple is 0.1 , and a home run is 0.05 .
results in a frequency table.
The probability of a customer buying a blue car is 0.34 , buying a red car is 0.28 , buying a black car is 0.14 , buying a white car is 0.2 , and any other color is 0.04 .

Outcome	Frequency
blue	17
red	14
black	7
white	10
other	2
Total	50

(13) Calculate the geometric probability of landing on each color.

$$
\begin{aligned}
P(\text { red }) & =\frac{\text { area of red }}{\text { area of circle }} \\
& =\frac{\pi(0.5)^{2}}{\pi(5)^{2}} \\
& =0.01
\end{aligned}
$$

The blue and white areas are equal. Their total area is the area of the large circle minus the area of the red circle or $\pi(5)^{2}-\pi(0.5)^{2}$ or about 77.8 square units. So, the blue area and the white area are each about 38.9 square units.

$$
\begin{aligned}
P(\text { blue }) & =\frac{\text { area of blue }}{\text { area of circle }} \\
& =\frac{38.9}{\pi(5)^{2}} \\
& \approx 0.495
\end{aligned}
$$

$P($ white $)=P($ blue $) \approx 0.495$
$E(Y)=25 \cdot 0.495+50 \cdot 0.495+0.01 \cdot 100$
$E(Y)=38.125$
Sample answer: Assign the integers 1-1000 to accurately represent the probability data. Blue $=$ integers 1-495, White $=$ integers 496-990, Red $=$ integers 991-1000. Use the calculator to generate 500 trials of random integers from 1 to 1000.
Record the results in a frequency table.

Outcome	Frequency
red	0
blue	29
white	21
total	50

Then calculate the average value of the outcomes.

$$
\frac{0}{50} \cdot 100+\frac{29}{50} \cdot 25+\frac{21}{50} \cdot 50=35.5
$$

Average value $=35.5$; the expected value is greater than the average value.
15a. 0.75 15b. Sample answer: Use a random number generator to generate integers 1 through 20, where 1-7 represents 0 points, 8-19

Outcome	Frequency
0	16
1	32
3	2

15c. Sample answer: the two values are almost equal.
17a. There is a $\frac{1}{6}$ or
17b. Sample answer: 16.7\% probability of throwing a strike in each box.
17c. Sample answer: Some of the values are higher or lower, but most are very close to 16.7%.

Strike Area	Accuracy (\%)
1	15
2	17
3	19
4	22
5	19
6	8
Total	100

19a. Sample answer: 19b. Sample answer:

Sum of Die Roll	Sum of Output from Random Number Generator
9	4
10	10
6	5
6	10
7	6
9	7
5	12
9	3
5	7
7	4
6	7
5	9
7	3
3	6
9	4
7	11
6	5
7	7
8	5
7	3

19c. Sample answer:

Trial	Sum of Die Roll	Sum of Output from Random Number Generator
1	9	4
2	10	10
3	6	5
4	6	10
5	7	6
6	9	7
7	5	12
8	9	3
9	5	7
10	7	4
11	6	7
12	5	9
13	7	3
14	3	6
15	9	4
16	7	11
17	6	5
18	7	7
19	8	5
20	7	3

19d. Sample answer:
Dice-5 Rolls

Dice-10 Rolls

Dice - 20 Rolls

19e. Sample answer: The bar graph has more data points at the middle sums as more trials are added. 19f. Sample answer:

Random Number Generator

19g. Sample answer: They both have the most data points at the middle sums. 19h. Sample answer: The expected value in both experiments is 7 because it is the sum that occurs most frequently.

21 Sometimes; sample answer: Flipping a coin can be used to simulate and experiment with two possible outcomes when both of the outcomes are equally likely. For example, if there is an equal number of boys and girls in a class, then flipping a coin can be used to simulate choosing one person from the class. If the probabilities of the occurrence of the two outcomes are different, flipping a coin is not an appropriate simulation. For example, if 55% of the class is girls and 45% is boys, then flipping a coin cannot be used to simulate choosing one person from the class.
23. Sample answer: We assume that the object lands within the target area, and that it is equally likely that the object will land anywhere in the region. These are needed because in the real world it will not be
equally likely to land anywhere in the region.
25. Sample answer: Expectation, or expected value, deals with all possible events, while probability typically deals with only one event. Probability is the likelihood that an event will happen, is between 0 and 1 inclusive, and is typically expressed as a decimal, fraction, or percent. Expectation is the weighted average of all possible events and can take on any value, even a value that is not a possible outcome. For example, the likelihood of rolling a " 1 " with a six-sided die is 1 out of every 6 rolls. So, the probability is $\frac{1}{6}$ or about 17%. When the same die is rolled, the expectation is 3.5 , which isn't even a $\begin{array}{lll}\text { possible outcome. 27. H } & \text { 29. B } & 31 . \\ 7\end{array}, 0.57$, or 57% 33. $50.3 \mathrm{ft}^{2} \quad 35.1017 .9 \mathrm{in}^{2}$

Lesson 13-5

1. The outcome of Jeremy taking the SAT in no way changes the probability of the outcome of his ACT test. Therefore, these two events are independent.
2. $\frac{1}{2704}$ or 3.7×10^{-4}
3. $\frac{1}{5}$ or 0.20
(7) These events are dependent since the card is not replaced.

$$
\begin{aligned}
P(A \text { and } A) & =P(A) \cdot P(A \mid A) \\
& =\frac{4}{52} \cdot \frac{3}{51} \\
& \begin{array}{l}
\text { Probability of dependent } \\
\text { events }
\end{array} \\
& \begin{array}{l}
\text { After first ace is drawn, } \\
51 \text { cards remain, and } 3 \\
\text { of those are aces. }
\end{array} \\
& =\frac{12}{2652} \text { or } \frac{1}{221}
\end{aligned} \begin{aligned}
& \text { Multiply. }
\end{aligned}
$$

The probability is $\frac{1}{221}$ or about 0.5%.
9. independent; $\frac{1}{36}$ or about $3 \% \quad$ 11. $\frac{1}{306}$ or about 0.3%
$\begin{array}{ll}\text { 13. } \frac{20}{161} \text { or about } 12 \% & \text { 15. } \frac{1}{4} \text { or } 25 \% \quad 17 . \frac{1}{6} \text { or } 17 \%\end{array}$
(19) P (own MP3 player \mid own CD player)

$$
\begin{aligned}
& =\frac{P(\text { own MP3 player and CD player })}{P(\text { own CD player })} \\
& =\frac{0.28}{0.43} \\
& \approx 0.65
\end{aligned}
$$

21b. 0.18 or $18 \% \quad$ 21c. Sample answer: I would use a random number generator to generate integers 1 through 50. The integers $1-9$ will represent a double fault, and the integers 10-50 will represent the other possible outcomes. The simulation will consist of 50 trials.

Sample answer: The expected value of choosing to expand is $\$ 1.2 \mathrm{M}+\$ 0.7 \mathrm{M}$ or $\$ 1.9 \mathrm{M}$, and the expected value of choosing not to expand is $\$ 0.95 \mathrm{M}$. When we subtract the costs of expanding and of not expanding, we find the net expected value of expanding is $\$ 1.9 \mathrm{M}$ $-\$ 1 \mathrm{M}$ or $\$ 0.9 \mathrm{M}$ and the net expected value of not expanding is $\$ 0.95 \mathrm{M}-\$ 0$ or $\$ 0.95 \mathrm{M}$. Since $\$ 0.9 \mathrm{M}<$ $\$ 0.95 \mathrm{M}$, you should not expand the business.
25. A and B are independent events.
27. In order for the events to be independent, two things must be true: 1) the chance that a person smokes is the same as the chance that a person smokes given that the person's parent smokes, and 2) the chance that a person's parent smokes is the same as the chance that a person's parent smokes given that $\begin{array}{lllll}\text { the person smokes. } & \text { 29. J } & \text { 31. B } & 33.0 .25 & 35.0 .07\end{array}$ 37. neither $39 \mathrm{a} .5026 .5 \mathrm{ft} 39 \mathrm{~b} .500-600 \mathrm{ft}$ 39c. $3142 \mathrm{ft} ; 3770 \mathrm{ft} \quad 41.12 \quad 43.216$

Lesson 13-6

1. not mutually exclusive 3. $\frac{2}{3}$ or about 67%
2. The probability of missing the spare is $\frac{8}{10}$ or 80%.
3. 17.3\%
(9) Since rolling two fours is both getting doubles and getting a sum of 8 , the events are not mutually exclusive.
$P($ doubles or a sum of 8$)$
$=P($ doubles $)+P($ a sum of 8$)-$
$P($ doubles and a sum of 8$)$
$=\frac{6}{36}+\frac{5}{36}-\frac{1}{36}$
$=\frac{10}{36}$ or about 27.8%
4. mutually exclusive; 100%
5. mutually
exclusive; $\frac{2}{9}$ or about 22.2%
6. $\frac{7}{16}$ or about 43.8% 17. $\frac{3}{4}$ or about 75%
7. $\frac{7}{8}$ or about 87.5%
21) Find the probability that the first worker is paid by the hour plus the probability that that the second worker is paid by the hour. The probability that a worker is not paid by the hour is $1-0.71$ or 0.29 .

$$
\begin{aligned}
& P(\text { first paid })+P(\text { second paid }) \\
& =P(\text { first paid }) \cdot P(\text { second not paid })+ \\
& \quad P(\text { second paid }) \cdot P(\text { first not paid }) \\
& =0.71(0.29)+0.71(0.29) \\
& \approx 0.21+0.21 \text { or } 0.42
\end{aligned}
$$

The probability is about 0.42 or 42%.
23. $\frac{1}{13}$ or $7.7 \% \quad 25 . \frac{3}{13}$ or $23.1 \% ~$

27a. 71.3\% 27b. 11.3\% 27c.36.2\% 27d. 3.8\%
29. 0.74; sample answer: There are three outcomes in which the values of two or more of the dice are less than or equal to 4 and one outcome where the values of all three of the dice are less than or equal to 4 . You have to find the probability of each of the four scenarios and add them together. 31. Not mutually exclusive; sample answer: If a triangle is equilateral, it is also equiangular. The two can never be mutually exclusive. 33. Sample answer: If you pull a card from a deck, it can be either a 3 or a 5 . The two events are mutually exclusive. If you pull a card from a deck, it can be a 3 and it can be red. The two events are not mutually exclusive. 35.D 37. J 39. dependent; $\frac{1}{221}$ or 0.5%
41. Sample answer: Use a random number generator to generate integers 1 through 20 in which 1-7 represent football, 8-13 represent basketball, 14-17 represent soccer, and

Outcome	Frequency
football	7
basketball	6
soccer	5
volleyball	2
Total	20

1. true 3.true 5.true 7.true 9.false, simulation 11. S, NB; S, B; S, EB; M, NB; M, B; M, EB; L, NB; L, LB; L, EB

Outcomes	No Butter	Butter	Extra Butter
Small	S, NB	S, B	S, EB
Medium	N, NB	M, B	M, EB
Large	L, NB	L, B	L, EB

$\begin{array}{lllll}\text { 13. } 4 & \text { 15. } 35,960 & \text { 17a. } \frac{2}{9} & \text { 17b. } \frac{7}{9} & \text { 19. Sample }\end{array}$ answer: Use a spinner that is divided into 4 sectors, $108^{\circ}, 79.2^{\circ}, 82.8^{\circ}$, and 90°. Perform 50 trials and record the results in a frequency table. The results can be used to determine the probability of when a particular book will be purchased.
21. $\frac{6}{35}$
23. 37% 25. $\frac{4}{13}$

Do 20 trials, and record the results in a frequency table.

The probability that an athlete plays only football is 0.35 , only basketball is 0.30 , only soccer is 0.25 , and only volleyball is 0.1 .
43.

Glossary/Glosario

MultilingualeGlossary

Go to connectED.mcgraw-hill.com for a glossary of terms in these additional languages:

Arabic	Chinese	Hmong	Spanish	Vietnamese
Bengali	English	Korean	Tagalog	
Brazilian Portuguese	Haitian Creole	Russian	Urdu	

English

Español

A

acute angle (p. 38) An angle with a degree measure less than 90.

acute triangle (p. 237) A triangle in which all of the angles are acute angles.

adjacent angles (p. 46) Two angles that lie in the same plane, have a common vertex and a common side, but no common interior points.
adjacent arcs (p. 708) Arcs in a circle that have exactly one point in common.
algebraic proof (p. 136) A proof that is made up of a series of algebraic statements. The properties of equality provide justification for many statements in algebraic proofs.
alternate exterior angles (p. 174) In the figure, transversal t intersects lines ℓ and $m . \angle 5$ and $\angle 3$, and $\angle 6$ and $\angle 4$ are alternate exterior angles.

ángulo agudo Ángulo cuya medida en grados es menos de 90 .

$$
0<m \angle A<90
$$

triángulo acutángulo Triángulo cuyos ángulos son todos agudos.

ángulos adyacentes Dos ángulos que yacen sobre el mismo plano, tienen el mismo vértice y un lado en común, pero ningún punto interior en común.
arcos adyacentes Arcos en un círculo que tienen un solo punto en común.
demostración algebraica Demostración que se realiza con una serie de enunciados algebraicos. Las propiedades de la igualdad proveen justificación para muchas enunciados en demostraciones algebraicas.
ángulos alternos externos En la figura, la transversal t interseca las rectas ℓ y $m . \angle 5$ y $\angle 3$, y $\angle 6$ y $\angle 4$ son ángulos alternos externos.

alternate interior angles (p. 174) In the figure at the bottom of page R115, transversal t intersects lines ℓ and $m . \angle 1$ and $\angle 7$, and $\angle 2$ and $\angle 8$ are alternate interior angles.
altitude 1. (p. 337) In a triangle, a segment from a vertex of the triangle to the line containing the opposite side and perpendicular to that side. 2. (p. 846) In a prism or cylinder, a segment perpendicular to the bases with an endpoint in each plane. 3. (p. 854) In a pyramid or cone, the segment that has the vertex as one endpoint and is perpendicular to the base.
ambiguous case of the Law of Sines (p. 598) Given the measures of two sides and a nonincluded angle, there exist two possible triangles.
angle (p. 36) The intersection of two noncollinear rays at a common endpoint. The rays are called sides and the common endpoint is called the vertex.
angle bisector (p. 39) A ray that divides an angle into two congruent angles.

$\overrightarrow{P W}$ is the bisector of $\angle P$.
angle of depression (p.580) The angle between the line of sight and the horizontal when an observer looks downward.
angle of elevation (p. 580) The angle between the line of sight and the horizontal when an observer looks upward.
angle of rotation (p. 640) The angle through which a preimage is rotated to form the image.
apothem (p. 807) A segment that is drawn from the center of a regular polygon perpendicular to a side of the polygon.

arc (p. 706) A part of a circle that is defined by two endpoints.
area (p. 58) The number of square units needed to cover a surface.
auxiliary line (p. 246) An extra line or segment drawn in a figure to help complete a proof.
axiom (p. 127) A statement that is accepted as true.
ángulos alternos internos En la figura anterior, la transversal t interseca las rectas ℓ y $m . \angle 1$ y $\angle 7$, y $\angle 2$ y $\angle 8$ son ángulos alternos internos.
altura 1. En un triángulo, segmento trazado desde uno de los vértices del triángulo hasta el lado opuesto y que es perpendicular a dicho lado. 2. En un prisma 0 un cilindro, segmento perpendicular a las bases con un extremo en cada plano. 3. En una pirámide oun cono, segmento que tiene un extremo en el vértice y que es perpendicular a la base.
caso ambiguo de la ley de los senos Dadas las medidas de dos lados y de un ángulo no incluido, existen dos triángulos posibles.
ángulo La intersección de dos rayos no colineales en un extremo común. Las rayos se llaman lados y el punto común se llama vértice.
bisectriz de un ángulo Rayo que divide un ángulo en dos ángulos congruentes.

$\overrightarrow{P W}$ es la bisectriz del $\angle P$.
ángulo de depresión Ángulo formado por la horizontal y la línea de visión de un observador que mira hacia abajo.
ángulo de elevación Ángulo formado por la horizontal y la línea de visión de un observador que mira hacia arriba.
ángulo de rotación Ángulo a través del cual se rota una preimagen para formar la imagen.
apotema Segmento trazado desde el centro de un polígono regular hasta uno de sus lados y que es perpendicular a dicho lado.

arco Parte de un círculo definida por dos extremos.
área Número de unidades cuadradas para cubrir una superficie.
línea auxiliar Recta o segmento de recta adicional que es traza en una figura para ayudar a completar una demostración.
axioma Enunciado que se acepta como verdadero.
axis 1. (p. 848) In a cylinder, the segment with endpoints that are the centers of the bases. 2. (p. 856) In a cone, the segment with endpoints that are the vertex and the center of the base.
axis symmetry (p. 665) Symmetry in a three-dimensional figure that occurs if the figure can be mapped onto itself by a rotation between 0° and 360° in a line.

eje 1. En un cilindro, el segmento cuyos extremos son el centro de las bases. 2. En un cono, el segmento cuyos extremos son el vértice y el centro de la base.
eje simetría Simetriá que ocurre en una figura tridimensional si la figura se puede aplicar sobre sí misma, mientras se gira entre 0° y 360° sobre una recta.

B

base angle of an isosceles triangle (p. 285) See isosceles triangle and isosceles trapezoid.
base edges (p. 846) The intersection of the lateral faces and bases in a solid figure.

base of parallelogram (p. 779) Any side of a parallelogram.
base of a polyhedron (p. 67) The two parallel congruent faces of a polyhedron.
between (p.15) For any two points A and B on a line, there is another point C between A and B if and only if A, B, and C are collinear and $A C+C B=A B$.
betweenness of points (p.15) See between.
biconditional (p. 116) The conjunction of a conditional statement and its converse.
ángulo de la base de un triángulo isósceles Ver triángulo isósceles y trapecio isósceles.
aristas de las bases Intersección de las base con las caras laterales en una figura sólida.

base de un paralelogramo Cualquier lado de un paralelogramo.
base de poliedro Las dos caras paralelas y congruentes de un poliedro.
entre Para cualquier par de puntos A y B de una recta, existe un punto C ubicado entre A y B si y sólo si A, B y C son colineales y $A C+C B=A B$.
intermediación de puntos Ver entre.
bicondicional Conjunción entre un enunciado condicional y su recíproco.

C

center of circle (p. 697) The central point where radii form a locus of points called a circle.
center of dilation (p. 511) The center point from which dilations are performed.
center of rotation (p. 640) A fixed point around which shapes move in a circular motion to a new position.
center of symmetry (p. 664) See point of Symmetry.
central angle (p. 706) An angle that intersects a circle in two points and has its vertex at the center of the circle.
centro de un círculo Punto central desde el cual los radios forman un lugar geométrico de puntos llamado círculo.
centro de la homotecia Punto fijo en torno al cual se realizan las homotecias.
centro de rotación Punto fijo alrededor del cual gira una figura hasta alcanzar una posición dada.
centro de la simetría Vea el punto de simetría.
ángulo central Ángulo que interseca un círculo en dos puntos y cuyo vértice está en el centro del círculo.
central angle of a regular polygon (p. 807) An angle that has its vertex at the center of a polygon and with sides that pass through consecutive vertices of the polygon.
centroid (p.335) The point of concurrency of the medians of a triangle.
chord 1. (p. 697) For a given circle, a segment with endpoints that are on the circle. 2. (p. 880) For a given sphere, a segment with endpoints that are on the sphere.
chord segments (p. 750) Segments that form when two chords intersect inside a circle.
circle (p. 697) The locus of all points in a plane equidistant from a given point called the center of the circle.

P is the center of the circle.
circular permutation (p. 925) A permutation of objects that are arranged in a circle or loop.
circumcenter (p. 325) The point of concurrency of the perpendicular bisectors of a triangle.
circumference (pp. 58, 699) The distance around a circle.
circumscribed (p. 700) A circle is circumscribed about a polygon if the circle contains all the vertices of the polygon.

$\odot E$ is circumscribed about quadrilateral $A B C D$.
collinear (p. 5) Points that lie on the same line.

P, Q, and R are collinear.
combination (p. 926) An arrangement or listing in which order is not important.
common tangent (p. 732) A line or segment that is tangent to two circles in the same plane.
complement (p.959) The complement of an event A consists of all the outcomes in the sample space that are not included as outcomes of event A.
complementary angles (p. 47) Two angles with measures that have a sum of 90 .
ángulo central de un polígono regular Ángulo cuyo vértice esta en el centro del polígono y cuyos lados pasan por vértices consecutivas del polígono.
baricentro Punto de intersección de las medianas de un triángulo.
cuerda 1. Para cualquier círculo, segmento cuyos extremos están en el círculo. 2. Para cualquier esfera, segmento cuyos extremos están en la esfera.
segmentos de cuerda Segmentos que se forman cuando dos cuerdas se intersecan dentro de un círculo.
círculo Lugar geométrico formado por todos los puntos en un plano, equidistantes de un punto dado llamado centro del círculo.

P es el centro del círculo.
permutación circular Permutación de objetos que se arreglan en un círculo o un bucle.
circuncentro Punto de intersección de las mediatrices de un triángulo.
circunferencia Distancia alrededor de un círculo.
circunscrito Un polígono está circunscrito a un círculo si todos sus vértices están contenidos en el círculo.

$\odot E$ está circunscrito al cuadrilátero $A B C D$.
colineal Puntos que yacen sobre la misma recta.

combinación Arreglo o lista en que el orden no es importante.
tangente común Recta o segmento de recta tangente a dos círculos en el mismo plano.
complemento El complemento de un evento A consiste en todos los resultados en el espacio muestral que no se incluyen como resultados del evento A.
ángulos complementarios Dos ángulos cuyas medidas suman 90.
component form (p. 602) A vector expressed as an ordered pair, 〈change in x, change in $y\rangle$.
composite figure (p. 809) A figure that can be separated into regions that are basic figures.
composite solid (p. 852) A three-dimensional figure that is composed of simpler figures.
composition of reflections (p. 652) Successive reflections in parallel lines.
composition of transformations (p. 651) The resulting transformation when a transformation is applied to a figure and then another transformation is applied to its image.
compound event (p. 947) An event that consists of two or more simple events.
compound statement (p. 99) A statement formed by joining two or more statements.
concave polygon (p. 56) A polygon for which there is a line containing a side of the polygon that also contains a point in the interior of the polygon.
concentric circles (p.698) Coplanar circles with the same center.
conclusion (p. 107) In a conditional statement, the statement that immediately follows the word then.
concurrent lines (p. 325) Three or more lines that intersect at a common point.
conditional probability (p. 949) The probability of an event under the condition that some preceding event has occurred.
conditional statement (p. 107) A statement that can be written in if-then form.
cone (p. 67) A solid with a circular base, a vertex not contained in the same plane as the base, and a lateral surface area composed of all points in the segments connecting the vertex to the edge of the base.

congruence transformations (p. 296) A mapping for which a geometric figure and its image are congruent.
congruent (pp. 16, 255) Having the same measure.
congruent arcs (p. 707) Arcs in the same circle or in congruent circles that have the same measure.
componente Vector expresado en forma de par ordenado, <cambio en x, cambio en y 〉.
figura compuesta Figura que se puede separar en regiones formas de figuras básicas.
solido compuesto Figura tridimensional formada por figuras más simples.
composición de reflexiones Reflexiones sucesivas en rectas paralelas.
composición de transformaciones Transformación que resulta cuando se aplica una transformación a una figura y luego se le aplica otra transformación a su imagen.
evento compuesto Evento que consiste de dos o más eventos simples.
enunciado compuesto Enunciado formado por la unión de dos 0 más enunciados.
polígono cóncavo Polígono para el cual existe una recta que contiene un lado del polígono y un punto en el interior del polígono.
círculos concéntricos Círculos coplanarios con el mismo centro.
conclusión Parte de un enunciado condicional que está escrito justo después de la palabra entonces.
rectas concurrentes Tres o más rectas que se intersecan en un punto común.
probabilidad condicional La probabilidad de un acontecimiento bajo condición que ha ocurrido un cierto acontecimiento precedente.
enunciado condicional Enunciado escrito en la forma si-entonces.
cono Sólido de base circular cuyo vértice no yace en el mismo plano que la base y cuya área de superficie lateral está formada por todos los puntos en los segmentos que conectan el vértice con el bonde de la base.

transformaciones de congruencia Aplicación en la cual una figura geométrica y su imagen son congruentes.
congruente Que tienen la misma medida.
arcos congruentes Arcos que tienen la misma medida y que pertenecen al mismo círculo o a círculos congruentes.
congruent polygons (p. 255) Polygons in which all matching parts are congruent.
congruent solids (p. 896) Two solids with the same shape, size and scale factor of 1:1.
conic section (p. 764) Any figure that can be obtained by slicing a cone.
conjecture (p. 91) An educated guess based on known information.
conjunction (p. 99) A compound statement formed by joining two or more statements with the word and.
consecutive interior angles (p. 174) In the figure, transversal t intersects lines ℓ and m. There are two pairs of consecutive interior angles: $\angle 8$ and $\angle 1$, and $\angle 7$ and $\angle 2$.

construction (p. 17) A method of creating geometric figures without the benefit of measuring tools. Generally, only a pencil, straightedge, and compass are used.
contrapositive (p. 109) The statement formed by negating both the hypothesis and conclusion of the converse of a conditional statement.
converse (p. 109) The statement formed by exchanging the hypothesis and conclusion of a conditional statement.
convex polygon (p. 56) A polygon for which there is no line that contains both a side of the polygon and a point in the interior of the polygon.
coordinate proofs (p. 303) Proofs that use figures in the coordinate plane and algebra to prove geometric concepts.
coplanar (p. 5) Points that lie in the same plane.
corner view (p. 839) The view from a corner of a threedimensional figure, also called the isometric view.
corollary (p. 249) A statement that can be easily proved using a theorem is called a corollary of that theorem.
polígonos congruentes Polígonos cuyas partes correspondientes son todas congruentes.
sólidos congruentes Dos sólidos con la misma forma, tamaño y factor de escala de 1:1.
sección cónica Cualquier figura obtenida mediante el corte de un cono doble.
conjetura Juicio basado en información conocida.
conjunción Enunciado compuesto que se obtiene al unir dos o más enunciados con la palabra y.
ángulos internos consecutivos En la figura, la transversal t interseca las rectas $\ell \mathrm{y}$. La figura presenta dos pares de ángulos internos consecutivos; $\angle 8$ y $\angle 1 ;$ y $\angle 7$ y $\angle 2$.

construcción Método para dibujar figuras geométricas sin el uso de instrumentos de medición. En general, sólo requiere de un lápiz, una regla y un compás.
antítesis Enunciado formado por la negación tanto de la hipótesis como de la conclusión del recíproco de un enunciado condicional.
recíproco Enunciado que se obtiene al intercambiar la hipótesis y la conclusión de un enunciado condicional dado.
polígono convexo Polígono para el cual no existe recta alguna que contenga un lado del polígono y un punto en el interior del polígono.
demostraciones en coordinadas Demostraciones que usan figuras en el plano de coordinados y álgebra para demostrar conceptos geométricos.
coplanar Puntos que yacen en el mismo plano.
vista de esquina Vista desde una de las esquinas de una figura tridimensional. También se conoce como vista en perspectiva.
corolario Un enunciado que se puede demostrar fácilmente usando un teorema se conoce como corolario de dicho teorema.
corresponding angles (p. 174) In the figure, transversal t intersects lines ℓ and m. There are four pairs of corresponding angles: $\angle 5$ and $\angle 1, \angle 8$ and $\angle 4, \angle 6$ and $\angle 2$, and $\angle 7$ and $\angle 3$.

corresponding parts (p. 255) Matching parts of congruent polygons.
cosecant (p. 578) The reciprocal of the sine of an angle in a right triangle.
cosine (p. 568) For an acute angle of a right triangle, the ratio of the measure of the leg adjacent to the acute angle to the measure of the hypotenuse.
cotangent (p. 578) The ratio of the adjacent to the opposite side of a right triangle.
counterexample (p. 94) An example used to show that a given statement is not always true.
cross products (p. 462) In the proportion $\frac{a}{b}=\frac{c}{d}$, where $b \neq 0$ and $d \neq 0$, the cross products are ad and $b c$. The proportion is true if and only if the cross products are equal.
cross section (p. 840) The intersection of a solid and a plane.
cylinder (p. 67) A figure with bases that are formed by congruent circles in parallel planes.

ángulos correspondientes En la figura, la transversal t interseca las rectas ℓ y m. La figura muestra cuatro pares de ángulos correspondientes: $\angle 5$ y $\angle 1, \angle 8$ y $\angle 4, \angle 6$ y $\angle 2$; y $\angle 7$ y $\angle 3$.

partes correspondientes Partes que coinciden de polígonos congruentes.
cosecante Recíproco del seno de un ángulo en un triángulo rectangulo.
coseno Para cualquier ángulo agudo de un triángulo rectángulo, razón de la medida del cateto adyacente al ángulo agudo a la medida de la hipotenusa.
cotangente Razón de la medida del cateto adyacente a la medida de cateto opuesto de un triángulo rectángulo.
contraejemplo Ejemplo que se usa para demostrar que un enunciado dado no siempre es verdadero.
productos cruzados En la proporción $\frac{a}{b}=\frac{c}{d}$, donde $b \neq 0$ y $d \neq 0$, los productos cruzados son $a d$ y $b c$. La proporción es verdadera si y sólo si los productos cruzados son iguales.
sección transversal Intersección de un sólido con un plano.
cilindro Figura cuyas bases son círculos congruentes ubicados en planos paralelos.

deductive argument (p. 129) A proof formed by a group of algebraic steps used to solve a problem.
deductive reasoning (p. 117) A system of reasoning that uses facts, rules, definitions, or properties to reach logical conclusions.
degree (p. 37) A unit of measure used in measuring angles and arcs. An arc of a circle with a measure of 1° is $\frac{1}{360}$ of the entire circle.
dependent events (p. 947) Two or more events in which the outcome of one event affects the outcome of the other events.
argumento deductivo Demostración que consta de un conjunto de pasos algebraicos que se usan para resolver un problema.
razonamiento deductivo Sistema de razonamiento que emplea hechos, reglas, definiciones o propiedades para obtener conclusiones lógicas.
grado Unidad de medida que se usa para medir ángulos y arcos. El arco de un círculo que mide 1° equivale a $\frac{1}{360}$ del círculo completo.
eventos dependientes Dos o más eventos en que el resultado de un evento afecta el resultado de los otros eventos.
diagonal (p. 393) In a polygon, a segment that connects nonconsecutive vertices of the polygon.

diameter 1. (p. 697) In a circle, a chord that passes through the center of the circle. 2. (p. 880) In a sphere, a segment that contains the center of the sphere, and has endpoints that are on the sphere.
dilation (pp. 511, 674) A transformation that enlarges or reduces the original figure proportionally. A dilation with center C and positive scale factor $k, k \neq 1$, is a function that maps a point P in a figure to its image such that

- if point P and C coincide, then the image and preimage are the same point, or
- if point P is not the center of dilation, then P^{\prime} lies on $\overrightarrow{C P}$ and $C P^{\prime}=k(C P)$.
If $k<0, P^{\prime}$ is the point on the ray opposite $\overrightarrow{C P}$ such that $C P^{\prime}=|k|(C P)$.
direct isometry (p. 298) An isometry in which the image of a figure is found by moving the figure intact within the plane.
direction (p.600) The measure of the angle that a vector forms with the positive x-axis or any other horizontal line.
directrix (p. 765) The fixed line in a parabola that is equidistant from the locus of all points in a plane.
disjunction (p. 100) A compound statement formed by joining two or more statements with the word or.
distance between two points (p. 25) The length of the segment between two points.
diagonal Recta que conecta vértices no consecutivos de un polígono.

$\overline{S Q}$ es una diagonal.
diámetro 1. En un círculo cuerda que pasa por el centro.

2. En una estera segmento que incluye el centro de la esfera y cuyos extremos están ubicados en la esfera.
homotecia Transformación que amplía o disminuye proporcionalmente el tamaño de una figura. Una homotecia con centro C y factor de escala positivo $k, k \neq 1$, es una función que aplica un punto P a su imagen, de modo que si el punto P coincide con el punto C, entonces la imagen y la preimagen son el mismo punto, 0 si el punto P no es el centro de la homotecia, entonces P^{\prime} yace sobre $\overrightarrow{C P}$ y $C P^{\prime}=$ $k(C P)$. Si $k<0, P^{\prime}$ es el punto sobre el rayo opuesto a $\overrightarrow{C P}$, tal que $C P^{\prime}=|k|(C P)$.
isometría directa Isometría en la cual se obtiene la imagen de una figura, al mover la figura intacta dentro del plano.
dirección Medida del ángulo que forma un vector con el eje x positivo ocon cualquier otra recta horizontal.
directriz Línea fija en una parábola que está equidistante del lugar geométrico de todos los puntos en un plano.
disyunción Enunciado compuesto que se forma al unir dos o más enunciados con la palabra 0 .
distancia entre dos puntos Longitud del segmento entre dos puntos.
edge (p. 964) A line that connects two nodes in a network.
edge of a polyhedron (p. 67) A line segment where the faces of a polyhedron intersect.
efficient route (p. 965) The path in a network with the least weight.
enlargement (p. 511) An image that is larger that the original figure.
equiangular polygon (p. 57) A polygon with all congruent angles.
arista Recta que conecta dos nodos en una red.
arista de un poliedro Segmento de recta donde se intersecan las caras de un poliedro.
ruta eficiente Ruta en una red con el menor peso.
ampliación Imagen que es más grande que la figura original.
polígono equiangular Polígono cuyos ángulos son todos congruentes.
equiangular triangle (p. 237) A triangle with all angles congruent.

equidistant (p. 218) The distance between two lines measured along a perpendicular line is always the same.
equilateral polygon (p.57) A polygon with all congruent sides.
equilateral triangle (p. 238) A triangle with all sides congruent.

equivalent vectors (p. 601) Vectors that have the same magnitude and direction.

Euclidean geometry (p. 889) A geometrical system in which a plane is a flat surface made up of points that extend infinitely in all directions.
expected value (p. 941) Also mathematical expectation, is the average value of a random variable that one expects after repeating an experiment or simulation an infinite number of times.
extended ratios (p. 461) Ratios that are used to compare three or more quantities.
exterior (p. 36) A point is in the exterior of an angle if it is neither on the angle nor in the interior of the angle.

A is in the exterior of $\angle X Y Z$.
exterior angle (p. 248) An angle formed by one side of a triangle and the extension of another side.

exterior angles (p. 174) An angle that lies in the region that is not between two transversals that intersect the same line.
external secant segment (p. 752) A secant segment that lies in the exterior of the circle.

$\overline{B C}$ and $\overline{C D}$ are external secant segments.
extremes (p. 462) $\ln \frac{a}{b}=\frac{c}{d}$, the numbers a and d.
triángulo equiangular Triángulo cuyos ángulos son todos congruentes.

equidistante La distancia entre dos rectas que siempre permanece constante cuando se mide a lo largo de una perpendicular.
polígono equilátero Polígono cuyos lados son todos congruentes. triángulo equilátero Triángulo cuyos lados son todos congruentes.

vectores iguales Vectores con la misma magnitud y dirección.
geometría euclidiana Sistema en el cual un plano es una superficie plana formada por puntos que se extienden infinitamente en todas las direcciones.
valor esperado También expectativa matemática, el valor promedio de una variable aleatoria que uno espera después de repetir un experimento o un simulacro un número infinito de veces.
razones extendmientes Razones que se utilizan para comparar tres o más cantidades.
exterior Un punto yace en el exterior de un ángulo si no se ubica ni en el ángulo ni en el interior del ángulo.

A está en el exterior del $\angle X Y Z$.
ángulo externo Ángulo formado por un lado de un triángulo y la prolongación de otro de sus lados.

ángulos externos Un ángulo que está en la región que no está entre dos transversals que cruzan la misma línea.
segmento secante externo Segmento secante que yace en el exterior del círculo.

$\overline{B C}$ y $\overline{C D}$ son
segmentos secantes externos.
extremos Los números a y d en $\frac{a}{b}=\frac{c}{d}$.
face of a polyhedron (p. 67) A flat surface of a polyhedron.
factorial (p. 922) The product of the integers less than or equal to a positive integer n, written as n !
finite plane (p. 10) A plane that has boundaries or does not extend indefinitely.
flow proof (p. 248) A proof that organizes statements in logical order, starting with the given statements. Each statement is written in a box with the reason verifying the statement written below the box. Arrows are used to indicate the order of the statements.
focus (p. 765) The fixed point in a parabola that is equidistant from the locus of all points in a plane.
formal proof (p. 137) A two-column proof containing statements and reasons.
fractal (p. 509) A figure generated by repeating a special sequence of steps infinitely often. Fractals often exhibit selfsimilarity.
frustum (p. 861) The part of a solid that remains after the top portion has been cut by a plane parallel to the base.

Fundamental Counting Principle (p. 917) A method used to determine the number of possible outcomes in a sample space by multiplying the number of possible outcomes from each stage or event.
cara de un poliedro Superficie plana de un poliedro.
factorial Producto de los enteros menores o iguales a un número positivo n, escrito como n !
plano finito Plano que tiene límites o que no se extiende indefinidamente.
demostración de flujo Demostración que organiza los enunciados en orden lógico, comenzando con los enunciados dados. Cada enunciado se escribe en una casilla y debajo de cada casilla se escribe el argumento que verifica dicho enunciado. El orden de los enunciados se indica con flechas.
foco Punto fijo en una parábola que está equidistante del lugar geométrico de todos los puntos en un plano.
demonstración formal Demonstración en dos columnas que contiene enunciados y razonamientos.
fractal Figura que se obtiene mediante la repetición infinita de una sucesión particular de pasos. Los fractales a menudo exhiben autosemejanza.
tronco Parte de un sólido que queda después de que la parte superior ha sido cortada por un plano paralelo a la base.
principio fundamental de contar Método para determinar el número de resultados posibles en un espacio muestral multiplicando el número de resultados posibles de cada etapa 0 evento.
geometric mean (p. 537) For any positive numbers a and b, the positive number x such that $\frac{a}{x}=\frac{x}{b}$.
geometric probability (p. 931) Using the principles of length and area to find the probability of an event.
glide reflection (p. 651) The composition of a translation followed by a reflection in a line parallel to the translation vector.
great circle (p. 881) A circle formed when a plane intersects a sphere with its center at the center of the sphere.

media geométrica Para todo número positivo a y b, existe un número positivo x tal que $\frac{a}{x}=\frac{x}{b}$.
probabilidad geométrica Uso de los principios de longitud y área para calcular la probabilidad de un evento.
reflexión del deslizamiento Composición de una traslación seguida por una reflexión en una recta paralela al vector de la traslación.
círculo mayor Círculo que se forma cuando un plano interseca una esfera y cuyo centro es el mismo que el centro de la esfera.

height of a parallelogram (p. 779) The length of an altitude of a parallelogram.

h is the height of parallelogram $A B C D$.
height of a trapezoid (p. 789) The perpendicular distance between the bases of a trapezoid.

h is the height of trapezoid $A B C D$.
height of a triangle (p. 781) The length of an altitude drawn to a given base of a triangle.

hemisphere (p. 881) One of the two congruent parts into which a great circle separates a sphere.
hypothesis (p. 107) In a conditional statement, the statement that immediately follows the word if.
altura de un paralelogramo Longitud del segmento perpendicular que va desde la base hasta el vértice opuesto a ella.

h es la altura del paralelogramo $A B C D$.
altura de un trapecio Distancia perpendicular entre las bases de un trapecio.

h es la altura del trapecio $A B C D$.
altura de un triángulo Longitud de una altura trazada a una base dada de un triángulo.

hemisferio Una de las dos partes congruentes en las cuales un círculo mayor divide una esfera.
hipótesis Enunciado escrito inmediatamente después de la palabra si en un enunciado condicional.

I

if-then statement (p. 107) A compound statement of the form "if p, then q," where p and q are statements.
image (p. 296) A figure that results from the transformation of a geometric figure.
incenter (p. 328) The point of concurrency of the angle bisectors of a triangle.
included angle (p. 266) In a triangle, the angle formed by two sides is the included angle for those two sides.
included side (p.275) The side of a polygon that is a side of each of two angles.
enunciado si-entonces Enunciado compuesto de la forma "si p, entonces q," donde p y q son enunciados.
imagen Figura que resulta de la transformación de una figura geométrica.
incentro Punto de intersección de las bisectrices interiores de un triángulo.
ángulo incluido En un triángulo, el ángulo formado por dos lados es el ángulo incluido de esos dos lados.
lado incluido Lado de un polígono común a dos de sus ángulos.
independent events (p. 947) Two or more events in which the outcome of one event does not affect the outcome of the other events.
indirect isometry (p. 298) An isometry that cannot be performed by maintaining the orientation of the points, as in a direct isometry.
indirect proof (p. 355) In an indirect proof, one assumes that the statement to be proved is false. One then uses logical reasoning to deduce that a statement contradicts a postulate, theorem, or one of the assumptions. Once a contradiction is obtained, one concludes that the statement assumed false must in fact be true.
indirect reasoning (p. 355) Reasoning that assumes that the conclusion is false and then shows that this assumption leads to a contradiction of the hypothesis like a postulate, theorem, or corollary. Then, since the assumption has been proved false, the conclusion must be true.
inductive reasoning (p. 91) Reasoning that uses a number of specific examples to arrive at a plausible generalization or prediction. Conclusions arrived at by inductive reasoning lack the logical certainty of those arrived at by deductive reasoning.
informal proof (p. 129) A paragraph proof.
inscribed (p. 700) A polygon is inscribed in a circle if each of its vertices lie on the circle.

inscribed angle (p .723) An angle that has a vertex on a circle and sides that contain chords of the circle.

In $\odot A, \angle J K L$ is an inscribed angle.
intercepted arc (p. 723) An angle intercepts an arc if and only if each of the following conditions are met.

1. The endpoints of the arc lie on the angle.
2. All points of the arc except the endpoints are in the interior of the circle.
3. Each side of the angle has an endpoint of the arc.
eventos independientes El resultado de un evento no afecta el resultado del otro evento.
isometría indirecta Tipo de isometría que no se puede obtener manteniendo la orientación de los puntos, como ocurre con la isometría directa.
demostración indirecta En una demostración indirecta, se supone que el enunciado a demostrar es falso. Después, se deduce lógicamente que existe un enunciado que contradice un postulado, un teorema o una de las conjeturas. Una vez hallada una contradicción, se concluye que el enunciado que se suponía falso debe ser, en realidad, verdadero.
razonamiento indirecto Razonamiento en que primero se supone que la conclusión es falsa y luego se demuestra que esta conjetura lleva a una contradicción de la hipótesis como un postulado, un teorema o un corolario. Finalmente, como se ha demostrado que la conjetura es falsa, la conclusión debe ser verdadera.
razonamiento inductivo Razonamiento que usa varios ejemplos específicos para lograr una generalización o una predicción pausible. Las conclusiones obtenidas por razonamiento inductivo carecen de la certeza lógica de aquellas obtenidas por razonamiento deductivo.
demostración informal Demostración en forma de párrafo.
inscrito Un polígono está inscrito en un círculo si todos sus vértices yacen en el círculo.

$\triangle L M N$ está inscrito en $\odot P$.
ángulo inscrito Ángulo cuyo vértice esté en un círculo y cuyos lados contienen cuerdas del círculo.

En $\odot A, \angle J K L$ es un ángulo inscrito.
arco intersecado Un ángulo interseca un arco si y sólo si se cumple cada una de las siguientes condiciones.

1. Los extremos del arco yacen en el ángulo.
2. Todos los puntos del arco, excepto los extremos, yacen en el interior del círculo.
3. Cada lado del ángulo tiene un extremo del arco.
interior (p. 36) A point is in the interior of an angle if it does not lie on the angle itself and it lies on a segment with endpoints that are on the sides of the angle.

M is in the interior of $\angle J K L$.
interior angles (p. 174) Angles that lie between two transversals that intersect the same line.
intersection (p. 6) A set of points common to two or more geometric figures.
inverse (p. 109) The statement formed by negating both the hypothesis and conclusion of a conditional statement.
inverse cosine (p. 571) The inverse function of cosine, or $\cos ^{-1}$. If the cosine of an acute $\angle A$ is equal to x, then $\cos ^{-1} x$ is equal to the measure of $\angle A$.
inverse sine (p. 571) The inverse function of sine, or $\sin ^{-1}$. If the sine of an acute $\angle A$ is equal to x, then $\sin ^{-1} x$ is equal to the measure of $\angle A$.
inverse tangent (p .571) The inverse function of tangent, or $\tan ^{-1}$. If the tangent of an acute $\angle A$ is equal to x, then $\tan ^{-1} x$ is equal to the measure of $\angle A$.
irrational number (p. 26) A number that cannot be expressed as a terminating or repeating decimal.
irregular figure (p. 57) A polygon with sides and angles that are not all congruent.
isometric view (p. 839) Corner views of three-dimensional objects on two-dimensional paper.
isometry (p. 296) A mapping for which the original figure and its image are congruent.
isosceles trapezoid (p. 439) A trapezoid in which the legs are congruent, both pairs of base angles are congruent, and the diagonals are congruent.

interior Un punto se encuenta en el interior de un ángulo si no yace en el ángulo como tal y si está en un segmento cuyos extremos están en los lados del ángulo.

M está en el interior del $\angle J K L$.
ángulos interiores Ángulos que yacen entre dos transversales que intersecan la misma recta.
intersección Conjunto de puntos comunes a dos o más figuras geométricas.
inverso Enunciado que se obtiene al negar tanto la hipótesis como la conclusión de un enunciado condicional.
inverso del coseno Función inversa del coseno, o $\cos ^{-1}$. Si el coseno de un $\angle A$ agudo es igual a x, entonces $\cos ^{-1} x$ es igual a la medida $\operatorname{del} \angle A$.
inverso del seno Función inversa del seno, $0 \sin ^{-1}$. Si el seno de un $\angle A$ agudo es igual a x, entonces $\sin ^{-1} x$ es igual a la medida del A.
inverse del tangente Función inversa de la tangente, $0 \tan ^{-1}$. Si la tangente de un $\angle A$ agudo es igual a x, entonces $\tan ^{-1} x$ es igual a la medida del $\angle A$.
número irracional Número que no se puede expresar como un decimal terminal o periódico.
figura irregular Polígono cuyos lados y ángulos no son todo congruentes.
vista isométrica Vistas de las esquinas de sólidos geométricos tridimensionales sobre un papel bidimensional.
isometría Aplicación en la cual la figura original y su imagen son congruentes.
trapecio isósceles Trapecio cuyos catetos son congruentes, ambos pares de ángulos de las bases son congruentes y las diagonales son congruentes.

isosceles triangle (pp. 238,285) A triangle with at least two sides congruent. The congruent sides are called legs. The angles opposite the legs are base angles. The angle formed by the two legs is the vertex angle. The side opposite the vertex angle is the base.

iteration (p. 509) A process of repeating the same procedure over and over again.
triángulo isósceles Triángulo que tiene por lo menos dos lados congruentes. Los lados congruentes se llaman catetos. Los ángulos opuestos a los catetos son los ángulos de la base. El ángulo formado por los dos catetos es el ángulo del vértice. El lado opuesto al ángulo del vértice es la base.

iteración Proceso de repetir el mismo procedimiento una y otra vez.

J

joint frequencies (p. 954) In a two-way frequency table, the frequencies reported in the cells in the interior of the table.
frecuencias conjuntas En una tabla de double entrada o de frecuencias, las frecuencias reportadas en las celdas en el interior de la tabla.

K

kite (p. 442) A quadrilateral with exactly two distinct pairs of adjacent congruent sides.

cometa Cuadrilátero que tiene exactamente dos pares differentes de lados congruentes y adyacentes.

lateral area (p. 846) For prisms, pyramids, cylinders, and cones, the area of the faces of the figure not including the bases.
lateral edges 1. (p. 846) In a prism, the intersection of two adjacent lateral faces. 2. (p. 854) In a pyramid, lateral edges are the edges of the lateral faces that join the vertex to vertices of the base.
lateral faces 1. (p. 846) In a prism, the faces that are not bases. 2. (p. 854) In a pyramid, faces that intersect at the vertex.
latitude (p. 895) A measure of distance north or south of the equator.

Law of Cosines (p. 589) Let $\triangle A B C$ be any triangle with a, b, and c representing the measures of sides opposite the angles with measures A, B, and C respectively. Then the following equations are true.
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
área lateral En prismas, pirámides, cilindros y conos, es el área de la caras de la figura sin incluir el área de las bases.
aristas laterales 1. En un prisma, la intersección de dos caras laterales adyacentes. 2. En una pirámide, las aristas de las caras laterales que unen el vértice de la pirámide con los vértices de la base.
caras laterales 1. En un prisma, las caras que no forman las bases. 2. En una pirámide, las caras que se intersecan en el vértice.
latitud Medida de la distancia al norte 0 al sur del ecuador.
ley de los cosenos Sea $\triangle A B C$ cualquier triángulo donde a, b y c son las medidas de los lados opuestos a los ángulos que miden A, B y C respectivamente. Entonces las siguientes ecuaciones son verdaderas.
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Law of Detachment (p.117) If $p \rightarrow q$ is a true conditional and p is true, then q is also true.

Law of Large Numbers (p. 942) Law that states that as the number of trials of a random process increases, the average value will approach the expected value.

Law of Sines (p.588) Let $\triangle A B C$ be any triangle with a, b, and c representing the measures of sides opposite the angles with measures A, B, and C respectively.
Then, $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$.
Law of Syllogism (p.119) If $p \rightarrow q$ and $q \rightarrow r$ are true conditionals, then $p \rightarrow r$ is also true.
legs of a right triangle (p. 26) The shorter sides of a right triangle.
legs of a trapezoid (p. 439) The nonparallel sides of a trapezoid.
legs of an isosceles triangle (p. 285) The two congruent sides of an isosceles triangle.
line (p. 5) A basic undefined term of geometry. A line is made up of points and has no thickness or width. In a figure, a line is shown with an arrowhead at each end. Lines are usually named by lowercase script letters or by writing capital letters for two points on the line, with a double arrow over the pair of letters.
line of reflection (p.623) A line in which each point on the preimage and its corresponding point on the image are the same distance from this line.
line of symmetry (p. 663) A line that can be drawn through a plane figure so that the figure on one side is the reflection image of the figure on the opposite side.

line segment (p. 14) A measurable part of a line that consists of two points, called endpoints, and all of the points between them.
linear pair (p. 46) A pair of adjacent angles whose noncommon sides are opposite rays.

$\angle P S Q$ and $\angle Q S R$ are a linear pair.

Iey de indiferencia Si $p \rightarrow q$ es un enunciado condicional verdadero y p es verdadero, entonces q también es verdadero.
ley de los grandes números Ley que establece que a medida que aumenta el número de ensayos de un proceso aleatorio, el valor promedio se aproximará al valor esperado.
ley de los senos Sea $\triangle A B C$ cualquier triángulo donde a, b y c representan las medidas de los lados opuestos a los ángulos que miden A, B y C respectivamente.
Entonces, $\frac{\operatorname{scn} A}{a}=\frac{\operatorname{scn} B}{b}=\frac{\operatorname{scn} C}{c}$.
ley del silogismo Si $p \rightarrow q$ y $q \rightarrow r$ son enunciados condicionales verdaderos, entonces $p \rightarrow r$ también es verdadero.
catetos de un triángulo rectángulo Lados más cortos de un triángulo rectángulo.
catetos de un trapecio Los lados no paralelos de un trapecio.
catetos de un triángulo isósceles Las dos lados congruentes de un triángulo isósceles.
recta Término geometrico basico no definido. Una recta está formada por puntos y carece de grosor 0 ancho. En una figura, una recta se representa con una flecha en cada extremo. Generalmente se designan con letras minúsculas o con las dos letras mayúsculas de dos puntos sobre la recta y una flecha doble sobre el par de letras.
línea de reflexión Una línea en la cual cada punto en el preimage y el su corresponder senalañ en la imagen es la misma distancia de esta línea.
eje de simetría Recta que se traza a través de una figura plana, de modo que un lado de la figura es la imagen reflejada del lado opuesto.

segmento de recta Sección medible de una recta que consta de dos puntos, llamados extremos, y todos los puntos entre ellos.
par lineal Par de ángulos adyacentes cuyos lados no comunes forman rayos opuestos.

locus (p.11) The set of points that satisfy a given condition.
logically equivalent (p.110) Statements that have the same truth values.
longitude (p. 895) A measure of distance east or west of the Prime Meridian.
lugar geométrico Conjunto de puntos que satisfacen una condición dada.
lógicamente equivalentes Enunciados que poseen los mismos valores verdaderos.

Iongitud Medida de la distancia del este 0 al oeste del Primer Meridiano.

M
magnitude (p. 600) The length of a vector.
magnitude of symmetry (p.664) The smallest angle through which a figure can be rotated so that it maps onto itself.
major arc (p. 707) An arc with a measure greater than 180. $\overparen{A C B}$ is a major arc.

marginal frequencies (p. 954) In a two-way frequency table, the accumulated frequencies reported in the Totals row and Totals column.
matrix logic (p. 353) A rectangular array in which learned clues are recorded in order to solve a logic or reasoning problem.
means (p. 462) $\ln \frac{a}{b}=\frac{c}{d}$, the numbers b and c.
median (p. 335) In a triangle, a line segment with endpoints that are a vertex of a triangle and the midpoint of the side opposite the vertex.
meridians (p. 895) Imaginary vertical lines drawn around the Earth through the North and South Poles.
midpoint (p.27) The point on a segment exactly halfway between the endpoints of the segment.
midsegment of trapezoid (p. 441) A segment that connects the midpoints of the legs of a trapezoid.
midsegment of triangle (p. 491) A segment with endpoints that are the midpoints of two sides of a triangle.
minor arc (p. 707) An arc with a measure less than 180. $\widehat{A B}$ is a minor arc.
magnitud Longitud de un vector.
magnitud de la simetria El angulo mas pequeno con el cual una figura puede serrotada de modo que traz sobre si mismo.
arco mayor Arco que mide más de 180. $\overparen{A C B}$ es un arco mayor.

frecuencias marginales En una tabla de double entrada o de frecuencias, las frecuencias acumuladas que se reportan en la hilera de los totales y en la columna de los totales.
lógica matricial Arreglo rectangular en que las claves aprendidas se escriben en orden para resolver un problema de lógica o razonamiento.
medias Los números b y c en la proporción $\frac{a}{b}=\frac{c}{d}$.
mediana En un triángulo, Segmento de recta de cuyos extremos son un vértice del triángulo y el punto medio del lado opuesto a dicho vértice.
meridianos Líneas verticales imaginarias dibujadas alrededor de la Tierra que von del polo norte al polo sur.
punto medio Punto en un segmento que yace exactamente en la mitad, entre los extremos del segmento.
segmento medio de un trapecio Segmento que conecta los puntos medios de los catetos de un trapecio.
segmento medio de un triángulo Segmento cuyas extremos son los puntos medianos de dos lados de un triángulo.
arco menor Arco que mide menos de 180. $\overparen{A B}$ es un arco menor.

multi-stage experiments (p. 916) Experiments with more than two stages.
mutually exclusive (p. 956) Two events that have no outcomes in common.
experimentos multietápicos Experimentos con más de dos etapas.
mutuamente exclusivos Eventos que no tienen resultados en común.

N

negation (p. 99) If a statement is represented by p, then not p is the negation of the statement.
net (p. 76) A two-dimensional figure that when folded forms the surfaces of a three-dimensional object.
network (p. 964) A graph of interconnected vertices.
n-gon (p. 57) A polygon with n sides.
node (p. 964) A collection of vertices.
non-Euclidean geometry (p. 890) The study of geometrical systems that are not in accordance with the Parallel Postulate of Euclidean geometry.
negación Si p representa un enunciado, entonces no p es la negación del enunciado.
red Figura bidimensional que al ser plegada forma las superficies de un objeto tridimensional.
red Gráfico de vértices interconectados.
enágono Polígono con n lados.
nodo Colección de vértices.
geometría no euclidiana El estudio de sistemas geométricos que no satisfacen el postulado de las paralelas de la geometría euclidiana.
oblique cone (p. 856) A cone that is not a right cone.

oblique cylinder (p. 848) A cylinder that is not a right cylinder.

oblique prism (p. 846) A prism in which the lateral edges are not perpendicular to the bases.

oblique solid (p. 838) A solid with base(s) that are not perpendicular to the edges connecting the two bases or vertex.
obtuse angle (p.38) An angle with degree measure greater than 90 and less than 180.

$90<m \angle A<180$
cono oblicuo Cono que no es un cono recto.

cilindro oblicuo Cilindro que no es un cilindro recto.

prisma oblicuo Prisma cuyas aristas laterales no son perpendiculares a las bases.

sólido oblicuo Sólido con base o bases que no son perpendiculares a las aristas, las cuales conectan las dos bases o vértice.
ángulo obtuso Ángulo que mide más de 90 y menos de 180.
obtuse triangle (p. 237) A triangle with an obtuse angle.

one obtuse angle
opposite rays (p. 36) Two rays $\overrightarrow{B A}$ and $\overrightarrow{B C}$ such that B is between A and C.

opposite vectors (p. 601) Vectors that have the same magnitude but opposite direction.
order of symmetry (p. 664) The number of times a figure can map onto itself as it rotates from 0° to 360°.
ordered triple (p. 556) Three numbers given in a specific order used to locate points in space.
orthocenter (p. 337) The point of concurrency of the altitudes of a triangle.
orthographic drawing (p. 75) The two-dimensional top view, left view, front view, and right view of a three-dimensional object.
triángulo obtusángulo Triángulo con un ángulo obtuso.

un ángulo obtuso
rayos opuestos Dos rayos $\overrightarrow{B A}$ y $\overrightarrow{B C}$ donde B esta entre A y C.

vectores opuestos Vectores que tienen la misma magnitud pero enfrente de la dirección.
orden de la simetría Número de veces que una figura se puede aplicar sobre sí misma mientras gira de 0° a 360°.
triple ordenado Tres números dados en un orden específico que sirven para ubicar puntos en el espacio.
ortocentro Punto de intersección de las alturas de un triángulo.
proyección ortogonal Vista bidimensional superior, del lado izquierda, frontal y del lado derecho de un objeto tridimensional.
parábola La grafica de una funcion cuadratica. Conjunto de todos los puntos de un plano que estan a la misma distancia de un punto dado, llamado foco, y de una recta dada, llamada directriz.
demostración de párrafo Demostración informal escrita en párrafo que explica por qué una conjetura para una situación dada es verdadera.
rectas paralelas Rectas coplanares que no se intersecan.

planos paralelos Planos que no se intersecan.
vectores paralelos Vectores con la misma dirección o dirección opuesta.
paralelogramo Cuadrilátero cuyos lados opuestos son paralelos y cuya base puede ser cualquier de sus lados.

parallelogram method (p. 601) A method used to find the resultant of two vectors in which you place the vectors at the same initial point, complete a parallelogram, and draw the diagonal.
parallels (p. 895) Imaginary horizontal lines parallel to the equator.
perimeter (p. 58) The sum of the lengths of the sides of a polygon.
permutation (p. 922) An arrangement of objects in which order is important.
perpendicular bisector (p. 324) In a triangle, a line, segment, or ray that passes through the midpoint of a side and is perpendicular to that side.

perpendicular lines (p. 48) Lines that form right angles.

line $m \perp$ line n
pi (π) (p. 699) An irrational number represented by the ratio of the circumference of a circle to the diameter of the circle.
plane (p. 5) A basic undefined term of geometry. A plane is a flat surface made up of points that has no depth and extends indefinitely in all directions. In a figure, a plane is often represented by a shaded, slanted four-sided figure. Planes are usually named by a capital script letter or by three noncollinear points on the plane.
plane Euclidean geometry (p. 889) Geometry based on Euclid's axioms dealing with a system of points, lines, and planes.
plane symmetry (p. 665) Symmetry in a three- dimensional figure that occurs if the figure can be mapped onto itself by a reflection in a plane.

Platonic solids (p. 68) The five regular polyhedra: tetrahedron, hexahedron, octahedron, dodecahedron, or icosahedron.
point (p. 5) A basic undefined term of geometry. A point is a location. In a figure, points are represented by a dot. Points are named by capital letters.
point of concurrency (p. 325) The point of intersection of concurrent lines.
método del paralelogramo Método que se usa para hallar la resultante de dos vectores en que se dibujan los vectores con el mismo punto de origen, se completa un paralelogramo y se traza la diagonal.
paralelos Rectas horizontales imaginarias paralelas al ecuador.
perímetro Suma de la longitud de los lados de un polígono.
permutación Disposicion de objetos en la cual el orden es importante.
mediatriz Recta, segmento de recta o rayo perpendicular que corta un lado del triángulo en su punto medio.

rectas perpendiculares Rectas que forman ángulos rectos.

pi (π) Número irracional representado por la razón de la circunferencia de un círculo al diámetro del mismo.
plano Término geométrico básico no definido. Superficie plana sin espesor formada por puntos y que se extiende hasta el infinito en todas direcciones. En una figura, los planos a menudo se representan con una figura inclinada y sombreada y se designan con una letra mayúscula o con tres puntos no colineales del plano.
geometría del plano euclidiano Geometría basada en los axiomas de Euclides, los cuales abarcan un sistema de puntos, rectas y planos.
simetría plana Simetría en una figura tridimensional que ocurre si la figura se puede aplicar sobre sí misma mediante una reflexión en el plano.
sólidos platónicos Los cinco poliedros regulares siguientes: tetraedro, hexaedro, octaedro, dodecaedro e icosaedro.
punto Término geométrico básico no definido. Un punto representa un lugar o ubicación. En una figura, se representa con una marca puntual y se designan con letras mayúsculas.
punto de concurrencia Punto de intersección de rectas concurrentes.
point of symmetry (p. 664) A figure that can be mapped onto itself by a rotation of 180°.

R is a point of symmetry.
point of tangency (p. 732) For a line that intersects a circle in only one point, the point at which they intersect.
point-slope form (p. 198) An equation of the form $y-y_{1}=m\left(x-x_{1}\right)$, where $\left(x_{1}, y_{1}\right)$ are the coordinates of any point on the line and m is the slope of the line.
poles (p. 881) The endpoints of the diameter of a great circle.
polygon (p. 56) A closed figure formed by a finite number of coplanar segments called sides such that the following conditions are met:

1. The sides that have a common endpoint are noncollinear.
2. Each side intersects exactly two other sides, but only at their endpoints, called the vertices.
polyhedrons (p. 67) Closed three-dimensional figures made up of flat polygonal regions. The flat regions formed by the polygons and their interiors are called faces. Pairs of faces intersect in segments called edges. Points where three or more edges intersect are called vertices.
population density (p. 797) A measurement of population per unit of area.
postulate (p. 127) A statement that describes a fundamental relationship between the basic terms of geometry. Postulates are accepted as true without proof.
preimage (p. 296) The graph of an object before a transformation.
principle of superposition (p. 682) Two figures are congruent
if and only if there is a rigid motion or a series of rigid motions that maps one figure exactly onto the other.
prism (p. 67) A solid with the following characteristics:
3. Two faces, called bases, are formed by congruent polygons that lie in parallel planes.
4. The faces that are not bases, called lateral faces, are formed by parallelograms.
punto de simetría Una figura que se puede traz sobre sí mismo por una rotación de 180°.

punto de tangencia Punto de intersección de una recta en un círculo en un solo punto.
forma punto-pendiente Ecuación de la forma $y-y_{1}=m\left(x-x_{1}\right)$, donde $\left(x_{1}, y_{1}\right)$ representan las coordenadas de un punto cualquiera sobre la recta y m representa la pendiente de la recta.
postes Las extremos del diámetro de un círculo mayor.
polígono Figura cerrada formada por un número finito de segmentos coplanares llamados lados, tal que satisface las siguientes condiciones:
5. Los lados que tienen un extremo común son no colineales.
6. Cada lado interseca exactamente dos lados mas, pero sólo en sus extremos, llamados vértices.
poliedros Figuras tridimensionales cerrada formadas por regiones poligonales planas. Las regiones planas definidas por un polígono y sus interiores se llaman caras. Cada intersección entre dos caras se llama arista. Los puntos donde se intersecan tres o más aristas se llaman vértices.
densidad demográfica Medida de la población por unidad de área.
postulado Enunciado que describe una relación fundamental entre los términos geométricos básicos. Los postulados se aceptan como verdaderos sin necesidad de demostración.
preimagen Gráfica de una figura antes de una transformación.
principio de superposición Dos figuras son congruentes si y sólo si existe un movimiento rígido o una serie de movimientos rígidos que aplican una de las figuras exactamente sobre la otra.
prisma Sólido con las siguientes características:
7. Dos caras llamadas bases, formadas por polígonos congruentes que yacen en planos paralelos.
8. Las caras que no son las bases, llamadas caras laterales, son paralelogramos.
9. The intersections of two adjacent lateral faces are called lateral edges and are parallel segments.

triangular prism
probability model (p. 939) A mathematical model used to match a random phenomenon.
probability tree (p. 949) An organized table of line segments (branches) that shows the probability of each outcome.
proof (p. 128) A logical argument in which each statement you make is supported by a statement that is accepted as true.
proof by contradiction (p. 355) An indirect proof in which one assumes that the statement to be proved is false. One then uses logical reasoning to deduce a statement that contradicts a postulate, theorem, or one of the assumptions. Once a contradiction is obtained, one concludes that the statement assumed false must in fact be true.
proportion (p. 462) An equation of the form $\frac{a}{b}=\frac{c}{d}$ that states that two ratios are equal.
pyramid (p. 67) A solid with the following characteristics:
10. All of the faces, except one face, intersect at a point called the vertex.
11. The face that does not contain the vertex is called the base and is a polygonal region.
12. The faces meeting at the vertex are called lateral faces and are triangular regions.

rectangular pyramid

Pythagorean triple (p. 548) A group of three whole numbers that satisfies the equation $a^{2}+b^{2}=c^{2}$, where c is the greatest number.
3. Las intersecciones de dos caras laterales adyacentes se llaman aristas laterales y son segmentos paralelos.

> prisma triangular
modelo de probabilidad Modelo matemático que se usa para relacionar un fenómeno aleatorio.
árbol de la probabilidad Tabla organizada de segmentos de recta (ramas) que muestra la probabilidad de cada resultado.
demostración Argumento lógico en el cual cada enunciado que se hace está respaldado por un enunciado que se acepta como verdadero.
demostración por contradicción Demostración indirecta en la cual se supone que el enunciado a demostrarse es falso. Luego, se usa el razonamiento lógico para inferir un enunciado que contradiga el postulado, teorema o una de las conjeturas. Una vez que se obtiene una contradicción, se concluye que el enunciado que se supuso falso es, en realidad, verdadero.
proporción Ecuación de la forma $\frac{a}{b}=\frac{c}{d}$ que establece que dos razones son iguales.
pirámide Sólido con las siguientes características:

1. Todas las caras, excepto una, se intersecan en un punto llamado vértice.
2. La cara sin el vértice se llama base y es una región poligonal.
3. Las caras que se encuentran en los vértices se llaman caras laterales y son regiones triangulares.

pirámide rectangular
triplete pitágorico Grupo de tres números enteros que satisfacen la ecuación $a^{2}+b^{2}=c^{2}$, donde c es el número mayor.
radius 1. (p. 697) In a circle, any segment with endpoints that are the center of the circle and a point on the circle. 2. (p. 880) In a sphere, any segment with endpoints that are the center and a point on the sphere.
radius of a regular polygon (p. 807) The radius of a circle circumscribed about a polygon.
random variable (p. 941) A variable that can assume a set of values, each with fixed probabilities.
rate of change (p. 189) Describes how a quantity is changing over time.
ratio (p. 461) A comparison of two quantities using division.
ray (p. 36) $\overrightarrow{P Q}$ is a ray if it is the set of points consisting of $\overline{P Q}$ and all points S for which Q is between P and S.

rectangle (p. 423) A quadrilateral with four right angles.

reduction (p. 511) An image that is smaller than the original figure.
reflection (pp. 296, 623) A transformation representing the flip of a figure over a point, line or plane. A reflection in a line is a function that maps a point to its image such that

- if the point is on the line, then the image and preimage are the same point, or
- if the point is not on the line, the line is the perpendicular bisector of the segment joining the two points.
regular polygon (p. 57) A convex polygon in which all of the sides are congruent and all of the angles are congruent.

regular polyhedron (p. 68) A polyhedron in which all of the faces are regular congruent polygons.

radio 1. En un círculo, cualquier segmento cuyos extremos son en el centro y un punto del círculo. 2. En una esfera, cualquier segmento cuyos extremos son el centro y un punto de la esfera.
radio de un polígono regular Radio de un círculo circunscrito alrededor de un polígono.
variable aleatoria Variable que puede tomar un conjunto de valores, cada uno con probabilidades fijas.
tasa de cambio Describe cómo cambia una cantidad a través del tiempo.
razón Comparación de dos cantidades mediante división.
rayo $\underline{\overrightarrow{P Q}}$ es un rayo si se el conjunto de puntos formado por $\overline{P Q}$ y todos los puntos S para los cuales Q se ubica entre $P y S$.

rectángulo Cuadrilátero con cuatro ángulos rectos.

reducción Imagen más pequeña que la figura original.
reflexión Transformación en la cual una figura se "voltea" a través de un punto, una recta o un plano. Una reflexión en una recta es una función que aplica un punto a su imagen, de modo que si el punto yace sobre la recta, entonces la imagen y la preimagen son el mismo punto, o si el punto no yace sobre la recta, la recta es la mediatriz del segmento que une los dos puntos.
polígono regular Polígono convexo cuyos los lados y ángulos son congruentes.

poliedro regular Poliedro cuyas caras son polígonos regulares congruentes.

regular prism (p. 67) A right prism with bases that are regular polygons.
regular pyramid (p. 854) A pyramid with a base that is a regular polygon.
regular tessellation (p. 660) A tessellation formed by only one type of regular polygon.
related conditionals (p. 109) Statements that are based on a given conditional statement.
relative frequency (p. 954) In a frequency table, the ratio of the number of observations in a category to the total number of observations.
remote interior angles (p. 248) The angles of a triangle that are not adjacent to a given exterior angle.
resultant (p. 601) The sum of two vectors.
rhombus (p. 430) A quadrilateral with all four sides congruent.

right angle (p. 38) An angle with a degree measure of 90 .

right cone (p. 856) A cone with an axis that is also an altitude.
right cylinder (p. 848) A cylinder with an axis that is also an altitude.
right prism (p. 846) A prism with lateral edges that are also altitudes.
right solid (p. 837) A solid with base(s) that are perpendicular to the edges connecting them or connecting the base and the vertex of the solid.
right triangle (p. 237) A triangle with a right angle. The side opposite the right angle is called the hypotenuse. The other two sides are called legs.

prisma regular Prisma recto cuyas bases son polígonos regulares.
pirámide regular Pirámide cuya base es un polígono regular.
teselado regular Teselado formado por un solo tipo de polígono regular.
condicionales relacionados Enunciados que se basan en un enunciado condicional dado.
frecuencia relativa En una tabla de frecuencias, la razón del número de observaciones en una categoría al número total de observaciones.
ángulos internos no adyacentes Ángulos de un triángulo que no son adyacentes a un ángulo exterior dado.
resultante Suma de dos vectores.
rombo Cuadrilátero con cuatro lados congruentes.

ángulo recto Ángulo que mide 90.

cono recto Cono cuyo eje es también su altura.
cilindro recto Cilindro cuyo eje es también su altura.
prisma recto Prisma cuyas aristas laterales también son su altura.
sólido recto Sólido con base o bases perpendiculares a las aristas, conectándolas entre sí o conectando la base y el vétice del sólido.
triángulo rectángulo Triángulo con un ángulo recto. El lado opuesto al ángulo recto se conoce como hipotenusa. Los otros dos lados se llaman catetos.

rotation (pp. 296, 640) A transformation that turns every point of a preimage through a specified angle and direction about a fixed point, called the center of rotation. A rotation about a fixed point through an angle of x° is a function that maps a point to its image such that
- if the point is the center of rotation, then the image and preimage are the same point, or
- if the point is not the center of rotation, then the image and preimage are the same distance from the center of rotation and the measure of the angle of rotation formed by the preimage, center of rotation, and image points is x.
rotational symmetry (p. 664) If a figure can be rotated less than 360° about a point so that the image and the preimage are indistinguishable, the figure has rotational symmetry.
rotación Transformación en la cual se hace girar cada punto de la preimagen a través de un ángulo y una dirección determinadas alrededor de un punto llamado centro de rotación. La rotación de x° es una función que aplica un punto a su imagen, de modo que si el punto es el centro de rotación, entonces la imagen y la preimagen están a la misma distancia del centro de rotación y la medida del ángulo formado por los puntos de la preimagen, centro de rotación e imagen es x.
simetría rotacional Si una imagen se puede girar menos de 360° alrededor de un punto, de modo que la imagen y la preimagen sean idénticas, entonces la figura tiene simetría rotacional.

S

sample space (p. 915) The set of all possible outcomes of an experiment.
scalar (p. 606) A constant multiplied by a vector.
scalar multiplication (p. 606) Multiplication of a vector by a scalar.
scale factor (p. 470) The ratio of the lengths of two corresponding sides of two similar polygons or two similar solids.
scale factor of dilation (p. 511) The ratio of a length on an image to a corresponding length on the preimage.
scalene triangle (p. 238) A triangle with no two sides congruent.

secant (p. 741) Any line that intersects a circle in exactly two points.

$\overleftrightarrow{C D}$ is a secant of $\odot P$
secant segment (p. 752) A segment of a secant line that has exactly one endpoint on the circle.
sector of a circle (p. 799) A region of a circle bounded by a central angle and its intercepted arc.

The shaded region is a sector of $\odot A$.
espacio muestral El conjunto de todos los resultados posibles de un experimento.
escalar Constante multiplicada por un vector.
multiplicación escalar Multiplicación de un vector por un escalar.
factor de escala Razón entre las longitudes de dos lados correspondientes de dos polígonos o sólidos semejantes.
factor de escala de homotecia Razon de una longitud en la imagen a una longitud correspondiente en la preimagen.
triángulo escaleno Triángulo que no tiene dos lados congruentes.

secante Cualquier recta que interseca un círculo exactamente en dos puntos.

$\overleftrightarrow{C D}$ es una secante de $\odot P$.

segmento secante Segmento de una recta secante que tiene exactamente un extremo en el círculo.
sector circular Región de un círculo limitada por un ángulo central y su arco de intersección.

La región sombreada es un sector de $\odot A$.
segment (p. 14) See line segment.
segment bisector (p. 29) A segment, line, or plane that intersects a segment at its midpoint.
segment of a circle (p. 803) The region of a circle bounded by an arc and a chord.

The shaded region is a segment of $\odot A$.
self-similar (p. 509) If any parts of a fractal image are replicas of the entire image, the image is self-similar.
semicircle (p. 707) An arc that measures 180.
semi-regular tessellation (p. 660) A uniform tessellation formed using two or more regular polygons.
sides of an angle (p. 36) The rays of an angle.
Sierpinski Triangle (p. 509) A self-similar fractal described by Waclaw Sierpinski. The figure was named for him.

similar solids (p. 896) Solids that have exactly the same shape, but not necessarily the same size.
similarity ratio (p. 470) The scale factor between two similar polygons
similarity transformation (p. 511) When a figure and its transformation image are similar.
simulation (p. 939) A probability model used to recreate a situation again and again so the likelihood of various outcomes can be estimated.
sine (p. 568) For an acute angle of a right triangle, the ratio of the measure of the leg opposite the acute angle to the measure of the hypotenuse.
skew lines (p. 173) Lines that do not intersect and are not coplanar.
slant height (p. 854) The height of the lateral side of a pyramid or cone.
segmento Ver segmento de recta.
bisector del segmento Segmento, recta o plano que interseca un segmento en su punto medio.
segmento de un círculo Región de un círculo limitada por un arco y una cuerda.

La región sombreada es un segmento de $\odot A$.
autosemejante Si cualquier parte de una imagen fractal es una réplica de la imagen completa, entonces la imagen es autosemejante.
semicírculo Arco que mide 180.
teselado semiregular Teselado uniforme compuesto por dos 0 más polígonos regulares.
lados de un ángulo Los rayos de un ángulo.
triángulo de Sierpinski Fractal autosemejante descrito por el matemático Waclaw Sierpinski. La figura se nombró en su honor.

sólidos semejantes Sólidos que tienen exactamente la misma forma, pero no necesariamente el mismo tamaño.
razón de semejanza Factor de escala entre dos polígonos semejantes.
transformación de semejanza cuando una figura y su imagen transformada son semejantes.
simulacro Modelo de la probabilidad que se usa para reconstruir una situación repetidas veces y así poder estimar la probabilidad de varios resultados.
seno Para un ángulo agudo de un triángulo rectángulo, razón entre la medida del cateto opuesto al ángulo agudo a la medida de la hipotenusa.
rectas alabeadas Rectas que no se intersecan y que no son coplanares.
altura oblicua Altura de la cara lateral de una pirámide o un cono.
slope (p. 188) For a (nonvertical) line containing two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the number m given by the formula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ where $x_{2} \neq x_{1}$.
slope-intercept form (p. 198) A linear equation of the form $y=m x+b$. The graph of such an equation has slope m and y-intercept b.
solid of revolution (p. 647) A three-dimensional figure obtained by rotating a plane figure about a line.
solving a triangle (p .591) Finding the measures of all of the angles and sides of a triangle.
space (p. 7) A boundless three-dimensional set of all points.
sphere (p. 67) In space, the set of all points that are a given distance from a given point, called the center.

C is the center of the sphere.
spherical geometry (p. 889) The branch of geometry that deals with a system of points, great circles (lines), and spheres (planes).
square (p. 431) A quadrilateral with four right angles and four congruent sides.

standard position (p. 602) When the initial point of a vector is at the origin.
statement (p. 99) Any sentence that is either true or false, but not both.
supplementary angles (p. 47) Two angles with measures that have a sum of 180.
surface area (p. 69) The sum of the areas of all faces and side surfaces of a three-dimensional figure.
symmetry (p. 663) A figure has symmetry if there exists a rigid motion-reflection, translation, rotation, or glide reflection-that maps the figure onto itself.
pendiente Para una recta (no vertical) que contiene dos puntos $\left(x_{1}, y_{1}\right)$ y $\left(x_{2}, y_{2}\right)$, tel número m viene dado por la fórmula $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ donde $x_{2} \neq x_{1}$.
forma pendiente-intersección Ecuación lineal de la forma $y=m x+b$ donde, la pendiente es m y la intersección y es b.
sólido de revolución Figura tridimensional que se obtiene al rotar una figura plana alrededor de una recta.
resolver un triángulo Calcular las medidas de todos los ángulos y todos los lados de un triángulo.
espacio Conjunto tridimensional no acotado de todos los puntos.
esfera En el espacio, conjunto de todos los puntos a cierta distancia de un punto dado llamado centro.

C es el centro de la esfera.
geometría esférica Rama de la geometría que estudia los sistemas de puntos, los círculos mayores (rectas) y las esferas (planos).
cuadrado Cuadrilátero con cuatro ángulos rectos y cuatro lados congruentes.

posición estándar Cuando el punto inicial de un vector es el origen.
enunciado Cualquier suposición que puede ser falsa 0 verdadera, pero no ambas.
ángulos suplementarios Dos ángulos cuya suma es igual a 180.
área de superficie Suma de las áreas de todas las caras y superficies laterales de una figura tridimensional.
simetría Una figura tiene simetría si existe un movimiento rígido (reflexión, translación, rotación, o reflexión con deslizamiento) que aplica la figura sobre sí misma.
tangent 1. (p. 568) For an acute angle of a right triangle, the ratio of the measure of the leg opposite the acute angle to the measure of the leg adjacent to the acute angle. 2. (p. 732) A line in the plane of a circle that intersects the circle in exactly one point. The point of intersection is called the point of tangency. 3. (p. 880) A line that intersects a sphere in exactly one point.
tangent segment (p. 752) A segment of a tangent with one endpoint on a circle that is both the exterior and whole segment.
tessellation (p. 660) A pattern that covers a plane by transforming the same figure or set of figures so that there are no overlapping or empty spaces.
theorem (p. 129) A statement or conjecture that can be proven true by undefined terms, definitions, and postulates.
topographic map (p. 845) A representation of a threedimensional surface on a flat piece of paper.
traceable network (p. 964) A network in which all of the nodes are connected and each edge is used once when the network is used.
transformation (p. 511) In a plane, a mapping for which each point has exactly one image point and each image point has exactly one preimage point.
translation (pp. 296, 632) A transformation that moves a figure the same distance in the same direction. A translation is a function that maps each point to its image along a vector such that each segment joining a point and its image has the same length as the vector, and this segment is also parallel to the vector.
translation vector (p.632) The vector in which a translation maps each point to its image.
tangente 1. Para un ángulo agudo de un triángulo rectángulo, razón de la medida del cateto opuesto al ángulo agudo a la medida del cateto adyacente al ángulo agudo. 2. Recta en el plano de un círculo que interseca el círculo en exactamente un punto. El punto de intersección se conoce como punto de tangencia. 3. Recta que interseca una esfera en exatamente un punto.
segmento tangente Segmento de la tangente con un extremo en un círculo que es tanto el segmento externo como el segmento completo.
teselado Patrón con que se cubre un plano aplicando la misma figura o conjunto de figuras, sin que haya traslapes ni espacios vacíos.
teorema Enunciado o conjetura que se puede demostrar como verdadera mediante términos geométricos básicos, definiciones y postulados.
mapa topográfico Representación de una superficie tridimensional sobre una hoja del papel.
red detectable Red en la cual todos los nodos estén conectados y cada arista se utiliza una vez al usarse la red.
transformación En un plano, aplicación para la cual cada punto del plano tiene un único punto de la imagen y cada punto de la imagen tiene un único punto de la preimagen.
traslación Transformación que mueve una figura la misma distancia en la misma dirección. Una traslación es una función que aplica cada punto a su imagen a lo largo de un vector, de modo que cada segmento que une un punto a su imagen tiene la misma longitud que el vector y este segmento es también paralelo al vector.
vector de traslación Vector en el cual una traslación aplica cada punto a su imagen.

El punta R^{\prime}, es la traslación del punto R a lo largo del vector m de traslación.

transversal (p. 174) A line that intersects two or more lines in a plane at different points.

Line t is a transversal.
trapezoid (p. 439) A quadrilateral with exactly one pair of parallel sides. The parallel sides of a trapezoid are called bases. The nonparallel sides are called legs. The pairs of angles with their vertices at the endpoints of the same base are called base angles.

tree diagram (p. 915) An organized table of line segments (branches) which shows possible experiment outcomes.
triangle method (p.602) A method used to find the resultant of two vectors in which the second vector is connected to the terminal point of the first and the resultant is drawn from the initial point of the first vector to the terminal point of the second vector.
trigonometric ratio (p. 568) A ratio of the lengths of sides of a right triangle.
trigonometry (p. 568) The study of the properties of triangles and trigonometric functions and their applications.
truth table (p. 101) A table used as a convenient method for organizing the truth values of statements.
truth value (p. 99) The truth or falsity of a statement.
two-column proof (p. 137) A formal proof that contains statements and reasons organized in two columns. Each step is called a statement, and the properties that justify each step are called reasons.
two-stage experiment (p.916) An experiment with two stages or events.
two-way frequency table (p. 954) A table used to show the frequencies or relative frequencies of data from a survey or experiment classified according to two variables, with the rows indicating one variable and the columns indicating the other.
transversal Recta que interseca dos o más rectas en el diferentes puntos del mismo plano.

La recta t es una transversal.
trapecio Cuadrilátero con sólo un par de lados paralelos. Los lados paralelos del trapecio se llaman bases. Los lados no paralelos se llaman catetos. Los pares de ángulos cuyos vértices coinciden en los extremos de la misma base son los ángulos de la base.

diagrama del árbol Tabla organizada de segmentos de recta (ramas) que muestra los resultados posibles de un experimento.
método del triangulo Método para calcular la resultante de dos vectores en cual el segundo vector está conectado al extremo del primer y la resultante se traza desde el punto inicial del primer vector al extremo del segundo vector.
razón trigonométrica Razón de las longitudes de los lados de un triángulo rectángulo.
trigonometría Estudio de las propiedades de los triángulos, de las funciones trigonométricas y sus aplicaciones.
tabla de validez Tabla que se utiliza para organizar de una manera conveniente los valores de verdaderos de los enunciados.
valor de verdad Condición de un enunciado de ser verdadero o falso.
demostración de dos columnas Demonstración formal que contiene enunciados y razones organizadas en dos columnas. Cada paso se llama enunciado y las propiedades que lo justifican son las razones.
experimento de dos pasos Experimento que consta de dos pasos o eventos.
tabla de doble entrada o de frecuencias Tabla que se usa para mostrar las frecuencias o frecuencias relativas de los datos de una encuesta o experimento clasificado de acuerdo con dos variables, en la cual las hileras indican una variable y las columnas indican la otra variable.
undefined term (p. 5) Words, usually readily understood, that are not formally explained by means of more basic words and concepts. The basic undefined terms of geometry are point, line, and plane.
uniform tessellations (p. 660) Tessellations containing the same arrangement of shapes and angles at each vertex.
término geométrico básico no definido Palabras que por lo general se entienden fácilmente y que no se explican formalmente mediante palabras o conceptos más básicos. Los términos geométricos básicos no definidos son el punto, la recta y el plano.
teselado uniforme Teselados con el mismo patrón de formas y ángulos en cada vértice.

V

vector (p.600) A directed segment representing a quantity that has both magnitude, or length, and direction.
vertex angle of an isosceles triangle (p. 285) See isosceles triangle.
vertex-edge graphs (p. 964) A collection of nodes connected by edges.
vertex of an angle (pp. 36,67) The common endpoint of an angle.
vertex of a polygon (p. 56) The vertex of each angle of a polygon.
vertex of a polyhedron (p. 67) The intersection of three edges of a polyhedron.
vertical angles (p. 46) Two nonadjacent angles formed by two intersecting lines.

$\angle 1$ and $\angle 3$ are vertical angles. $\angle 2$ and $\angle 4$ are vertical angles.
volume (p. 69) A measure of the amount of space enclosed by a three-dimensional figure.
vector Segmento dirigido que representa una cantidad, la cual posee tanto magnitud o longitud como dirección.
ángulo del vértice un triángulo isosceles Ver triángulo isósceles.
gráficas de vértice-arista Colección de nodos conectados por aristas.
vértice de un ángulo Extremo común de un ángulo.
vertice de un polígono Vértice de cada ángulo de un polígono.
vértice de un poliedro Intersección de las aristas de un poliedro.
ángulos opuestos por el vértice Dos ángulos no adyacentes formados por dos rectas que se intersecan.

$\angle 1$ y $\angle 3$ son ángulos opuestos por el vértice. $\angle 2$ y $\angle 4$ son ángulos opuestos por el vértice.
volumen La medida de la cantidad de espacio contiene una figura tridimensional.

w

weight (p. 946) The value assigned to an edge in a vertex-edge graph.
weight of a path (p.946) The sum of the weights of the edges along a path.
weighted vertex-edge graphs (p. 946) A collection of nodes connected by edges in which each edge has an assigned value.
peso Valor asignado a una arista en una gráfica de vértice-arista.
peso de una ruta Suma de los pesos de las aristas a lo largo de una ruta.
gráficas ponderadas de vértice-arista Colección de nodos conectados por aristas en que cada arista tiene un valor asignado.
$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem, 560
$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem, 558

A

AA (Angle-Angle) Similarity Postulate. See Angle-Angle (AA) Similarity Postulate

AAS (Angle-Angle-Side) Congruence Theorem. See Angle-Angle-Side (AAS) Congruence Theorem

Absolute error, 22, 24
Absolute value, 743
Accuracy, 22-24
Activities. See Geometry Labs; Graphing Technology Labs; Spreadsheet Labs; TI-Nspire ${ }^{\text {TM }}$ Technology Labs
Acute angles, 38, 41-43, 237, 238, 558
Acute triangles, 237-238
Addition
angle, 151-152
arc, 708
area, 779
Associative Property, 138
Commutative Property, 138
finding area, 810
to find measurements, 15
Rules for Probability, 957-958
segment, 144-145
of vectors, 601, 603, 609

Addition Property

of equality, 136
of inequality, 344
Adjacent angles, 46-48, 50-51
Adjacent arcs, 708
Algebraic conjectures, 91-92
Algebraic expressions, P10
Algebraic proofs, 136-137, 163
Algebraic vectors, 603
Alternate exterior angles, 174-176, 180, 181, 208

Alternate Exterior Angles

Converse, 208
Alternate Exterior Angles
Theorem, 181

Alternate interior angles, 174-176, 181, 208, 580
Alternate Interior Angles Converse, 208

Alternate Interior Angles Theorem, 181, 580

Altitudes

of cones, 856
of prisms, 846
of pyramids, 854
of right triangles, 537-539
of triangles, 334, 337-339, 538, 559, 781, 809
Ambiguous case, 598-599
Angle Addition Postulate, 151-152
Angle-Angle (AA) Similarity Postulate, 478, 482, 490, 568

Angle-Angle-Side (AAS) Congruence Theorem, 276, 588
Angle bisectors, 40, 323, 326-327, 339

Angle Bisector Theorem, 327
Angles, 36-44
acute, 38, 41-43, 237, 238
adjacent, 46-48, 50-51
alternate exterior, 174-176, 181, 208
alternate interior, 174-176, 181, 208, 580
base, 285, 439-440
bisectors of, 40, 323, 326-327, 339
central, 706, 799, 807
complementary, 47-48, 50-51, 151-152, 558
congruent, 39, 50, 57, 153, 180, 208, 285-286, 394, 469
consecutive interior, 174-176, 181, 208 copying, 39
corresponding, 174-176, 180, 181, 207, 255, 469-470
of depression, 580-586, 610
of elevation, 580-586, 610
exterior, 174-176, 180, 181, 208, 245, 248-249, 344, 345-346, 348, 396-398, 402
exterior of, 36
formed by two parallel lines and a transversal, 179, 180-185
of incidence, 52
included, 266-267, 589
inscribed, 723-729
interior, 174-176, 181, 208, 245, 246, 248, 393-395, 402
interior of, 36-37, 39, 46
linear pairs, 46-47, 50, 152
measures of, 933
measuring, 38, 40, 66
obtuse, 38, 41-43, 238
pairs, 174-176, 180, 208
and parallel lines, 179, 180-185
of reflection, 52
relationships, 151-158
remote interior, 248, 345
right, 38, 41-43, 155, 238, 283-284,
304, 423, 424
of rotation, 640
sides of, 36-37, 41, 46
straight, 38
supplementary, 47-48, 51, 151-152
theorems about, 153, 154, 155, 181, 208, 246-247, 248-249, 257, 258, 276, 285-286, 327, 345-346, 348, 393-395, 396-397, 479, 482, 504, 558, 560, 580, 588, 589
of triangles, 237, 245, 246-253, 310
vertical, 46-47, 154-155
vertices of, 36-37, 40-41, 46
Angle-Side-Angle (ASA) Congruence Postulate, 275
Angle-side inequalities, 345-346
Angle-side relationships, 346-347
Angle-Side Relationships in Triangles Theorem, 346
Animations. See ConnectED
Apothem, 806, 807, 808
Applications. See also Real-World Careers; Real-World Examples; RealWorld Links
P3, P7, P9, P21, 2, 3, 6, 7, 8, 9, 10, 11, $12,16,18,19,20,21,23,24,27,29$,
$30,31,32,33,34,35,37,40,41,42$,
$43,44,45,47,48,49,50,51,52,53$,
54, 61, 62, 63, 64, 70, 71, 72, 74, 77,
$79,80,81,82,83,88,89,93,95,96$,
$97,98,102,103,104,105,106,110$,
$111,112,113,115,119,122,123$,
124, 125, 128, 130, 131, 132, 133,
134, 135, 137, 139, 140, 141, 143,
$146,147,148,149,150,152,156$,
$157,158,159,161,162,163,164$, $165,170,171,175,176,177,178$, 181, 183, 184, 185, 186, 190, 192, 193, 194, 195, 196, 197, 201, 202, 203, 204, 205, 210, 211, 212, 214, 216, 220, 221, 222, 223, 224, 226, 227, 228, 229, 234, 235, 239, 240, 241, 242, 243, 244, 247, 249, 250, 251, 252, 254, 257, 258, 260, 261, 262, 263, 267, 268, 269, 270, 271, 272, 274, 277, 279, 280, 281, 282, 287, 288, 289, 290, 291, 292, 293, 297, 300, 301, 302, 305, 306, 307, $308,309,311,312,313,314,315$, 320, 321, 326, 329, 330, 331, 332, $333,336,339,340,341,343,347$, $348,349,351,352,354,356,358$, 359, 360, 361, 362, 366, 367, 368, 369, 370, 373, 374, 376, 377, 378, 380, 382, 383, 384, 385, 390, 391, 394, 395, 397, 398, 399, 400, 401, 404, 405, 407, 408, 409, 410, 411, 414, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 431, 433, 435, 436, 437, 438, 440, 445, 446, 447, 448, 450, 451, 452, $453,458,459,461,463,464,465$, 466, 467, 473, 474, 475, 476, 477, 482, 483, 484, 485, 486, 487, 493, 495, 496, 497, 498, 499, 500, 503, $504,505,506,507,508,512,514$, 515, 516, 517, 518, 519, 520, 521, 522, 523, 525, 526, 527, 528, 529, 535, 540, 541, 542, 543, 545, 552, 553, 554, 555, 561, 562, 563, 564, 565, 566, 570, 573, 574, 575, 577, $578,580,581,582,583,584,585$, 586, 587, 590, 591, 592, 593, 594, $595,596,597,604,605,606,607$, 608, 609, 611, 612, 613, 615, 620, 621, 624, 627, 628, 629, 630, 631, 634, 635, 636, 637, 638, 643, 644, 645, 646, 647, 649, 654, 655, 656, 657, 659, 663, 664, 665, 666, 667, 668, 669, 675, 677, 678, 679, 680, 681, 685, 686, 687, 688, 689, 694, 695, 699, 701, 702, 703, 704, 710, 711, 712, 714, 715, 716, 717, 718, 719, 720, 721, 722, 725, 726, 727, 728, 729, 730, 731, 734, 735, 736, 737, 738, 739, 744, 745, 746, 747, $748,749,751,753,754,756,759$, 760, 761, 763, 767, 768, 769, 770, 771, 776, 777, 782, 783, 784, 786, 789, 792, 793, 794, 796, 798, 799, 800, 801, 802, 805, 808, 810, 811, 812, 813, 820, 821, 822, 823, 824, 826, 827, 828, 829, 834, 835, 840, 841, 842, 844, 849, 850, 851, 852,

853, 857, 859, 860, 861, 867, 868, 869, 870, 872, 875, 876, 877, 879, 883, 884, 885, 886, 887, 888, 890, 891, 892, 894, 898, 899, 900, 901, 902, 904, 905, 906, 907, 912, 913, 916, 917, 918, 919, 920, 921, 922, 924, 925, 926, 927, 928, 929, 930, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 946, 948, 949, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 965, 967, 968, 969
Arc Addition Postulate, 708
Arcs, 706-713, 715-720
adding, 708
adjacent, 708
bisecting, 716
congruent, 707, 716
intercepted, 723
length of, 709
major, 707
measure of, 707
minor, 707, 715
naming, 707
semi circle, 707
Area, 2, 58-60
of circles, 58, 798-803, 825, 883
of composite figures, 809-810
on coordinate plane, 60, 816-817
cross-sectional, 864
of cylinders, 848
geometric probability to find, 932-933
of a hemisphere, 881
of kites, 787-788, 791-795
models, 948
of parallelograms, 779-780, 792
of polygons, 792
probability ratio, 932
of rectangles, 58
of regular polygons, 806, 807-809, 816-817, 825
of rhombi, 787-788, 791-795
of a sector, 799, 825
of similar polygons, 818-824
of similar solids, 898
of squares, 58
of trapezoids, 787-788, 789-790, 792-795
of triangles, 58, 781, 792
units of, 780
Area Addition Postulate, 779
Area Congruence Postulate, 781

Areas of Similar Polygons Theorem, 818
Argument, 119
ASA (Angle-Side-Angle) Congruence Postulate. See Angle-Side-Angle (ASA) Congruence Postulate
Assessment. See also Chapter Test; Guided Practice; Mid-Chapter Quizzes; Prerequisite Skills; Quick Checks; Spiral Review; Standardized Test Practice
Extended Response, 54, 87, 106, 108, 169, 224, 233, 272, 319, 351, 389, 438, 455, 457, 487, 533, 608, 619, 681, 693, 756, 775, 824, 833, 844, 911, 937, 973
Gridded Response, 12, 34, 74, 87, 98, 134, 159, 169, 205, 231, 233, 244, 263, 309, 319, 343, 389, 411, 448, 457, 467, 533, 577, 619, 669, 693, $705,714,749,775,786,833,887$, 911, 953, 973
Multiple Choice, 12, 21, 35, 44, 54, 64, $74,85,86,98,106,115,125,134$, $143,150,159,167,168,178,186$, 196, 205, 214, 224, 232, 244, 254, 263, 272, 282, 385, 386, 293, 302, 309, 318, 333, 343, 351, 362, 370, 380, 388, 401, 411, 421, 429, 438, 448, 455, 456, 467, 477, 487, 499, 508, 517, 523, 531, 532, 545, 555, 566, 577, 587, 597, 608, 617, 618, 631, 638, 646, 659, 669, 681, 691, 692, 705, 714, 722, 730, 739, 749, 756, 763, 773, 774, 786, 796, 804, 815, 824, 831, 832, 844, 853, 862, 870, 879, 887, 894, 902, 910, 921, 930, 937, 946, 953, 963, 971, 972
Practice Test, 83, 165, 229, 315, 385, $453,529,615,689,771,829,902$, 969
SAT/ACT, 12, 21, 35, 44, 54, 64, 74, 98, 106, 108, 115, 125, 134, 143, 150, 159, 178, 186, 196, 205, 214, 224, 244, 254, 263, 272, 282, 293, 302, 309, 333, 343, 351, 362, 370, 380, 401, 411, 421, 429, 438, 448, 467, 477, 487, 499, 508, 517, 523, 545, 555, 566, 577, 587, 597, 608, 631, 638, 646, 659, 669, 681, 705, 714, 722, 730, 739, 749, 756, 763, 786, 796, 804, 815, 824, 844, 853, 862, 870, 879, 887, 894, 902, 921, 930, 937, 946, 953, 963
Short Response, 21, 44, 87, 115, 125, 143, 150, 169, 178, 186, 196, 233, 254, 282, 293, 302, 317, 319, 333,

362, 370, 380, 389, 401, 421, 429,
457, 477, 499, 508, 517, 523, 533, 545, 555, 566, 587, 597, 619, 631, 638, 646, 659, 691, 693, 722, 730, 739, 763, 775, 796, 804, 815, 833, 853, 862, 870, 879, 894, 902, 909, 911, 921, 930, 946, 963, 973
Associative Property
of addition, 138
of multiplication, 138
Auxiliary line, 246
Axes
of a cone, 856
of a cylinder, 848
of symmetry, 663
Axiom, 127
Axis symmetry, 665

B

Base angles, 285, 439-440
Base edges, 846, 854
Bases, 846, 858
of parallelograms, 779
of polyhedrons, 67-68
of trapezoids, 439
of triangles, 781-782
Bernoulli, Jakob, 942
Betweenness of points, 15-16
Biconditional statements, 116
Bisecting arcs, 716

Bisectors

of angles, 40, 323, 326-327, 339, 504, 740
of arcs, 716
constructing, 30, 40, 323
perpendicular, 206, 323, 324-325, 339
of segments, 29-30, 206
of triangles, 323, 324-333
Buffon's Needle, 703

c

Calculator. See Graphing Technology Labs; TI-Nspire ${ }^{\text {TM }}$ Technology Labs
Careers. See Real-World Careers
Cavalieri's Principle, 864, 873, 874

Centers

of circles, 697-698, 718, 757-758
of dilation, 511, 513
of gravity, 336
of polygons, 806
of regular polygons, 807
of rotation, 640
of spheres, 880-881
of symmetry, 664
Centimeters, 14
Central angles, 799
of circles, 706
of regular polygons, 807
Centroid, 335-336, 337, 339
Centroid Theorem, 335-336
Challenge. See Higher-Order-Thinking Problems

Changing dimensions, $62,73,476,486$, 679, 813, 822, 860, 867, 868, 878, 886

Chapter 0

Algebraic Expressions, P10
Changing Units of Measure Between Systems, P6-P7
Changing Units of Measure Within Systems, P4-P5
Linear Equations, P11-P12
Linear Inequalities, P13-P14
Ordered Pairs, P15-P16
Simple Probability, P8-P9
Square Roots and Simplifying Radicals, P19-P20
Systems of Linear Equations, P17-P18
Check for Reasonableness. See Study Tips

Chords, 697, 715-722, 723
congruent, 715
diameter perpendicular to, 717
equidistant from center, 717
intersecting, 741, 742, 750
radius perpendicular to, 716
segments of, 750
of spheres, 880
Circle Graphs, 708, 710-712
Circles, 697-705
area of, 58, 798-803, 825, 881
centers of, 697-698, 718, 757-758
central angles of, 706
circumference, 58, 699-702, 857, 881, 883
circumscribed, 740, 807
concentric, 698, 748
congruent, 698
degrees of, 706
equations of, 757-763
graphing, 708, 758
great, 881, 889
inscribed, 740
intersections of, 698-699, 761
intersections inside or outside of, 741-744
missing measures, 799
pairs, 698
sectors of, 799-801
segments of, 697
semicircles, 707
similar, 698, 820
small, 893
special segments in, 697, 750-756
standard form of, 757
tangent to, 732-738
Circular permutations, 925
Circumcenter, 325-326, 339
Circumcenter Theorem, 325-326
Circumference, 58, 699-702, 857, 881, 883
Circumscribed circles, 740
Circumscribed figures, 700
Circumscribed polygons, 735
Classifying
angles, 36-44, 46-54
quadrilaterals, 393, 403-448
triangles, 237-245, 305, 310, 551
Collinear points, 5, 7, 15, 36
Collinear rays, 36
Combinations, 926
Common Core State Standards, Mathematical Content, P8, 5, 13, 14, $25,36,46,55,56,65,67,75,127$, $136,144,151,173,179,180,187$, 188, 198, 206, 207, 215, 237, 245, 246, 255, 264, 273, 275, 283, 285, 294, 296, 303, 323, 324, 334, 335, 344, 355, 363, 364, 371, 393, 403, 412, 413, 423, 430, 439, 461, 469, 478, 488, 490, 501, 511, 518, 537, 546, 547, 558, 567, 568, 578, 580, 588, 598, 600, 623, 632, 639, 640, 647, 650, 651, 663, 670, 672, 674, 682, 697, 706, 715, 723, 732, 740, $741,750,757,764,779,787,789$, 797, 798, 807, 818, 839, 846, 854, 863, 873, 880, 915, 922, 931, 939, 947, 954, 956
Common Core State Standards, Mathematical Practice,
Sense-Making, 19, 29, 72, 133, 142, 177, 211, 222, 223, 247, 261, 269,

289, 329, 330, 340, 348, 349, 367, $368,378,444,445,505,522,549$, 553, 562, 575, 595, 606, 637, 642, 655, 678, 702, 733, 736, 737, 794, 802, 811, 812, 814, 850, 851, 857, 859, 866, 867, 876, 885, 900, 901, 916, 928, 935
Perseverance, 34, 199, 239, 397, 463, 552, 675, 679, 813, 847, 919
Reasoning, 20, 30, 31, 51, 53, 61, 62, 103, 104, 105, 124, 195, 212, 213, 301, 308, 336, 360, 369, 410, 419, 466, 476, 486, 516, 544, 576, 586, $712,762,891,918,934,936,951$
Arguments, 10, 11, 52, 92, 111, 112, $113,119,121,123,130,131,132$, 137, 139, 140, 141, 147, 148, 156, 157, 158, 184, 260, 262, 270, 271, 279, 306, 307, 331, 332, 341, 342, 350, 357, 359, 376, 377, 400, 407, 409, 418, 420, 435, 437, 446, 447, $473,475,497,506,507,514,543$, $554,645,658,680,704,713,720$, 721, 726, 729, 747, 748, 785, 803, 843, 861, 878, 893, 920, 929, 945, 952
Critique, 43, 73, 95, 96, 114, 122, 149, 204, 253, 281, 361, 428, 498, 565, 596, 668, 755, 795, 823, 869, 962
Modeling, 9, 32, 183, 193, 194, 202, 203, 221, 280, 398, 399, 408, 427, 436, 464, 465, 484, 485, 496, 515, 520, 521, 541, 542, 563, 564, 583, 584, 585, 593, 605, 636, 644, 656, 657, 667, 701, 703, 711, 719, 761, 801, 822, 868, 877, 892, 927, 943, 944, 961
Tools, 33, 42, 97, 185, 265, 571, 574, 627, 629, 635, 643, 677, 738, 841, 842, 860, 886
Precision, 7, 41, 63, 70, 176, 182, 240, 241, 242, 243, 292, 379, 607, 630, 698, 710, 780, 809, 852, 882, 884, 923
Structure, 18, 71, 220, 299, 300, 483, 592, 594, 628, 727, 728, 746, 754, 760, 783, 784, 793, 821
Regularity, 250, 251, 252, 259, 290, 291, 406, 426, 474, 519, 666, 899
Common tangent, 732
Commutative Property
of addition, 138
of multiplication, 138
Comparison Property, 344
Compass, 17, 39, 40, 55
Complement, 959-960

Complementary angles, 47-48, 50-51, 151-152, 558, 576

Complementary events, 959
Complement Theorem, 152
Completing the square, 759
Component form, 602
Composite events, 947
Composite figures, 852, 919 area of, 809-810

Composition of Isometries Theorem, 652

Compound events, 947
Compound statement, 99-105
Concave polygons, 56-57
Concentric circles, 698, 748

Concept Summary

areas of polygons, 792
circle and angle relationships, 745
classifying slopes, 189
compositions of translations, 654
lateral and surface areas of solids, 858
negation, conjunction, disjunction, 100
parallelograms, 431
probability rules, 959
prove that a quadrilateral is a parallelogram, 415
proving triangles congruent, 278
reflection in the coordinate plane, 626
solving a triangle, 592
special segments and points in triangles, 339
triangle similarity, 481
types of dilations, 511
volumes of solids, 875
Conclusion, 107-108, 111-112, 119
Concurrent lines, 325
altitudes of triangles, 334, 337-339
angle bisectors of triangles, 339
medians of triangles, 334, 335, 339
perpendicular bisectors of triangles, 339
points of concurrency, 325, 327, 335-336, 337-338, 339, 740
Conditional probability, 949-950, 959
Conditional statements, 107-114, 116, 118-120, 137, 160
if-then form, 107-108, 111-112
Conditions for Rhombi and Squares Theorems, 432

Cones, 67
altitude of, 856
axis of, 856
lateral area of, 856-857, 858
oblique, 856-858
right, 856-857
surface area of, 69, 856-858
vertex of, 856
volume of, 69, 874-877, 903

Congruence

transformations, 294-295, 296-301, 623

Congruent

angles, 39, 50, 57, 153, 180, 208, 285-286, 394, 469
arcs, 716
chords, 715
faces, 68
isosceles triangles, 854
lateral edges, 854
polygons, 68, 255-256
segments, 16-17, 19-20, 145-146, 285-286
tangents, 734
triangles, 255-262, 288, 294-295
properties of, 258
proving, 257, 264-272, 275-282
Congruent arcs, 707
Congruent Complements Theorem, 153-154

Congruent solids, 896
Congruent Supplements Theorem, 153-154

Congruent triangles
Angle-Angle-Side (AAS) Congruence Theorem, 276, 278
Angle-Side-Angle (ASA) Congruence Postulate, 275, 278
Hypotenuse-Angle (HA) Congruence Theorem, 284
Hypotenuse-Leg (HL) Congruence Theorem, 284
Leg-Angle (LA) Congruence Theorem, 284
Leg-Leg (LL) Congruence Theorem, 284
Side-Angle-Side (SAS) Congruence Postulate, 266, 278
Side-Side-Side (SSS) Congruence Postulate, 264, 278

Conics, 764

Conic Sections, 764
Conjectures, making, 91-97, 187, 283, 295, 363, 468, 567, 639, 650, 662, 787, 788, 871

Conjunction, 99-103

ConnectED

Animations, 2, 13, 37, 39, 40, 55, 75, 88, 109, 120, 170, 189, 207, 215, 234, 245, 267, 273, 278, 283, 303, 320, 323, 334, 390, 423, 431, 458, 470, 494, 534, 546, 556, 639, 660, 740, 806, 834, 888, 964
Chapter Readiness Quiz, 3, 89, 171, 235, 321, 391, 459, 535, 621, 695, 777, 835, 913
Graphing Calculator, 65, 179, 363, 412, 468, 567, 578, 650, 871
Personal Tutor, P4-P20, 6, 7, 14, 15, 16, 17, 22, 25, 26, 27, 28, 29, 37, 38, 40, 46, 47, 48, 49, 50, 57, 58, 59, 60, $65,68,69,70,91,92,93,94,99$, $100,101,102,107,108,109,110$, $116,117,118,119,120,128,129$, 136, 137, 138, 145, 146, 151, 152, 154, 155, 173, 174, 175, 179, 180, 181, 182, 188, 189, 190, 191, 192, 198, 199, 200, 201, 208, 209, 210, 216, 217, 218, 237, 238, 239, 247, 249, 256, 257, 264, 265, 267, 276, 277, 285, 287, 288, 294, 296, 297, 298, 303, 304, 305, 325, 326, 327, 335, 336, 338, 345, 346, 347, 355, 356, 357, 363, 364, 365, 366, 371, $373,374,375,394,395,396,397$, 402, 404, 405, 406, 412, 414, 415, 416, 423, 424, 425, 431, 432, 433, 434, 440, 442, 443, 461, 462, 463, 468, 469, 470, 471, 472, 478, 480, 481, 482, 490, 491, 492, 493, 494, $502,503,504,512,513,518,519$, 537, 538, 539, 540, 548, 549, 551, 558, 559, 560, 561, 567, 569, 570, 571, 572, 578, 580, 581, 582, 588, 589, 590, 591, 600, 601, 602, 603, 604, 623, 624, 625, 626, 632, 633, 634, 640, 641, 642, 650, 651, 652, 653, 654, 663, 664, 665, 674, 675, 676, 697, 698, 699, 700, 706, 707, $708,709,715,716,717,718,724$, $725,726,732,733,734,735,742$, 743, 744, 750, 751, 752, 753, 757, 758, 759, 780, 781, 782, 787, 789, 790-792, 797, 798, 799, 807, 808, 809, 810, 818, 819, 820, 839, 840, 847, 848, 849, 855, 856, 857, 858, 863, 864, 865, 871, 873, 874, 875, 881, 882, 883, 889, 890, 897, 898,

915, 916, 917, 922, 923, 924, 925, 926, 931, 932, 933, 939, 940, 941, 942, 947, 948, 949, 950, 954, 956, 957, 958, 959, 960
Self-Check Practice, 3, 8, 18, 30, 41, 50, 61, 70, 83, 87, 89, 94, 103, 111, 121, 130, 139, 147, 156, 165, 169, 175, 183, 192, 202, 210, 220, 229, 233, 235, 240, 250, 258, 268, 278, 289, 299, 306, 315, 319, 321, 329, 339, 348, 358, 366, 375, 385, 389, 391, 397, 407, 417, 426, 435, 444, 453, 457, 459, 464, 472, 483, 495, 504, 514, 520, 529, 533, 535, 541, 551, 562, 573, 583, 592, 605, 615, 619, 621, 627, 635, 643, 655, 666, 677, 689, 693, 695, 701, 710, 718, 727, 735, 745, 753, 760, 771, 775, $777,783,793,800,811,821,829$, 833, 835, 841, 849, 859, 866, 876, 884, 891, 899, 907, 911, 913, 918, 927, 934, 943, 951, 961, 969, 973

Connections. See Applications
Consecutive interior angles, 174-176, 181, 208
Consecutive Interior Angles Converse, 208

Consecutive Interior Angles Theorem, 181

Constructions, 17
altitude of a triangle, 334
bisect an angle, 40
bisect a segment, 30
circle through three noncollinear points, 718
congruent triangles using sides, 266
congruent triangles using two angles and included side, 275
congruent triangles using two sides and
the included angle, 267
copy an angle, 39
copy a segment, 17
median of a triangle, 334
parallel line through a point not on a line, 207
perpendicular through a point not on a line, 55
perpendicular through a point on a line, 55, 222
proving, 273
trisect a segment, 494
using a reflective device, 670-671
using paper folding, 245, 323
using string, 334

Contours, 845
Contractions. See Dilations
Contrapositive, 109-110
Converse, 109-110, 116
of Alternate Exterior Angles Theorem, 208
of Alternate Interior Angles Theorem, 208
of Angle Bisector Theorem, 327
of Consecutive Inferior Angles Theorem, 208
of Hinge Theorem, 371
of Isosceles Triangle Theorem, 285
of Perpendicular Bisector Theorem, 324
of Perpendicular Transversal Theorem, 208
of Pythagorean Theorem, 550
of Triangle Proportionality Theorem, 491

Convex, 56-57
Convex polygon, 56, 223, 393
Coordinate geometry, 33, 60, 61, 62, 217, 221, 222, 229, 242, 254, 263, 274, 299, 300, 331, 332, 333, 338, 339, 340, 350, 351, 352, 362, 406, 407, 408, 409, 416, 418, 419, 421, 422, 425, 426, 427, 434, 435, 436, 438, 440, 444, 445, 447, 448, 452, 475, 477, 485, 498, 499, 553, 564, 575, 576, 587, 596, 631, 668, 678, $679,713,749,756,785,794,796$, 802, 822, 828, 887, 921, 935, 936

Coordinate graph. See Coordinate plane
Coordinate grid. See Coordinate plane
Coordinate plane, 5, 7, 556
areas of regular polygons on, 816-817 centroid, 336-337
coordinate proof, 303, 304
dilations in the, 676
distance in, 26, 217
midpoint on, 27-28
orthocenter, 338
parallelograms on, 416
perimeter and area on, 60
rotations in the, 641
translations in the, 633
Coordinate proofs, 303-309, 310, 416-417
Coordinates. See also Ordered pairs in space, 556-557

Coplanar points, 5, 7, 698

Corollaries, 249
Congruent Parts of Parallel Lines, 493
Equilateral Triangle, 286
Proportional Parts of Parallel Lines, 492
Triangle Angle-Sum, 249
Corresponding Angles Postulate, 180, 181
Corresponding parts, 255-256
angles, 174-176, 180, 181, 207, 255, 469-470
sides, 255, 469-471
vertices, 255

Cosecant

graphing, 578
Cosine ratio, 568-576, 592
law of, 589-597
Cosines, Law of, 589-597
Cotangent
graphing, 578
Counterexamples, 94, 109, 117
CPCTC (corresponding parts of congruent triangles are congruent), 256
Critical Thinking. See Higher-OrderThinking Problems
Cross-Curriculum. See Applications
Cross products, 462-463
Cross Products Property, 462-463
Cross section, 840
Cubes, 68
Cylinders, 67-68
area of, 848
axis of, 848
lateral area of, 848, 849-850, 858
oblique, 848
right, 848
surface area of, 69, 848, 849-850, 858, 903
volume of, 69, 864, 867, 868, 875, 903

D

Data. See also Graphs making conjectures from, 93 organizing, 970
Decagons, 57
Decision making, P9, 936, 944, 945, 952
Deductive argument, 129

Deductive reasoning, 117-124
Law of Detachment, 117-121
Law of Syllogism, 119-121
Defined terms, 7
Definition, 7
Degrees, 37, 706
Denominators, rationalizing, P20, 559
Density
BTUs, 877
population, 797
soil, 868
Dependent events, 947, 949-950, 959
Depression, angles of, 580-586, 610
Descartes, René, 417
Design, 465, 852, 868, 886
Detachment, Law of, 117-121
Diagnose readiness.
See Prerequisite Skills
Diagonals, 791
of parallelograms, 405
of polygons, 393
of rectangles, 423-424
of rhombi, 430, 432
of squares, 558
of trapezoids, 439, 440
Diagonals of a Rectangle Theorem, 423-424
Diagonals of a Rhombus Theorem, 430
Diagrams, 49, 232, 271, 373, 859, 878
tree, 915-916
Venn, 101-103, 114, 119, 447, 950, 957-958, 971
Diameter, 697-700
perpendicular to a chord, 717
of spheres, 880
Dilations, 301, 511-517, 672-673, 674-681, 684
centers of, 511, 513
in the coordinate plane, 676
isometry, 675
scale factor of, 511-512, 675
types of, 511
Dimensional analysis, P5, P7, 795, 885, 899, 900, 901
Direction of vectors, 600, 602, 604
Directrix, 765
Disjunction statements, 100-103
Distance, 25-26
minimize using a reflection, 624
between parallel lines, 218, 221
between a point and a line, 215-217

Distance Formula, 25-26, 60, 219, 441, 556-557, 600, 757
Distributive Property, 136
Division
by a negative, P14
ratios, 461
by zero, 189
Division Property of Equality, 136
Dodecagons, 57
Dodecahedrons, 68
Drawings, 751, 908
geometric figures, 7
justifying, 350
one-point perspective, 10
orthographic, 75, 840-841
perspective, 842
scale, 518-523, 524, 555
segments, 717, 751
shortest distance, 216
three-dimensional, 7 two-point perspective, 10

E

Edges

connecting nodes, 964-965
of polyhedrons, 67-68, 846, 854
Elevation, angle of, 580-586, 610
Elimination method, P18
Ellipse, 764
Endpoints, 27-28, 36, 56, 334
Enlargement, 511-516, 675-676
Equations
of circles, 757-763
of horizontal lines, 200
linear, P11-P12, 201
of lines, 198-205
multi-step, P11
of nonvertical lines, 198
of parallel lines, 200
of perpendicular lines, 200
point-slope form, 198-199, 202, 206
slope-intercept form, 198-204
solving, 16, 136-137
systems of, P17-P18
of vertical lines, 200
writing, 16, 48, 198-204, 865
Equiangular polygon, 57
Equiangular triangles, 237-238
Equidistant, 218, 718

Equilateral polygon, 57
Equilateral triangles, 238-242, 286-288, 310
Equivalence relation, 142, 476
Equivalent proportions, 463
Eratosthenes, 581
Error Analysis. See Higher-OrderThinking Problems

Essential Questions, 20, 24, 133, 142, 177, 213, 281, 292, 350, 369, 420, 428, 476, 565, 596, 668, 680, 704, 738, 795, 814, 861, 869, 936, 945
Estimation, 368, 503, 575, 675, 848, 933
Euclid, 708
Euclidean geometry, 889-893
Euclidean solids, 69
Euler, Leonhard, 957
Euler's Formula, 73
Events, P8, 915. See also Probability
Expected value, 941-942
Experimental probability, P9
Experiments, P8, 915
Expressions
algebraic, P10
radical, P19
Extended ratios, 461-462
Extended Response, 54, 87, 106, 169, 224, 233, 265, 268, 272, 319, 351, 389, 438, 457, 487, 533, 608, 619, 681, 693, 756, 775, 824, 833, 844, 911, 937, 973
Exterior Angle Inequality Theorem, 345-346, 348

Exterior angles, 174-176, 180, 181, 208, 245, 248-249, 344, 345-346, 348, 396-398, 402
Exterior Angle Theorem, 248-249, 344
Exterior of angles, 36
External secant segments, 752
Extra Practice, R1-R13
Extremes, 462, 537

F

Faces

congruent, 68
lateral, 846, 854
of polyhedrons, 67-68

Factorials, 922
Fermat, Pierre de, 337
Fibonacci Sequence, 468
Financial literacy, 12, 193, 201, 282, 543
Finite plane, 10
Flip. See Reflections
Flow proofs, 248, 418, 421
Focus, 765
Foldables® Study Organizer
areas of polygons and circles, 778, 825
circles, 696, 766
congruent triangles, 236, 310
parallel and perpendicular lines, 172, 225
probability and measurement, 914, 966
proportions and similarity, 460, 524
quadrilaterals, 392, 449
reasoning and proof, 90, 160
relationships in triangles, 322, 381
right angles and trigonometry, 536, 610
surface area and volume, 836, 903
tools of geometry, 4, 78
transformations and symmetry, 622, 684
Formal proofs, 137
Formulas
area
of circles, 58, 616, 798, 881
of cylinders, 848,858
of kites, 791, 792
of parallelograms, 792
of rectangles, 58, 616
of regular polygons, 808
of rhombi, 791, 792
of a sector, 799
of squares, 58
of trapezoids, 789, 792
of triangles, 58, 616, 792
circumference, 58, 616, 798, 883
conditional probability, 949
distance, 25-26, 60, 219, 441,
556-557, 600, 757
lateral area
of cones, 857,858
of cylinders, 858
of prisms, 846,858
of pyramids, 858
of regular pyramids, 855
midpoint, 27, 206, 304, 556-557
perimeter
of rectangles, 58
of squares, 58
of triangles, 58
slope, 188-189
standardized tests, 616
surface area
of cones, 69, 857, 858
of cylinders, 69, 858
of prisms, 69, 858
of pyramids, 69,858
of spheres, 69, 880-882
volume
of cones, 69, 874, 875
of cylinders, 69, 616, 864, 875
of prisms, 69, 616, 863, 875
of pyramids, 69, 873, 875
of spheres, 69, 882, 883
Fractals, 509-510
Fractal trees, 509
Frustum, 861
Function notation, 301
Functions
cosine, 568-576, 592
sine, 568-576, 592
tangent, 568-576, 592
Fundamental Counting Principle, 917

G

Galileo, 491
Gauss, Johann Carl Friedrich, 256
Geometric conjectures, 92
Geometric figures, 206
drawing, 7
Geometric Mean (Altitude) Theorem, 539

Geometric Mean (Leg) Theorem, 539
Geometric means, 537-545, 610
Pythagorean Theorem, 547
right triangles in, 537-539
Geometric models, 939-940
Geometric probability, 931-937
angle measures to find, 933
area to find, 932-933
lengths to find, 931
Geometric proofs, 138, 357
Geometry Labs
Adding Vectors, 609

The Ambiguous Case, 598-599
Angles of Triangles, 245
Biconditional Statements, 116
Congruence in Right Triangles, 283-284
Constructing Bisectors, 323
Constructing Medians and Altitudes, 334
Constructing Perpendiculars, 55
Coordinates in Space, 556-557
Describing What You See, 13
Equations of Perpendicular Bisectors, 206
Establishing Triangle Congruence and Similarity, 682-683
Exploring Constructions with a Reflective Device, 670-671
Fractals, 509-510
Graph Theory, 964-965
Inscribed and Circumscribed Circles, 740
Investigating Areas of Regular Polygons, 806
Locus and Spheres, 888
Matrix Logic, 353-354
Navigational Coordinates, 895
Necessary and Sufficient Conditions, 126
Orthographic Drawings and Nets, 75-77
Parabolas, 764-765
Population Density, 797
Proof Without Words, 546
Proofs of Perpendicular and Parallel Lines, 488-489
Proving Constructions, 273
Regular Polygons on the Coordinate Plane, 816-817
Rotations, 639
Solids of Revolution, 647-648
Solids Formed by Translations, 837-838
Tessellations, 660-662
Topographic Maps, 845
Two-Way Frequency Tables, 954-955

Geometry Software Labs

Angles and Parallel Lines, 179
Compositions of Transformations, 650
Parallelograms, 412
Triangle Inequality, 363
Two-Dimensional Figures, 65-66
Germain, Sophie, 102
Get Ready for the Chapter.
See Prerequisite Skills

Get Ready for the Lesson.
See Prerequisite Skills
Glide reflections, 301, 651, 654-655
graphing, 651
symmetry, 663
Goldbach's Conjecture, 97
Golden rectangle, 465
Graphing Technology Labs
Angle of Polygons, 402
Areas of Trapezoids, Rhombi, and Kites, 787-788
Changing Dimensions, 871
Congruence Transformations, 294-295
Dilations, 672-673
Fibonacci Sequence and Ratios, 468
Investigating Slope, 187
Parallelograms, 412
Secant, Cosecant, and Cotangent, 578
Triangle Inequality, 363
Trigonometry, 567
Volume and Changing Dimensions, 871
Graphing Calculator. See ConnectED
Graphs. See also Data
circles, 708
of circles, 758
compositions of isometries, 652
cosecant, 578
cotangent, 578
glide reflections, 651
of a line, 188-193
parallelograms, 412
polygons, 65-66
secant, 578
slope of, 187
tessellations, 662
transformations, 294-295
Graph theory, 964-965
edges, 964-965
efficient route, 965
network, 964-965
nodes, 964-965
traceable network, 964-965
weight, 965
weighted vertex-edge graphs, 965
weight of a path, 965
Great circle, 881, 889
Gridded Response, 12, 35, 74, 87, 98, 134, 159, 169, 205, 230, 231, 233, 244, 263, 309, 319, 343, 389, 411, 442, 448, 457, 467, 533, 577, 619, 669, 693, 705, 714, 749, 775, 786, 833, 887, 911, 951, 953, 973

Guided Practice, 6, 7, 14, 15, 16, 17, 22, $23,25,26,27,28,29,37,38,40,47$, $48,49,50,57,58,59,60,68,69,70$, $92,93,94,99,100,101,102,107$, $108,109,110,117,118,119,120$, $128,129,137,138,145,146,151$, 152, 154, 155, 174, 175, 180, 181, 182, 189, 190, 191, 192, 198, 199, 200, 201, 209, 210, 216, 218, 219, 238, 239, 247, 249, 256, 257, 258, 264, 265, 267, 268, 276, 277, 278, 286, 287, 288, 297, 298, 303, 304, $305,325,326,327,328,335,336$, $337,338,345,346,347,355,356$, $357,358,364,365,366,372,373$, $374,375,394,395,396,397,404$, $405,406,414,415,416,417,423$, 424, 425, 431, 432, 433, 434, 440, 441, 442, 443, 461, 462, 463, 469, 470, 471, 472, 478, 480, 481, 482, 490, 491, 492, 493, 494, 502, 503, $504,512,513,518,519,537,538$, 540, 548, 549, 550, 551, 559, 560, $561,569,570,571,572,581,582$, 588, 589, 590, 591, 600, 601, 602, 603, 604, 623, 624, 625, 626, 632, 633, 634, 641, 642, 651, 652, 653, 654, 663, 664, 665, 674, 676, 697, 698, 699, 700, 706, 707, 708, 709, $715,716,717,718,724,725,726$, $732,733,734,735,742,743,744$, $750,751,752,753,757,758,759$, 780, 782, 789, 790, 791, 792, 798, 799, 800, 807, 808, 809, 810, 819, 820, 839, 840, 847, 848, 849, 855, 856, 857, 858, 863, 864, 865, 874, 875, 880, 881, 882, 883, 889, 890, 897, 898, 915, 916, 917, 922, 923, 924, 926, 931, 932, 933, 940, 941, 942, 947, 948, 949, 950, 956, 957, 958, 959, 960

H

HA (Hypotenuse-Angle) Congruence Theorem. See Hypotenuse-Angle (HA) Congruence Theorem, 284

Hands-On. See Algebra Labs; Algebra Tiles; Manipulatives

Heights

of a parallelogram, 779
of prisms, 846
of pyramids, 854, 882
slant, 69, 854
of trapezoids, 789
of a triangle, 781-782

Hemispheres

surface area of, 881, 884
volume of, 882, 884
Heptagons, 57
Heron of Alexandria, 791
Heron's Formula, 785
Hexagons, 57

Higher-Order-Thinking Problems

Challenge, 11, 20, 34, 43, 53, 63, 73, 97, 105, 114, 124, 133, 142, 149, 158, 177, 185, 195, 204, 213, 223, 243, 253, 262, 271, 281, 292, 301, 308, 332, 342, 350, 361, 369, 379, 400, 410, 420, 428, 437, 447, 466, 476, 486, 498, 507, 516, 522, 544, 546, 554, 565, 576, 586, 596, 599, 607, 630, 637, 645, 658, 668, 680, 704, 713, 721, 729, 738, 748, 755, 762, 785, 786, 795, 803, 814, 823, 843, 852, 861, 869, 878, 886, 893, 901, 920, 929, 936, 952, 962
Error Analysis, 11, 24, 73, 97, 114, 133, 149, 195, 204, 213, 223, 243, 253, 262, 271, 281, 292, 332, 342, 361, 400, 428, 437, 447, 466, 498, 507, 522, 544, 565, 586, 596, 630, 658, 668, 713, 755, 795, 803, 814, 823, 852, 869, 878, 901, 962
Open Ended, 11, 20, 34, 43, 53, 63, 73, 97, 105, 114, 124, 133, 142, 149, 158, 177, 185, 204, 213, 223, 243, 253, 271, 281, 292, 301, 308, 332, 342, 350, 361, 369, 379, 400, 410, 420, 428, 437, 447, 466, 476, 486, 498, 507, 516, 522, 544, 554, 565, 596, 599, 630, 637, 645, 658, 668, 680, 713, 721, 729, 738, 748, 755, $762,785,795,814,823,843,852$, 861, 869, 878, 886, 893, 901, 920, 929, 936, 945, 952, 962, 965
Reasoning, 11, 20, 34, 43, 53, 63, 73, $97,105,114,124,133,142,149$, 158, 177, 185, 195, 204, 213, 223, 243, 253, 262, 271, 281, 292, 301, 308, 332, 342, 350, 369, 379, 400, 410, 420, 428, 437, 447, 466, 467, 476, 486, 498, 507, 516, 522, 544, 554, 565, 576, 586, 596, 607, 630, 637, 645, 658, 668, 680, 704, 713, 721, 729, 738, 748, 755, 762, 785, 795, 803, 823, 837, 838, 843, 852, 861, 869, 878, 886, 893, 901, 920, 929, 936, 945, 952, 962, 964
Which One Doesn't Belong?, 63, 466 Writing in Math, 11, 20, 24, 34, 43, 53, $63,73,97,105,114,124,133,142$,

149, 158, 177, 185, 195, 204, 213, 223, 243, 253, 262, 271, 281, 292, $301,308,332,342,350,361,369$, 379, 400, 410, 420, 428, 437, 447, 466, 476, 486, 498, 507, 516, 522, 544, 546, 554, 557, 565, 576, 586, 596, 607, 630, 637, 639, 645, 658, 662, 668, 680, 704, 713, 721, 729, $738,748,755,762,785,795,803$, 814, 823, 843, 852, 861, 869, 878, 886, 893, 901, 920, 929, 936, 945, 952, 955, 962, 965
Hinge Theorem, 371-375
History, Math, 68, 102, 200, 256, 337, 417, 491, 581, 633, 708, 791, 898, 942, 957
HL (Hypotenuse-Leg) Congruence. See Hypotenuse-Leg (HL) Congruence Theorem, 284

Horizontal lines, 580
equations of, 200
reflection in, 624
H.O.T. Problems. See Higher-OrderThinking Problems
Hyperbolic geometry, 893
Hypotenuse, 26, 537-538, 547-555, 558-559

Hypotenuse-Angle (HA) Congruence Theorem, 284

Hypotenuse-Leg (HL) Congruence Theorem, 284
Hypothesis, 107-108, 111-112, 119

I

Icosahedrons, 68
If-then statements. See Conditional statements
Image, 296-301, 511, 623, 675
Incenter, 328, 339
Incenter Theorem, 328
Inches, 15, 72
Included angle, 266-267, 589
Included side, 275-278
Independent events, 947-948, 959
Indirect measurement, 482, 540, 590, 755
Indirect proofs, 355-362, 721, 738
Indirect reasoning, 355
Inductive reasoning, 91-97, 117, 160

Inequalities, 344
Addition Property, 344
Comparison Property, 344
linear, P13-P14
in one triangle, 344-350
properties of, 344
Pythagorean, 550
Subtraction Property, 344
symbols for, 346, 365
systems of, 936
Transitive Property, 344
and triangles, 344-350, 363,
364-370, 371-380, 381, 551
in two triangles, 371-380
Informal proofs, 129, 886
Inscribed angles, 723-729
Inscribed Angle Theorem, 723-724
Inscribed circles, 740
Inscribed figures, 700
Inscribed triangles, 726
Intercepted arcs, 723
Interdisciplinary connections. See also Applications
archaeology, 433, 770, 805, 829, 875
art, 72, 112, 453, 493, 496, 562, 685, 689, 729, 776, 808, 842, 919, 958
astronomy, 8, 272, 274, 593, 829
earth science, 842
geography, 34, 158, 164, 305, 314, 370, 385, 892
meteorology, 739, 872
music, 112, 158, 202, 238, 321, 422, 440, 445, 916, 943, 957, 962
science, $88,112,113,137,140,141$, 727, 744, 751, 753, 877
weather, 111, 644, 760, 784, 796
Interior
of angles, 36-37
Interior angles, 174-176, 181, 208
remote, 248
sum of, of a polygon, 393-395, 402
of a triangle, 245, 246
Internet Connections.
See ConnectED

Intersections

of chords, 741, 742, 750
of circle and line, 759
of circles, 698-699, 761
of lines, 6-7, 13, 46, 127, 654, 741-744
of planes, 13, 127
of spheres, 888
of Venn diagram, 101
Invariant points, 625
Inverse, 109-110
Inverse cosine, 571
Inverse sine, 571
Inverse tangent, 571
Investigations. See Geometry Labs; Graphing Technology Labs; TI-Nspire ${ }^{\text {TM }}$ Technology Labs
Irrational number, 26, 59, 554, 699
Irregular polygons, 57
Isosceles trapezoids, 439-440
Isosceles Trapezoids Theorem, 439
Isosceles triangles, 238-243, 285-287 legs of, 285
Isosceles Triangle Theorem, 285-286
Isometric view, 839-841
Isometries, 296, 298, 624
compositions of, 652
Isometry dilation, 675
Iteration, 509-510

J

Joint frequencies, 954

K

Key Concepts

angle pair relationships, 47
angles, 78
angles, arcs, chords, and inscribed angles, 766
angles of elevation and depression, 610
angles of polygons, 449
angles of triangles, 310
arc length, 709
arcs and arc measure, 707
area of a circle, 798
area of a parallelogram, 779, 825
area of a regular polygon, 808
area of a rhombus or kite, 791
area of a sector, 799
area of a trapezoid, 789
area of a triangle, 781, 825
area probability ratio, 932
areas of a cylinder, 848
areas of circles and sectors, 825
areas of regular polygons and composite figures, 825
areas of similar figures, 825
betweenness of points, 15
biconditional statement, 116
calculating expected value, 941
Cavalieri's Principle, 864
circle and angle relationships, 745
circle pairs, 698
circles and circumference, 766
circular permutations, 925
circumference, 699
classifications of triangles by angles, 237
classifications of triangles by sides, 238
classify angles, 38
classifying triangles, 310
combinations, 926, 966
common Pythagorean triples, 548
compositions of transformations, 684
conditional probability, 950
conditional statement, 107, 160
congruent and similar solids, 903
congruent segments, 16
congruent solids, 896
congruent triangles, 310
cross products property, 462
deductive reasoning, 160
definition of congruent polygons, 255
definition of inequality, 344
designing a simulation, 939
dilation, 674, 684
dilations in the coordinate plane, 676
distance, 225
distance and midpoint formulas in space, 556
distance and midpoints, 78
distance between a point and a line, 215
distance between parallel lines, 218
distance formula in coordinate plane, 26
distance formula on a number line, 25
equation of a circle, 757
equivalent proportions, 463
factorial, 922
Fundamental Counting Principle, 917
geometric mean, 537, 610
geometric probability, 966
glide reflection, 651
horizontal and vertical line equations, 200
how to write an indirect proof, 355
indirect proof, 381
inductive reasoning and logic, 160
interpreting diagrams, 49
intersections of lines and planes, 127
inverse trigonometric ratios, 571
isosceles triangles, 310
lateral and surface area of a cone, 857
lateral area of a prism, 846
lateral area of a regular pyramid, 854
law of detachment, 118
law of syllogism, 119
laws of sines and cosines, 610
length probability ratio, 931
lines in plane and spherical
geometry, 889
line symmetry, 663
logically equivalent statements, 110
midpoint formula in a number line, 27
midpoint formula on coordinate plane, 27
models, 524
nonvertical line equations, 198
orthocenter, 337
parallel and skew, 173
parallelograms and triangles, 825
perimeter, circumference, and area, 58
permutations, 923, 966
permutations with repetition, 924
perpendicular lines, 48
placing triangles on a coordinate plane, 303
platonic solids, 68
points, lines, and planes, 78
polygons, 56
probabilities of compound events, 966
probability of events that are not mutually exclusive, 958
probability of mutually exclusive events, 957
probability of the complement of an event, 959
probability of two dependent events, 949
probability of two independent events, 948
proof process, 129, 160
properties of inequality for real numbers, 344
properties of parallelograms, 449
properties of real numbers, 136
properties of rectangles, rhombi, squares, and trapezoids, 449
proportional parts, 524
proportions, 524
proving lines parallel, 225
Pythagorean Theorem, 610
radius and diameter relationships, 698
reciprocal trigonometric ratios, 578
reflection in a line, 623
reflection in the line $y=x, 626$
reflection in the x - or y-axis, 625
reflections, translations, and rotations, 296, 684
related conditionals, 109
representations of three-dimensional figures, 903
representing sample spaces, 966
rotation, 640
rotational symmetry, 664
rotations in the coordinate plane, 641
scale drawing, 524
similarity transformations, 524
similar polygons, 469
similar polygons and triangles, 524
similar solids, 896
simulations, 966
slope, 225
slope of a line, 188
special angle pairs, 46
special right triangles, 610
special segments in triangles, 381
special segments, 766
special segments in a circle, 697
standard form equation of a circle, 757
sum of central angles, 706
surface area and volume, 69
surface area of a prism, 847
surface area of a regular pyramid, 855
surface area of a sphere, 880
surface area of prisms and cylinders, 903
surface area of pyramids and cones, 903
surface areas and volumes of spheres, 903
symmetry, 684
tangents, secants, and angle measures, 766
tests for parallelograms, 449
three-dimensional symmetry, 665
transformations and coordinate proofs, 310
translation, 632
translation in the coordinate plane, 633
transversal angle pair
relationships, 174
transversals, 225
trapezoids, rhombi, and kites, 825
triangle inequalities, 381
trigonometric ratios, 568
trigonometry, 610
types of dilations, 511
types of solids, 67
undefined terms, 5
vector addition, 601
vector operations, 603
vectors, 610
volume of a cone, 874
volume of a cylinder, 864
volume of a prism, 863
volume of a pyramid, 873
volume of a sphere, 882
volumes of prisms and cylinders, 903
volumes of pyramids and cones, 903
Kites, 443-447
area of, 787-788, 791-795
Kite Theorem, 443
Klein, Felix, 633

L

LA (Leg-Angle) Congruence
Theorem. See Leg-Angle (LA)
Congruence Theorem, 284
Labs. See Geometry Labs; Graphing Technology Labs; TI-Nspire ${ }^{\text {TM }}$ Technology Labs

Lateral area, 846
of cones, 856-857, 858
of cylinders, 848, 849-850, 858
of prisms, 846-847, 849-850, 858
of pyramids, 854-856, 858
of regular pyramids, 854-856
Lateral edges, 846, 854
Lateral faces, 846, 854
Latitude, 895
Law of Cosines, 589-597
Law of Cosines Theorem, 589
Law of Detachment, 117-121
Law of Large Numbers, 942
Law of Sines, 588-597
ambiguous case of, 599

Law of Sines Theorem, 588
Law of Syllogism, 119-121
Leg-Angle Congruence Theorem
(LA), 284
Leg-Leg Congruence Theorem
(LL), 284
Legs
of right triangles, 538, 547-555
of trapezoids, 439
Length
of arcs, 709
in metric units, P4-P5, P6-P7, 14
probability ratio, 931
in standard units, P4-P5, P6-P7, 15
units of, 780
Linear equations, P11-P12
point-slope form, 198-199, 202, 206
slope-intercept form, 198-204
writing, 198-204, 865
Linear inequalities, P13-P14
Linear measure, 14-21
Linear pair, 46-47, 50
Linear Pair Theorem, 152
Lines, 2, 5-11, 13, 127-128, 215-217.
See also Functions; Slopes
auxiliary, 246
concurrent, 325
coplanar, 7
equations of, 198-205
graphing, 192
horizontal, 200, 580, 624
parallel, 173, 179, 180-186, 191, 200, 207-214, 218, 491, 492, 493, 653
perpendicular, 48-50, 55, 182, 191, 200, 215-217
of reflection, 296, 623-631
secants, 742-743, 752, 753
skew, 173-177
slope of, 187, 188-196
of symmetry, 663, 666, 668
tangent, 732-739, 743-744
transversals, 174-176, 493, 494
vertical, 200, 624
Line segments, 14-20, 25
altitudes, 334, 337-339, 537-539, 781, 809, 846, 854, 856
bisecting, 29-30, 206
chords, 697, 715-722, 723, 742, 750, 880
diameters, 697-700, 717, 880
edges, 67-68, 846, 854, 964-965
medians, 334, 335, 339
midpoint of, 27
missing measures, 29
radii, 697-702, 716, 757, 807, 857, 880-882
slant height, 69, 854-860
LL (Leg-Leg) Congruence Theorem. See Leg-Leg Congruence Theorem (LL), 284

Locus, 332
of points a given distance from a point, 888
of points in a plane equidistant from a given point, 697
of points in a plane equidistant from a fixed point and a fixed line, 765
of points in a plane equidistant from the endpoints of a segment, 324
of points in a plane equidistant from two parallel lines, 218
of points that satisfy an equation, 11
Logic Puzzles. See Matrix logic
Logically equivalent statements, 110
Logical reasoning, 99-105, 166, 168, 353-354
compound statement, 99-105
conditional statements, 107-114, 116, 118-120, 137, 160
conjectures, 91, 92, 97
conjunction statements, 99-103
contrapositive, 109-110
converses, 109-110, 116
counterexamples, 94, 109, 117
deductive reasoning, 117-124
disjunction statements, 100-103
flow proofs, 248, 418, 421
inductive reasoning, 91-97, 117, 160
inverses, 109-110
Law of Detachment, 117-121
Law of Syllogism, 119-121
logical proofs, 129, 137
negation, 99-105
paragraph proofs, 129-130, 163, 418, 657, 658, 720, 728, 822
truth tables,101, 103-105, 109
truth values, 99-101, 103-105, 108-111
two-column proofs, 137-141, 150, 164, 221, 422, 712, 720, 721, 727, 728, 729, 747, 749
Venn diagrams, 101-105, 114, 119, 447, 950, 957-958, 971
Longitude, 895

m

Magnifications. See Dilations

Magnitudes

of symmetry, 664, 667
of vectors, 600-607
Major arcs, 707
Marginal frequencies, 954
Materials
brass fasteners, 598
compass, 17, 39, 40, 55
dental floss, 764
dollar bill, 15
isometric dot paper, 839-841
modeling compound, 764
note card, 598-599
reflective device, 670-671
string, 334
tracing paper, 341, 546, 639, 682-683
wax paper, 764
Mathematical expectation, 941
Math History Link, 68, 102, 200, 256, 337, 417, 491, 581, 633, 708, 791, 898, 942, 957
Bernoulli, Jakob, 942
Descartes, René, 417
Eratosthenes, 581
Euclid, 708
Euler, Leonhard, 957
Fermat, Pierre de, 337
Galileo, 491
Gauss, Johann Carl Friedrich, 256
Germain, Sophie, 102
Heron of Alexandria, 791
Klein, Felix, 633
Monge, Gaspard, 200
Plato, 68
Riemann, Georg F.B., 898
Math Online. See ConnectED
Matrix logic, 353-354
Means, 27, 462, 537
arithmetic, 544
geometric, 537-545, 547, 610
Measurement. See also Customary system; Metric system
absolute error, 22, 24
of angles, 38, 40, 66
of arc lengths, 709
area, 2, 58-60, 779-780, 781, 787-788, 789-790, 791-793, 798-803, 806, 807-809, 818-824,

825, 848, 851, 864, 881, 898,
932-933, 948
centimeters, 14
circumference, 58, 699-702, 857, 881, 883
customary system, P4-P5, P6-P7
by adding, 15
by subtracting, 16
by writing and solving equations, 16
indirect, 482, 540, 590, 755
lateral area, 846-847, 848, 849-850, 854-857, 858
length, P4-P5, P6-P7, 14, 709, 716, 780, 926, 931
metric system, P4-P5, P6-P7, 14
millimeters, 14
perimeter, 2, 24, 58-60, 66, 471-472, 780, 781
precision, 22-24
protractors, 17, 37, 151
relative error, 23-24
rulers, 14-15, 144
surface area, 69-74, 847, 848, 849-850, 855-858, 880, 881, 884-885, 903
volume, 24, 69-73, 863, 864, 865, 866, 867, 868, 871, 873, 874-878, 882, 883, 884, 885, 903, 936
Medians, 334, 335, 339
Mental Math, 59, 137, 848
Meridians, 895
Metric system, P4-P5, P6-P7, 14
Mid-Chapter Quizzes, 45, 135, 197, 274, 352, 422, 500, 579, 649, 731, 805, 872, 938

Midpoint Formula, 27, 206, 304, 556-557
Midpoints, 27-34
Midpoint Theorem, 129
Midsegment
of a trapezoid, 441
of a triangle, 491
Millimeters, 14
Minor arcs, 707, 715
Minutes, 895
Monge, Gaspard, 200
Multiple Choice, 61, 83, 86, 121, 135, $165,168,232,315,318,366,385$, 388, 453, 456, 483, 550, 552, 615, 618, 643, 689, 771, 832, 866, 910, 972

Multiple representations, 11, 20, 34,
$43,53,63,73,114,141,149,158$, 185, 204, 213, 222, 243, 253, 261,
292, 301, 341, 350, 369, 379, 400,
410, 420, 428, 437, 447, 466, 476,
486, 498, 516, 522, 544, 554, 565,
576, 586, 596, 630, 637, 645, 668,
680, 703, 729, 748, 762, 785, 795,
803, 814, 823, 843, 852, 861, 869,
878, 893, 901, 920, 929, 945

Multiplication

of a vector by a scalar, 603
Rules for Probability, 948-949
Multiplication Property of Equality, 136
Multi-stage experiment, 916
Multi-step equations, P11-P12
Multi-step problems, 830, 832
Mutually exclusive events, 956-963

N

Navigational coordinates, 895
Necessary conditions, 126
Negation, 99-105
Negative slope, 189
Nets, 76-77, 846, 857
Networks, 964-965
n-gon, 57
Nodes, 964-965
Nonagons, 57
Noncollinear points, 5-6, 56
Noncollinear rays, 36
Noncoplanar points, 5
Non-Euclidean geometry, 890
hyperbolic geometry, 893
spherical geometry, 889-894
Non-examples, 175, 530
Nonvertical line equations, 198-205
Note taking. See Foldables ${ }^{\circledR}$ Study Organizer

Not mutually exclusive events, 958-959

Number lines

distance on, 25
midpoint on, 27, 30-32

Numbers

figural, 92, 96, 510
Pythagorean triples, 548-549
real, 344, 556
triangular, 510
Number theory, 357

0

Oblique cones, 856
Oblique cylinders, 848
Oblique prisms, 846
Oblique solids, 838
volume of, 865
Obtuse angles, 38, 41-43, 238
Obtuse triangles, 237-238
Octagons, 57
Octahedrons, 68
One-point perspective drawings, 10
Open Ended. See Higher-Order-Thinking Problems
Opposite rays, 36, 46
Ordered pairs, P15-P16
Ordered triple, 556
Order of operations, P10, P12
Order of symmetry, 664, 667
Origin, P15, 676, 757
Orthocenter, 337-338, 339
Orthographic drawings, 75, 840-841
Outcomes, P8, 915-917. See also Probability

P

Pairs

angles, 174-176, 180, 208
linear, 46-47, 50
ordered, P15-P16
Paper folding, 245, 323, 341, 764
Parabolas, 764-765
Paragraph proofs, 129-130, 163, 418, 657, 658, 720, 728, 822
Parallel lines, 173
angles and, 179, 180-186
congruent parts of, 493
distance between, 218, 221
equations of, 200
proportional parts of, 492
proving, 207-214, 491
reflections in, 652, 653
slope of, 191
proof, 488-489
and systems of linear equations, 204
and a transversal, 179, 180-185, 208
Parallel Lines Postulate, 191
Parallelogram method, 601
Parallelograms, 403-411, 431
angles of, 403
area of, 779-780, 792
bases of, 779
conditions for, 413-414
on a coordinate plane, 416
diagonals of, 405, 423-424, 430, 558, 791
graphing, 412
height of, 779
identifying, 414
missing measures, 415
perimeter of, 780
properties of, 403-405, 449
proving relationships, 414
rectangles, 24, 58, 68, 423-429, 449, 465, 616
rhombi, 430-438, 449, 787-788, 791-795, 825
sides of, 403
squares, 58, 431-438, 449, 558
tests for, 413-420, 449
Parallel planes, 173-177
Parallel Postulate, 208
Parallels, 895
Parallel vectors, 601
Pascal's Triangle, 510
Paths, 965

Patterns

Fibonacci sequence, 468
figural, 92, 96, 510
making conjectures from, 91-92, 94-96

Pentagonal prisms, 67
Pentagonal pyramids, 67, 854
Pentagons, 57
inscribed in a circle, 807
Perimeter, 2, 58-60, 66, 472
on coordinate planes, 60, 816-817
of parallelograms, 780
of rectangles, 24,58
of similar polygons, 471-472
of squares, 58
of triangles, 58, 781
Perimeters of Similar Polygons
Theorem, 471

Permutations, 922-925
with repetition, 924
Perpendicular bisector, 206, 323, 324-325, 339, 671
of triangles, 339
Perpendicular Bisector Theorem, 324-325
Perpendicular lines, 48-50, 55
between a point and a line, 215-217
equations of, 200
slope of, 191
proof, 488-489
transversal of two parallel lines, 182
Perpendicular Lines Postulate, 191
Perpendicular Transversal Converse, 208
Perpendicular Transversal Theorem, 182
Personal Tutor. See ConnectED
Perspective drawing, 842
Pi (п), 58, 699, 703, 704
Pisano, Leonardo (Fibonacci), 468
Planar networks, 890
Planes, 2, 5-11, 13, 127-128
intersecting, 127
lines in, 889
parallel, 173
perpendicular, 223
Plane symmetry, 665
Plato, 68
Platonic solids, 68, 76
cube, 68
dodecahedrons, 68, 76
icosahedrons, 68, 76
octahedrons, 68, 76
tetrahedrons, 68, 76
Point of concurrency
centroids, 335-336, 339
circumcenter, 325-326, 339
incenter, 328, 339, 740
orthocenter, 337-338, 339
Points, 2, 5-11, 13, 127-128, 199, 215-217
betweenness, 15-16
centroids, 335-336, 339
circumcenter, 325-336, 339
collinear, 5, 7, 15, 36
of concurrency, 325, 326, 335-336, 337-338, 339, 740
coplanar, 5, 7, 698
distance to lines, 215-217
endpoints, 27-28, 36, 56, 334
incenter, 328, 339, 740
invariant, 625
locus of, 11, 218, 324, 697, 765, 888
midpoints, 27-28, 78 129, 206, 304, 416, 556-557
noncollinear, 5-6, 56
noncoplanar, 5
ordered pairs, P15-P16
orthocenter, 337-339
of symmetry, 664
of tangency, 732
vanishing, 10, 842
vertices, 36-37, 40-41, 46, 56, 67-68, 237, 304, 854, 856

Point-slope form, 198-199, 202, 206
Poles, 881
Polygon Exterior Angles Sum Theorem, 396-397
Polygon Interior Angles Sum Theorem, 393-395

Polygons, 2, 56-63
angles of, 393-401, 402, 807
centers of, 806, 807
circumscribed, 735
classifying, 57
concave, 56-57
congruent, 68, 255-256
convex, 56-57, 223, 393
decagons, 57
decomposing into triangles, 807
diagonals of, 393
dodecagons, 57
exterior angles of, 396-397, 399
graphing, 65-66
heptagons, 57
hexagons, 57
inscribed, 725, 814
interior angles of, 393-395, 398-399
irregular, 57
missing measures, 394-399, 402
nonagons, 57
octagons, 57
pentagons, 57, 807
quadrilaterals, 57, 434, 787-788, 792, 893
reflection of, 623
regular, 57, 68, 394-395, 806, 807-809, 825
segments of, 807
sides of, 56, 65
similar, 469-477, 524, 818-824
triangles, 26, 57, 58, 237-245,
246-254, 255-263, 264-272,
275-282, 283-284, 285-293,
294-295, 303-309, 310, 323,
324-333, 334, 335, 337-339, 345,
346, 347, 363, 364-370, 381, 432,
471, 478-487, 490-495, 501-508,
509, 510, 524, 537-542, 542,
547-555, 558-566, 568-577,
588-597, 601, 610, 726, 740,
781-782, 792, 807, 809, 854
vertices of, 393-400
Polyhedrons, 67-74
bases of, 67-68
edges of, 67-68
faces of, 67-68
regular, 68
vertices of, 67-68
Positive slope, 189
Postulates, 127-133
angle addition, 151-152
angle-angle (AA) similarity, 478, 482, 490, 568
angle-side-angle (ASA)
congruence, 275
arc addition, 708
area addition, 779
area congruence, 781
converse of corresponding angles, 207
corresponding angles, 180
parallel, 208
perpendicular, 215
points, lines, and planes, 127
protractor, 151
ruler, 144
segment addition, 144-145
side-angle-side (SAS) congruence, 266
side-side-side (SSS) Congruence, 264
slopes of parallel lines, 191
slopes of perpendicular lines, 191
Pre-AP. See Standardized Test Practice
Precision, 22-24
Predictions, 463
Preimage, 296-301, 511, 623, 640, 675
Preparing for Geometry. See Chapter 0
Preparing for Standardized Tests. See Standardized Test Practice

Prerequisite Skills
Get Ready for the Chapter, P2, 3, 89,

171, 235, 321, 391, 459, 535, 621, 695, 777, 835, 913
Skills Review, 12, 21, 35, 44, 54, 64, $74,98,106,115,125,134,143,150$, 159, 178, 186, 196, 205, 214, 224, 244, 254, 263, 272, 282, 293, 302, 309, 333, 343, 351, 362, 370, 380, 401, 411, 421, 429, 438, 448, 467, 477, 487, 499, 508, 517, 523, 545, 555, 566, 577, 587, 597, 608, 631, 638, 646, 659, 669, 681, 705, 714, 722, 730, 739, 749, 756, 763, 786, 796, 804, 815, 824, 844, 853, 862, 870, 879, 887, 894, 902, 921, 930, 937, 946, 953, 963
Principle of superposition, 682-683
Prisms, 67, 665
altitudes of, 846
heights of, 846
lateral area of, 846-847, 849-850, 858
oblique, 838, 846
pentagonal, 67
rectangular, 24, 67-68, 69, 850, 863
right, 837, 846, 847
surface area of, 69, 846, 847, 849-850, 858, 903
triangular, 67, 850
volume of, 69, 863, 866, 868, 875, 903
Probability, P8-P9
combinations, 926
permutations, 922-925
rules of, 959-960
simple, P8-P9
Probability model, 939
Probability tree, 949
Problem-solving. See also Conjectures, making; Problem-Solving Tips; RealWorld Examples math problems, 84 multi-step problems, 830, 832
using similar triangles, 503

Problem-Solving Tips

sense-making, 247 determine reasonable answers, 482
draw a diagram, 373
draw a graph, 201
guess and check, 561
make a drawing, 751
make a graph, 434
make a model, 865
solve a simpler problem, 733
use a simulation, 940
use estimation, 675
work backward, 129
write an equation, 48
Product Property, P19
Proof by negation. See Indirect proof
Proofs
algebraic, 136-137, 163
by contradiction, 355
coordinate, 303-309, 310, 416-417
direct, 355
flow, 248, 418, 421
formal, 137
geometric, 138, 357
indirect, 355-362, 721, 738
informal, 129, 886
paragraph, 129-130, 163, 418, 657, 658, 720, 728, 822
two-column, 137-141, 150, 164, 221, $422,712,720,721,727,728,729$, 747, 749
without words, 546, 779, 781, 789, 798, 814, 873, 886

Properties

addition, 136, 344
of angle congruence, 153
associative, 138
commutative, 138
comparison, 344
of congruent triangles, 258
cross products, 462-463
distributive, 136
division, 136
multiplication, 136
of parallelograms, 403-405, 449
product, P19
of quadrilaterals, 449
quotient, P19
of real numbers, 136, 344
of rectangles, 423-424, 449
reflexive, 136, 138, 145, 153, 257, 258, 481
of rhombi, 430, 432, 449
of segment congruence, 145
of similarity, 481
of similar solids, 897
of squares, 432,449
substitution, 136, 145
subtraction, 136, 344
symmetric, 136, 138, 145, 153, 258, 481
transitive, 136, 138, 145-146, 153, 258, 344, 481
of triangle congruence, 258
zero product, 782
Properties of Angle Congruence Theorem, 153

Properties of Segment Congruence

 Theorem, 145Properties of Similarity Theorem, 481
Properties of Similar Solids Theorem, 897
Properties of Triangle Congruence Theorem, 258
Proportional parts, 492, 524
Proportions, 462-467
similar polygons, 469-477
Protractor, 17, 37
Protractor Postulate, 151
Pyramids, 24, 67, 583, 840
altitudes of, 854
height of, 854,882
lateral area of, 854-856, 858
pentagonal, 67, 854
rectangular, 67
regular, 854-856, 859-861
surface area of, 69, 854-856, 858, 859-861
triangular, 67-68
vertices of, 854
volume of, 69, 873, 875-876, 903
Pythagorean Inequality Theorem, 550
Pythagorean Theorem, 26, 142, 546, 547-555, 558-559, 617, 757
Pythagorean triples, 548-549

a

Quadratic techniques, apply, 759, 764
Quadrants, P15
Quadrilaterals, 57, 434, 726, 893
missing measures, 792
parallelograms, 403-411, 431
properties of, 447
rectangles, 24, 58, 423-429
rhombi, 430-438, 787-788, 791-795
special, 787-788
squares, 58, 431-438, 558
trapezoids, 439-447, 787-788, 789-790, 792-795
Quick Checks, 3, 89, 171, 235, 321, 391, 459, 535, 621, 695, 777, 835, 913
Quotient Property, P19

B

Radial symmetry, 664
Radical expressions, P19
Radii, 697-702, 757, 857
perpendicular to a chord, 716
of regular polygons, 807
of spheres, 880-882
Random variables, 941
Rate of change, 189-190
Ratios, 461-466
cosine, 568-576, 592
extended, 461-462
and Fibonacci sequence, 468
golden, 465
length probability, 931
proportions, 462-467, 469-476
scale factors, 470-472, 502, 511-512, 514, 517, 675, 676, 819
sine, 568-577, 592
tangent, 568-576, 592
using similar solids to write, 898
Rays, 36-39
collinear, 36
noncollinear, 36
opposite, 36, 46

Reading Math

3-4-5 right triangle, 549
abbreviations and symbols, 153
and, 948
apothem, 808
circum-, 326
complement, 959
conditional probability, 950
contradiction, 356
coordinate function notation, 625
diameter and radius, 698
double primes, 652
exactly one, 6
flowchart proof, 248
height, 865
height of a triangle, 337
horizontal and vertical translations, 633
if and then, 108
incenter, 328
inverse trigonometric ratios, 571
linear, 201
midsegment, 441
multiple inequality symbols, 365
not false, 108
or, 957
perpendicular, 155, 182
Pi (π), 58
proportion, 462
ratios, 819
rhombi, 431
same-side interior angles, 174
similar circles, 820
similarity symbol, 470
simple closed curves, 57
solving a triangle, 591
straight angle, 38
substitution property, 145
symbols, 68, 265, 441
tree diagram notation, 916

Real numbers

ordered triple, 556
properties of inequality for, 344

Real-World Careers

architectural engineer, 864
athletic trainer, 502
coach, 404
craft artists, 790
drafter, 6
event planner, 540
flight attendant, 190
hair stylist, 93
historical researcher, 707
interior design, 347
landscape architect, 216
lighting technicians, 267
personal trainer, 249
photographer, 624
statistician, 925
Real-World Examples, 6, 17, 27, 37, 47, $70,93,110,117,128,137,146,152$, 173, 181, 190, 201, 210, 216, 238, 247, 249, 257, 267, 277, 288, 297, 305, 326, 336, 347, 356, 366, 373, 395, 404, 414, 423, 424, 433, 440, 461, 463, 470, 482, 493, 494, 503, 512, 519, 540, 561, 570, 590, 604, 624, 634, 654, 663, 675, 699, 708, $715,717,726,735,744,751,759$, $781,789,798,799,808,820,840$, 849, 857, 875, 883, 890, 898, 916, 917, 932, 933, 956, 957, 958, 960

Real-World Links, 17, 23, 110, 119, 146, 154, 181, 238, 247, 257, 288, 297, 305, 326, 356, 366, 373, 395, 414, 424, 425, 433, 440, 443, 463, 493, 503, 512, 519, 570, 582, 590, 604, 634, 654, 665, 699, 717, 726, 744, 751, 759, 781, 799, 810, 820,

840, 875, 883, 917, 924, 932, 933, 941, 949, 958, 960

Reasonableness, check for. See Study Tips
Reasoning. See also Higher-OrderThinking Problems
deductive, 117-124
indirect, 355
inductive, 91-97, 117, 160
Rectangles, 423-429
area of, 58
diagonals of, 423-424
golden, 465
perimeter of, 24,58
properties of, 423-424, 449
proving relationships, 424
Rectangular prisms, 67-68, 850
surface area of, 69, 847
volume of, 24, 863
Rectangular pyramids, 67
Rectangular solids, 556
Reduction, 511-516, 675-676
Reflections, 296-302, 623-631, 684
angles of, 52
characteristics of, 624
glide, 301, 651, 654-655, 663
in horizontal lines, 624
in intersecting lines, 653, 654
line of, 296, 623-631
in the line $y=x, 626$
minimizing distance, 624
in parallel lines, 652, 653
of a polygon, 623
symmetry of, 663
on triangles, 295
in two lines, 654
in vertical lines, 624
in the x-axis, 625-626
in the y-axis, 625-626

Reflections in Intersecting Lines

 Theorem, 653Reflections in Parallel Lines Theorem, 652

Reflection symmetry, 663
Reflective device, 670-671
Reflexive Property
of congruence, 145, 153
of equality, 136, 138
of similarity, 481
of triangle congruence, 258

Regular polygons, 57
area of, 806, 807-809
centers of, 806, 807
Regular polyhedron, 68
Regular pyramids, 854-856, 859-861
lateral area of, 854-856
surface area of, 855-856, 859-861
Regular tessellations, 660-662
Related conditionals, 110 contrapositives, 109-110 converses, 109-110, 116 inverses, 109-110

Relative error, 23-24
Relative frequency, 954
Remote interior angles, 248, 345
Resultant vectors, 601
Review. See Guided Practice; ConnectED; Prerequisite Skills; Spiral Review; Standardized Test Practice; Study Guide and Review; Vocabulary Check

Review Vocabulary

acute angle, 238
altitude of a triangle, 538, 781
arc, 799
central angle, 799
complementary angles, 152
coordinate proof, 416
coplanar, 698
diagonal, 791
equilateral triangle, 286
exterior angle, 396
linear pair, 152
obtuse angle, 238
perpendicular lines, 626
prism, 665
rationalizing the denominator, 559
regular polygon, 395
remote interior angle, 345
right angle, 238
supplementary angles, 152
triangle inequality theorem, 551
trigonometric ratios, 856
vertical angles, 154
Rhombi, 430-438
area of, 787-788, 791-795
conditions for, 432
diagonals of, 430
properties of, 430432
Riemann, Georg F.B., 898

Right angles, 38, 41-43, 284, 423, 424
Right Angle Theorems, 155
Right cones, 856
Right cylinders, 848
Right prisms, 846
Right solids, 837
Right triangles, 237-238
$30^{\circ}-60^{\circ}-90^{\circ}, 559-564$
$45^{\circ}-45^{\circ}-90^{\circ}, 558-564$
altitudes of, 537-539
congruence, 283-284
congruent, 283-284
to find distance, 26
geometric means in, 537-539
Hypotenuse-Angle Congruence Theorem (HA), 284
Hypotenuse-Leg Congruence Theorem (HL), 284
hypotenuse of, 537-539, 547-555, 558-560
Leg-Angle Congruence Theorem (LA), 284
Leg-Leg Congruence Theorem (LL), 284
legs of, 538, 547-555
missing measures, $249,548,559,571$
Pythagorean Theorem, 26, 142, 546, 547-555, 558-559, 617, 757
similar, 538, 568
solving, 572-573, 575
special, 558-566, 569, 610
Rigid transformations, 296
Rise. See Slopes
Roots. See Square roots
Rotational symmetry, 664
Rotations, 296-300, 639, 640-646, 654, 663
$180^{\circ}, 641$
$270^{\circ}, 641$
$90^{\circ}, 641$
centers of, 640
symmetry, 663, 664, 667-668
on triangles, 295
Ruler, 14-15
Ruler Postulate, 144
Run. See Slopes

s

Sample spaces, 915-921

SAS (Side-Angle-Side) Congruence
Postulate. See Side-Angle-Side (SAS)
Congruence Postulate
SAS Inequality Theorem. See Hinge Theorem
SAS (Side-Angle-Aide) Similarity
Theorem. See Side-Angle-Side (SAS)
Similarity Theorem
Scale, 518-522
Scale drawings, 518-522
Scale factor, 470-472, 502, 819
of dilation, 511-512, 675
negative, 676
Scale models, 518-522, 820
Scalene triangles, 238-241
Scaling, 674
Secant, 741-744
graphing, 578
Secants
intersecting, 742-743, 752
intersecting with a tangent, 744, 753
Secant segments, 752
Seconds, 895

Sectors

area of, 799-802
of a circle, 799
Segment Addition Postulate, 144-145
Segments
adding measures, 144-145
altitudes, 334, 337-339, 538-539, 559, 781, 809, 846, 854, 856
apothem, 806, 807, 808
bisecting, 494
bisectors of, 29-30, 206
chords, 697, 715-722, 723, 742, 750, 880
of a circle, 697
congruent, 16-17, 19-20, 145-146, 285-286
diameters, 697-700, 717, 880
edges, 67-68, 846, 854, 964-965
hypotenuse, 26, 537-538, 547-555, 558-559
intersecting inside a circle, 750
intersecting outside a circle, 752
legs, 439, 538, 548-555
medians, 334, 335, 339
midpoint of, 27
radii, 697-702, 716, 757, 807, 857, 880-882
relationships, 144-150
Ruler Postulate, 144
slant height, 69, 854-860
Segments of Chords Theorem, 750
Segments of Secants Theorem, 752
Self-similarity, 509
Semicircles, 707
Semi-regular tessellations, 660-662
Sense-Making. See Check for Reasonableness; Reasoning

Sequences

Fibonacci, 468
Short Response, 21, 44, 64, 87, 115, $125,143,150,169,178,186,196$, 233, 254, 282, 293, 302, 316, 319, 333, 362, 370, 380, 389, 401, 421, 429, 457, 477, 499, 508, 517, 523, 533, 545, 555, 566, 587, 597, 619, 631, 638, 646, 659, 693, 722, 730, 739, 763, 775, 796, 804, 815, 833, 853, 862, 870, 879, 894, 902, 909, 911, 921, 930, 946, 963, 973
Side-Angle-Side (SAS) Similarity Theorem, 479, 482

Side-Angle-Side (SAS) Similarity, 479-480

Sides

of angles, 36-37, 41, 46
corresponding, 255, 469-471, 480
of parallelograms, 403
of polygons, 56, 65
segments as sides, 37
sides, 480
of triangles, 238, 347, 364
Side-Side-Side (SSS) Congruence Postulate, 264

Side-Side-Side (SSS) Similarity Theorem, 479, 482
Sierpinski Triangle, 509
Significant digits, 23, 24

Similar figures

area of, 818-824
missing measures, 819

Similarity

establishing, 684
ratios, 469-477
statements, 469
transformations, 511-517, 524
Similar polygons, 469-477, 524 area of, 818-824
missing measures, 471
perimeter of, 471-472
Similar Right Triangles Theorem, 538
Similar solids, 896-902
Similar triangles, 478-487, 541
identifying, 471
parts of, 481, 501-508
Simplest form
of ratios, 461
Simulations, 939-946
designing
using a geometric model, 939 using random numbers, 940 summarizing data from, 940
Sine ratio, 568-576, 592
Sines, Law of, 588-597
Sketches, 17
Skew lines, 173-177
Slant height, 69, 854-860
Slide. See Translations
Slope-intercept form, 198-204
Slopes, 187, 188-196, 225
negative, 189
of parallel lines, 191
proof, 488-489
of perpendicular lines, 191
proof, 488-489
positive, 189
undefined, 189
zero, 189
Small circle, 893
Solids
cones, 67, 69, 856, 857-858, 874-877, 903
congruent, 896
cross sections of, 840
cylinders, 67-68, 69, 848, 849-850, 858, 864, 867, 868, 875, 903
formed by translations, 837-838
frustums, 861
lateral area, 846-850, 854-858
nets of, 76-77, 846, 857
of revolution, 647-648
orthographic drawings, 75, 840-841
perspective view, 10
Platonic, 68, 76
polyhedrons, 67-74
prisms, $24,67,69,665,837,839$, 846-847, 849-850, 858, 863, 866, 868, 875, 903
pyramids, 24, 67-68, 69, 583, 840, 854-856, 858, 859-861, 873 875-876, 882
reflection symmetry, 663
representations of, 839-844
similar, 896-902
spheres, 67, 69, 880-881, 882, 883-885, 888, 889, 903
surface area, 69-74, 846-853, 854-862, 880, 881, 882, 883-884, 903
volume, 24, 69-73, 863-870, 871, 873-879, 882-885, 903, 936
Solving a right triangle, 572-573, 575
Solving a triangle, 591-592
Solving equations
justifying each step, 136-137
Space, 7
Special Segments of Similar Triangles Theorem, 501
Spheres, 67
centers of, 880-881
chords of, 880
diameters of, 880
sets of points on, 889
surface area of, 69, 880-884, 903
that intersect, 888
volume of, 69, 882-885, 903
Spherical geometry, 889-894
Spiral Review, 12, 21, 35, 44, 54, 64, $74,98,106,115,125,134,143,150$, $159,178,186,196,205,214,224$, 244, 254, 263, 272, 282, 293, 302, 309, 333, 343, 351, 362, 370, 380, 401, 411, 421, 429, 438, 448, 467, 477, 487, 499, 508, 517, 523, 545, 555, 566, 577, 587, 597, 608, 631, 638, 646, 659, 669, 681, 705, 714, 722, 730, 739, 749, 756, 763, 786, 796, 804, 815, 824, 844, 853, 862, 870, 879, 887, 894, 902, 921, 930, 937, 946, 953, 963

Spreadsheet Labs,

Angles of Polygons, 402
Two-Way Frequency Tables, 954-955
Square roots, P19-P20
Squares, 431-438
area of, 58
conditions for, 430, 432
diagonals of, 558
perimeter of, 58
properties of, 432, 449

SSS (Side-Side-Side) Congurence

Postulate. See Side-Side-Side (SSS) Congruence Postulate
SSS (Side-Side-Side) Inequality
Theorem. See Side-Side-Side (SSS) Inequality Theorem
SSS (Side-Side-Side) Similarity Theorem. See Side-Side-Side (SSS) Similarity Theorem

Standard form

of a circle equation, 757
Standardized Test Practice, 84-87, 166-169, 230-233, 316-319, 386-389, 454-457, 530-533, 616-619, 690-693, 772-775, 830-833, 908-911, 970-973. See also Extended Response; Gridded Response; Short Response; WorkedOut Examples
Standard position, 600
Statements, 99
biconditional, 116
compound, 99-105
conditional, 107-114, 116, 118-120, 137, 160
congruence, 256
disjunction, 100-103
similarity, 469
Straight angles, 38
Straightedge, 17
String, 334
Study Guide and Review, 78-82,
160-164, 225-228, 310-314,
381-384, 449-452, 524-528,
610-614, 684-688, 766-770, 825-828, 903-906, 966-968
Study Organizer. See Foldables® Study Organizer

Study Tips

270° rotation, 642
360° rotation, 641
absolute value, 743
accuracy, 23
additional information, 50
additional planes, 6
alternative method, 27, 572, 709, 742, 855
altitudes of isosceles triangles, 559
ambiguous case, 589
angle-angle-angle, 277
angle bisector, 327
angle relationships, 181
arc bisectors, 716
argument, 119
axiomatic system, 128
center of dilation, 513
characteristics of a reflection, 624
check for reasonableness, 28, 249, 338
checking solutions, P18, 40, 897
check your answer, 239
circumcircle, 700
clockwise rotation, 641
common misconception, 432
commutative and associative properties, 138
comparing measures, 15
completing the square, 758
concentric circles, 748
congruent angles, 405
congruent triangles, 432
coordinate proof, 304
corresponding sides, 479
determining the longest side, 550
diagrams, 271
dimensional analysis, P5, P7
direction angles, 602
distance to axes, 217
dividing by zero, 189
draw a diagram, 480, 857, 882
drawing segments, 717
drawing the shortest distance, 216
elimination method, 217
elliptical geometry, 890
equidistant, 218
estimation, 848
Euclid's Postulates, 208
Euclidean Solids, 69
experimental probability, P9
figural patterns, 92
finite geometries, 890
finding what is asked for, 209
flow proofs, 248
formulas, 848
geometric probability, 942
given information, 118
graphing calculator, 570
great circles, 881
heights of figures, 780
identifying similar triangles, 471
including a figure, 404
indirect measurement, 582
inscribed polygons, 725
invariant points, 625
irrational measures, 59
isosceles trapezoids, 440
isosceles triangles, 287
isometry, 298
key probability words, 960
kites, 443, 792
Law of Cosines, 589
levels of accuracy, 700
linear and square units, 60
linear pair vs. supplementary
angles, 47
linear theorem, 152
lines, P16
locus, 218
making connections, 855
memorizing trigonometric ratios, 569
Mental Math, 137
midpoint formula, 416
midsegment, 492
midsegment triangle, 491
multiple representations, 512
multiplication rule, 917
naming arcs, 707
naming polygons, 57, 394
negative scale factors, 676
nonexample, 175
obtuse angles, 590
other proportions, 492
overlapping figures, 268
parallel postulate, 204
perimeter vs. area, 58
permutations and combinations, 926
perpendicular bisectors, 325
point symmetry, 664
positive square root, 548
precision, 22
preimage and image, 626
proportions, 481, 504
proposition, 129
proving lines parallel, 210
Pythagorean Theorem, 26
Pythagorean triples, 548
quadratic techniques, 759
randomness, 923
random number generator, 940
recognizing contradictions, 358
rectangles and parallelograms, 425
reflexive property, 257
reorienting triangles, 538
right angles, 304, 424
rigid motions, 652
SAS and SSS inequality theorem, 372
scalar multiplication, 603
segment bisectors, 29
segments, 39
segments as sides, 37
side-side-angle, 266
similar and congruent solids, 897
similarity and congruence, 471
similarity ratio, 470
similar solids and area, 898
simplify the theorem, 752
slopes of perpendiculars, 191
square and rhombus, 434
standard form, 758
substitution method, 219
tangents, 762
three-dimensional drawings, 7
transformations, 297
truth tables, 101
turning the circle over, 925
types of vectors, 601
undefined terms, 128
use an area model, 948
use a proportion, 539
use estimation, 933
use ratios, 560
use scale factor, 502
using a congruence statement, 256
using additional facts, 374
using a ruler, 15
vector subtraction, 603
zero product property, 782
Substitution method, P17
Substitution Property of Equality, 136

Subtraction

finding area, 810
to find measurements, 16

Subtraction Property

of equality, 136
of inequality, 344
Sufficient conditions, 126
Supplementary angles, 47-48, 51, 151-152

Supplement Theorem, 152
Surface area, 69-73
of cones, 69, 856-860, 903
of cylinders, 69, 848, 849-850, 858, 903
of hemispheres, 881, 884
of prisms, 69, 846, 847, 848-850, 858, 903
of pyramids, 69, 854-856, 858, 903
of rectangular prisms, 69
of regular pyramids, 854-856, 859-861
of solids, 858
of spheres, 69, 880-882, 884, 903
using great circles, 881
Syllogism, law of, 119-121
Symbols
angles, 153, 346
circle, 68
combinations, 926
conjunction, 100
disjunction, 100
factorial, 922
inequalities, 346, 365
negation, 100
not congruent, 265
not parallel to, 441
not similar to, 470
permutations, 923
perpendicular lines, 48
probability, 948, 949
rectangle, 68
scale factor, 511
similar figures, 469
triangle, 68
Symmetric Property
of congruence, 145, 153
of equality, 136, 138
of similarity, 481
of triangle congruence, 258
Symmetry, 663-669
centers of, 664, 667
lines of, 663, 666, 668
magnitude of, 664, 667
order of, 664, 667
plane, 665, 667-668
points of, 664
radial, 664
reflection, 663
rotation, 663
translation, 663

Systems of equations

with a circle and line, 759
with a circle and circle, 761
linear, P17-P18, 204
with a parabola and line, 765

T

Tangent ratio, 568-577, 592
Tangents, 732-739, 742-748
to circles, 732-738
common, 732, 734-738
intersecting, 743-744
intersecting with a secant, 753
segments, 752
to spheres, 880
Tangent Theorem, 733
Tangent to a Circle Theorem, 734
Technology. See Applications;
Calculator; Graphing Technology Labs; ConnectED; TI-Nspire ${ }^{\text {TM }}$
Technology Labs
Tessellations, 660-662
graphing, 662
not uniform, 660-662
regular, 660-662
semi-regular, 660-662
uniform, 660-662
Test Practice. See Standardized Test Practice

Test-Taking Tips

apply definitions and properties, 454, 456
coordinate plane, 265
counterexamples, 168
draw a diagram, 232
eliminate unreasonable answers, 86 , 549, 910
gridded responses, 442
identifying nonexamples, 480
make a drawing, 908
mental math, 59
multi-step problems, 832
probability, 972
read carefully, 318
separating figures, 790
set up a proportion, 532
solve a simpler problem, 642
testing choices, 365
true vs. valid conclusions, 120
use a Venn diagram, 950
use formulas, 616, 618
use properties, 774
work backward, 690
writing equations, 865
Tetrahedrons, 68
Theorems, 129
$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle, 560
$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle, 558
Alternate Exterior Angles, 181
Alternate Interior Angles, 181
Angle-Angle-Side (AAS) Congruence, 276

Angle Bisector, 327
Angle-Side Relationships in Triangles, 346
Areas of Similar Polygons, 818
Centroid, 335-336
Circles, 707, 715, 716, 725, 726, 741, 742, 743
Circumcenter, 325-326
Complement, 152
Composition of Isometries, 652
Conditions for Parallelograms, 413-414
Conditions for Rhombi and
Squares, 432
Congruent Complements, 153
Congruent Supplements, 153
Consecutive Interior Angles, 181
Diagonals of a Rectangle, 423-424
Diagonals of a Rhombus, 430
Exterior Angle, 248-249
Exterior Angle Inequality, 345-346
Geometric Mean (Altitude), 539
Geometric Mean (Leg), 539
Hinge, 371-375
Hypotenuse-Angle Congruence, 284
Hypotenuse-Leg Congruence, 284
Incenter Theorem, 328
Inscribed Angle, 723-724
Isosceles Trapezoids, 439
Isosceles Triangle, 285
Kite, 443
Law of Cosines, 589
Law of Sines, 588
Leg-Angle Congruence, 284
Leg-Leg Congruence, 284
Linear Pair Theorem, 152
Midpoint Theorem, 129
Perimeters of Similar Polygons, 471
Perpendicular Bisectors, 324
Perpendicular Transversal, 182
Polygon Exterior Angles Sum, 396-397
Polygon Interior Angles Sum, 393-395
Properties of Angle Congruence, 153
Properties of Parallelograms, 403-405
Properties of Segment
Congruence, 145
Properties of Similarity, 481
Properties of Similar Solids, 897
Properties of Triangle Congruence, 258
Pythagorean, 547, 550
Pythagorean Inequality, 550
Reflections in Intersecting Lines, 653
Reflections in Parallel Lines, 652
Right Angle, 155

Segments of Chords, 750
Segments of Secants, 752
Side-Angle-Side (SAS) Similarity, 479, 482, 589
Side-Side-Side (SSS) Similarity, 479, 482, 590
Similar Right Triangles, 538
Special Segments of Similar Triangles, 501
Supplement, 152
Tangent to a Circle, 734
Third Angles, 257
Transitive Property of Congruence, 146
Trapezoid Midsegment, 441
Triangle Angle Bisector, 504
Triangle Angle-Sum, 246-247, 257
triangle congruence, 258
Triangle Inequality, 364-366
Triangle Midsegment, 491
Triangle Proportionality, 490, 491
Two Lines Equidistant from a Third, 218

Vertical Angles, 154
Theoretical probability, P9
Third Angles Theorem, 257
Three-dimensional figures, 67-74
cones, 67, 69, 856, 857-858, 874-877, 903
congruent, 896
cross sections of, 840
cylinders, 67-68, 69, 848, 849-850, 858, 864, 867, 868, 875, 903
frustums, 861
lateral area, 846-850, 854-858
missing measures, 849
nets of, 76, 846, 857
orthographic drawing of, 75, 77, 840-841
perspective view, 10
Platonic, 68, 76
polyhedrons, 67-74
prisms, 24, 67, 69, 665, 837, 839, 846-847, 849-850, 858, 863, 866, 868, 875, 903
pyramids, 24, 67-68, 69, 583, 840, 854-856, 858, 859-861, 873, 875-876, 882
representations of, 839-845
similar, 896-902
spheres, 67, 69, 880-881, 882, 883-885, 888, 889
surface area, 69-74, 846-853, 854-858, 880, 881, 882, 883-884, 903
volume, 24, 69-73, 863-870, 871, 873-879, 882-885, 903, 936

TI-Nspire ${ }^{\text {TM }}$ Technology Labs
Areas of Trapezoids, Rhombi, and Kites, 787-788
Changing Dimensions, 871
Congruence Transformations, 294-295
Dilations, 672-673
Topographic maps, 845
Topography, 845
Traceable network, 964-965
Tracing paper, 341, 546, 639, 682-683
Transformations
compositions of, 650, 651-659, 684
congruence, 294-295, 296-301, 623
dilations, 301, 511-517, 672-673, 674-681, 684
images, 296-301, 511, 623, 675
invariant points, 625
isometries, 296, 298, 652, 675
preimages, 296-301, 511, 623, 640, 675
reflections, 296-301, 623-631, 684
rigid, 296
rotations in the, 296-300, 639, 640-646, 654, 663
similarity, 511-517, 524
translations, 294, 296-301, 632-638, 654, 663
on triangles, 294-295

Transitive Property

of congruence, 145-146, 153
of equality, 136, 138
of inequality, 344
of similarity, 481
of triangle congruence, 258
Translations, 296-300, 632-638, 654
in the coordinate plane, 633
symmetry, 663
on triangles, 294
with vectors, 632-637
Transversals, 174-176
congruent segments of, 494
proportional segments of, 493
Trapezoid Midsegment Theorem, 441
Trapezoids, 439-447
area of, 787-788, 789-790, 792-795
bases of, 439
diagonals of, 439-440
height of, 791
isosceles, 439-440
legs of, 439
midsegment, 441
Tree diagram, 915-916
Trials, P8, 915
Triangle Angle Bisector Theorem, 504
Triangle Angle-Sum Theorem, 246-247, 257

Triangle Inequality Theorem, 364-366
Triangle method, 601
Triangle Midsegment Theorem, 491-492

Triangle Proportionality Theorem, 490-491

Triangles, 57
$30^{\circ}-60^{\circ}-90^{\circ}, 559-564$
$45^{\circ}-45^{\circ}-90^{\circ}, 558-564$
acute, 237-243
altitudes of, 334, 337-339, 537-539, 559, 781, 809
angle bisectors of, 339
angles of, 237, 245, 246-254, 310
area of, 58, 781, 792
bases of, 781-782
bisectors of, 323, 324-333
circumscribed, 740
classifying, 237-243, 305, 310, 551
congruent, 255-262, 264-272, 275-282, 288, 294-295, 310, 432
on a coordinate plane, 303
decomposing polygons into, 807
equiangular, 237-243
equilateral, 238-242, 286-288, 310
exterior angles of, 245, 248
height of, 337, 781-782
hypotenuse of, 26, 537-538, 547-555, 558-559
inequalities, 363, 364-370, 381
in one, 344-350
in two, 371-380
inequality theorem, 551
inscribed, 726
interior angles of, 245
isosceles, 238-243, 285-287, 310, 558, 559, 809, 854
legs of, 538, 547-555
medians of, 334, 335, 339
midsegment of, 491-492
missing measures, 239, 249, 287, 304, 782
number of, 598-599
obtuse, 237-238

Pascal's, 510
perimeter of, 58, 781
perpendicular bisectors of, 339
points in, 339
position on coordinate plane, 303
proportionality, 490-491
reflections in, 295, 296-301
reorienting, 538
right, 26, 237-243, 249, 283-284, 537-539, 548, 549, 558-566, 569, 571, 610
rotations in, 295, 296-301
scalene, 238-241
sides of, 238, 347, 364
Sierpinski, 509
similar, 471, 478-487, 501-508, 524, 538, 541, 568
solving, 591-592, 594, 599
special segments in, 381
transformations on, 294-295
translations in, 294, 296-301
vertices of, 237, 304
Triangular numbers, 510
Triangular prisms, 67, 850
Triangular pyramids, 67-69
Triangulation, 344
Trigonometric ratios, 568-577
cosine, 568-576, 592
finding direction of a vector, 602, 604
graphing, 567
sine, 568-576, 592
tangent, 568-577, 592
Trigonometry, 567, 568-577
calculating height, 581-585
cosine, 568-576, 592
Law of Cosines, 589-597
Law of Sines, 588-597
sine, 568-576, 592
tangent, 568-577, 592
Truth table, 101, 103-105, 108, 109
Truth value, 99-101, 103-105, 108-111

Turn. See Rotations
Two-column proofs, 137-141, 150, 164, 221, 422, 712, 720, 721, 727, 728, 729, 747, 749
Two-dimensional figures, 56-64, 65-66
circles, 697-705
decagons, 57
dodecagons, 57
heptagons, 57
hexagons, 57
nonagons, 57
octagons, 57
pentagons, 57, 806, 807
polygons, 56-64
quadrilaterals, 57, 434, 787-788, 792, 893
symmetry in, 663
triangles, 26, 246-254, 255-263,
264-272, 275-282, 283-284,
285-288, 294-295, 303-309, 310,
334, 335-343, 344-351, 371-380,
381, 432, 471, 478-487, 490-495,
501-508, 524, 537-545, 547-555,
558-566, 568, 569, 571, 591-592,
594, 601, 610, 726, 740, 781-786,
807, 809, 854
Two Lines Equidistant from a Third Theorem, 218

Two-point perspective drawings, 10
Two-stage experiment, 916
Two-way frequency table, 954-955

U

Undefined slope, 189
Undefined term, 5
Uniform tessellations, 660-662
Union of Venn diagram, 102
Unit analysis. See Dimensional analysis

V

Vanishing point, 10, 842
Vectors, 600-608
adding, 601, 603, 609
algebraic, 603
component form of, 602
commutative property with, 607
direction of, 600-607
equivalent, 601
initial point of, 600
magnitude of, 600-607
multiplying by a scalar, 603
operations with, 603
opposite, 601, 603
parallel, 601
resultant, 601
standard position of, 602
subtracting, 601, 603
terminal point of, 600
translation, 632-637
Venn diagram, 101-105, 114, 119, 447, 950, 957-958, 971
vertex, 36
Vertex angles, 285
Vertical angles, 46-47, 154-155
Vertical Angles Theorem, 154-155

Vertical lines

equations of, 200
reflection in, 624

Vertices

of angles, 36-37, 40-41, 46
of cones, 856
corresponding, 255
of a polygon, 56
of polygons, 393-400
of polyhedrons, 67-68
of pyramids, 854
of triangles, 237, 304
Vocabulary Check, 78, 160, 225, 310, 381, 449, 524, 610, 684, 766, 825, 903, 966

Vocabulary Link

counterexamples, 94
inscribed, 724
intersection, 101
symmetric, 145
union, 102
Volume, 24, 69-73, 936
changing dimensions and, 871
of cones, 69, 874-877, 903
of cylinders, 69, 864, 867, 868, 875, 903
of hemispheres, 882, 884
of oblique solids, 865
of prisms, 69, 863, 866, 868, 875, 903
of pyramids, 69, 873, 875-876, 903
of rectangular prisms, 24, 863
of solids, 875
of spheres, 69, 882-885, 903
informal proof, 886

W

Watch Out!

analyzing conditionals, 109
angles of elevation and depression, 581
approximation, 572
arc length, 709
area of hemisphere, 881
area of regular polygon, 808
bases, 858
classify before measuring, 38
conditional notation, 949
cross-sectional area, 864
dividing by a negative, P14
equal vs. congruent, 16
height vs. slant height, 69
identifying circumscribed polygons, 735
identifying side opposite, 345
negation, 100
order of composition, 653
order of operations, P12, 589
parallelograms, 415
parallel vs. skew, 174
perimeter, 472
proof by contradiction vs.
counterexample, 357
rationalizing the denominator, P20
right prisms, 847
rounding, 591
substituting negative coordinates, 199
symbols for angles and inequalities, 346
use the correct equation, 752
volumes of cones, 874
writing ratios, 819
Web site. See ConnectED

Which One Doesn't Belong?. See
Higher-Order-Thinking Problems
Work backward, 690
Worked-Out Solutions. See Selected Answers
Writing in Math. See Higher-OrderThinking Problems

X

x-axis

reflection in, 625-626
x-coordinate, P15

Y

y-axis

reflection in, 625-626
\boldsymbol{y}-coordinate, P15
\boldsymbol{y}-intercept, 198

Z

Zero slope, 189

Formulas

Coordinate Geometry

Equations for Figures on a Coordinate Plane

slope-intercept form of a line point-slope form of a line	$y=m x+b$ $y-y_{1}=m\left(x-x_{1}\right)$	circle	$(x-h)^{2}+(y-k)^{2}=r^{2}$	
	Trigonometry			
Law of Sines	$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$	Law of Cosines	$a^{2}=b^{2}+c^{2}-2 b c \cos A$ $b^{2}=a^{2}+c^{2}-2 a c \cos B$ $c^{2}=a^{2}+b^{2}-2 a b \cos C$	

Symbols

\#	is not equal to		is parallel to	$\|\overrightarrow{A B}\|$	magnitude of the vector from A to B
\approx	is approximately equal to	H	is not parallel to	A^{\prime}	the image of preimage A
\cong	is congruent to	\perp	is perpendicular to	\rightarrow	is mapped onto
\sim	is similar to	\triangle	triangle	$\odot A$	circle with center A
\angle, \underline{s}	angle, angles	$>, \geq$	is greater than, is greater than or equal to	π	pi
$m \angle A$	degree measure of $\angle A$	$<, \leq$	is less than, is less than or equal to	$\overparen{A B}$	minor arc with endpoints A and B
-	degree	\square	parallelogram	$\overparen{A B C}$	major arc with endpoints A and C
$\overleftrightarrow{A B}$	line containing points A and B	$n-g o n$	polygon with n sides	$m \overparen{A B}$	degree measure of arc $A B$
$\overline{A B}$	segment with endpoints A and B	$a: b$	ratio of a to b	$f(x)$	f of x, the value of f at x
$\overrightarrow{A B}$	ray with endpoint A containing B	(x, y)	ordered pair	!	factorial
$A B$	measure of $\overline{A B}$, distance between points A and B	(x, y, z)	ordered triple	${ }_{n} P_{r}$	permutation of n objects taken r at a time
$\sim p$	negation of p, not p	$\sin x$	sine of X	${ }_{n} C_{r}$	combination of n objects taken r at a time
$p \wedge q$	conjunction of p and q	$\cos x$	cosine of x	$P(A)$	probability of A
$p \vee q$	disjunction of p and q	$\tan x$	tangent of x	$P(A \mid B)$	the probability of A given that B has already occurred
$p \longrightarrow q$	conditional statement, if p then q		vector a		
$p \longleftrightarrow q$	biconditional statement, p if and only if q		vector from A to B		

Measures	
Metric	Customary
Length	
1 kilometer (km) = 1000 meters (m) 1 meter $=100$ centimeters (cm) 1 centimeter $=10$ millimeters (mm)	$\begin{aligned} & 1 \text { mile }(\mathrm{mi})=1760 \text { yards }(\mathrm{yd}) \\ & 1 \text { mile }=5280 \text { feet (ft) } \\ & 1 \text { yard }=3 \text { feet } \\ & 1 \text { yard }=36 \text { inches (in.) } \\ & 1 \text { foot }=12 \text { inches } \end{aligned}$
Volume and Capacity	
$\begin{aligned} & 1 \text { liter }(L)=1000 \text { milliliters }(\mathrm{mL}) \\ & 1 \text { kiloliter }(\mathrm{KL})=1000 \text { liters } \end{aligned}$	```1 gallon (gal) \(=4\) quarts (qt) 1 gallon \(=128\) fluid ounces (fl oz) 1 quart \(=2\) pints (pt) 1 pint \(=2\) cups (c) 1 cup \(=8\) fluid ounces```
Weight and Mass	
1 kilogram (kg) = 1000 grams (g) 1 gram $=1000$ milligrams (mg) 1 metric ton $(t)=1000$ kilograms	$\begin{aligned} & 1 \text { ton }(\mathrm{T})=2000 \text { pounds (b) } \\ & 1 \text { pound }=16 \text { ounces (oz) } \end{aligned}$

