4 Darrin deposited \$1800 into an account that compounds quarterly at 5%. Which formula could he use to find the balance of his account after 4 years? Assume that Darrin does not make additional deposits to his account, nor does he withdraw any of the funds.

- **A** $A = 1800 \left(1 \frac{0.05}{4}\right)^{4(4)}$ **C** $A = 1800 \left(1 + \frac{0.5}{4}\right)^{4(4)}$

- **B** $A = 1800 \left(1 \frac{0.05}{4}\right)^4$ **D** $A = 1800 \left(1 + \frac{0.5}{4}\right)^4$
- **E** $A = 1800 \left(1 + \frac{0.05}{4}\right)^{4(4)}$
- **5** Write 0.00165 in scientific notation.

- **A** 16.5×10^{-5}
- **B** 1.65×10^{-5}
- C 1.65×10^{-4}

- **D** 1.65×10^{-3}
- **E** 1.65×10^2
- **6** For what value of x is -5x + 8 = -6 a true statement?

A 2.8

B 1.6

C 0.4

- D 0.4
- E -2.8
- **7** Ben's CAD teacher said that supplies would cost no more than \$125 for the semester. Ben has already spent \$14 and knows there are two more projects p coming up that will cost about the same. Which inequality can he use to find how much he should spend on one project?

7 _____

- **A** $125 \ge 2p 14$
- **B** $125 \ge 2p + 14$
- **C** $125 \le 2p 14$

- **D** $125 \le 2p + 14$
- **E** 125 < 2p + 14
- **8** The relationship between c and d is such that d is always 6 more than c. Which function represents this relationship?

- **A** c = d + 6
- $\mathbf{B} \quad c = 6d$
- **C** d = c + 6

- **D** d = c 6
- **E** d = 6 c
- **9** The equation that best describes the graph is

B
$$y = 2x - 2$$
.

C
$$y = 2^x$$
.

D
$$v = 2x^2$$
.

E
$$v = 2x^2 - 2$$
.

- **4** Darrin deposited \$1800 into an account that compounds quarterly at 5%. Which formula could he use to find the balance of his account after 4 years? Assume that Darrin does not make additional deposits to his account, nor does he withdraw any of the funds. III.B.3.
- **A** $A = 1800 \left(1 \frac{0.05}{4}\right)^{4(4)}$ **C** $A = 1800 \left(1 + \frac{0.5}{4}\right)^{4(4)}$
- **B** $A = 1800 \left(1 \frac{0.05}{4}\right)^4$ **D** $A = 1800 \left(1 + \frac{0.5}{4}\right)^4$
- **E** $A = 1800 \left(1 + \frac{0.05}{4}\right)^{4(4)}$
- **5** Write 0.00165 in scientific notation. **I.C.1**.

Ε

- **A** 16.5×10^{-5}
- **B** 1.65×10^{-5}
 - C 1.65×10^{-4}

- **D** 1.65×10^{-3}
- **E** 1.65×10^2
- **6** For what value of x is -5x + 8 = -6 a true statement? **I.D.3**.

A 2.8

B 1.6

C 0.4

- D 0.4
- E -2.8
- **7** Ben's CAD teacher said that supplies would cost no more than \$125 for the semester. Ben has already spent \$14 and knows there are two more projects p coming up that will cost about the same. Which inequality can he use to find how much he should spend on one project? II.C.1.

- **A** $125 \ge 2p 14$
- **B** $125 \ge 2p + 14$
- **C** $125 \le 2p 14$

- **D** $125 \le 2p + 14$
- **E** 125 < 2p + 14
- **8** The relationship between c and d is such that d is always 6 more than c. Which function represents this relationship? I.C.3.

- **A** c = d + 6
- **B** c = 6d
- **C** d = c + 6

- **D** d = c 6
- **E** d = 6 c
- **9** The equation that best describes the graph is **I.B.1**.

- **A** $v = x^2 2$.
 - **B** y = 2x 2.
 - **C** $v = 2^x$.
 - **D** $v = 2x^2$.
 - **E** $y = 2x^2 2$.