3	Lena sells earrings from a booth at the arts fair. She pays \$200 to rent the booth.
	She makes \$5 from each pair of earrings she sells. Her profit, P, can be found us-
	ing the following equation, where n is the number of pairs of earrings sold.

$$P = 5n - 200$$

How many pairs of earrings must Lena sell to earn a profit of \$450?

- (A) 100
- **(B)** 130
- **(C)** 140
- **(D)** 150
- Given the relation {(0, 5), (9, 2), (7, 1), (6, 3)}, what is the sum of all the elements in the range?

1				
- 1				
- 1		l	l	l
- 1		l	l	l
- 1				
- 1				

What is the value of x in the equation -3x + 19 = 2x + 106?

 $\sqrt{243} - \sqrt{75} = \sqrt{n}$. What is the value of n?

1				

What is the solution of the system of equations shown below?

$$\begin{cases} y = 4x - 10 \\ y = 2x \end{cases}$$

- **(A)** (5, 10)
- **(B)** (0, -10)
- **(C)** (-2, -4)
- **(D)** (6, 11)

Answers

3 (B)

To find the correct number of pairs of earrings, n, solve the equation 450 = 5n - 200. Add 200 to each side to get 650 = 5n. Then $n = \frac{650}{5} = 130$.

- The correct answer is 11. The range is the set of all second members of each ordered pair. Thus, the range is {5, 2, 1, 3}. The sum of these numbers is 11.
- The correct answer is -17.4. Subtract 2x from each side to get -5x + 19 = 106. Next, subtract 19 from each side, which leads to -5x = 87. Then $x = \frac{87}{-5} = -17.4$.
- The correct answer is 48. $\sqrt{243} = \sqrt{81} \times \sqrt{3} = 9\sqrt{3}$ and $\sqrt{75} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}$. Thus, $9\sqrt{3} 5\sqrt{3} = 4\sqrt{3} = \sqrt{16} \times \sqrt{3} = \sqrt{48}$.
- **7** (A)

Substitute the expression for y from the second equation into the first equation. Then y = 4x - 10 becomes 2x = 4x - 10. Subtract 4x from each side to get -2x = -10. Then $x = \frac{-10}{-2} = 5$. Using the second equation, y = (2)(5) = 10. Therefore, the solution is the point (5, 10).