- Pauline works as a sales representative for a book publishing company. Her monthly salary is calculated as follows: S = \$2,000 + (0.18)(d - \$6,000). In this equation, S = her monthly salary and d = dollars of sales. (Pauline has always managed to sell at least \$6,000 worth of books each month.) Last month, her salary was \$2,594. How many dollars worth of sales did she have?

						1 1
						1 1
						1 1
						1 1

- What is the reduced form of the fraction $\frac{x^2-7x-30}{2x^2+7x+3}$?
- (F) $\frac{x+3}{10}$
- (G) $\frac{x-10}{3}$
- (H) $\frac{x-10}{2x+1}$
- (I) $\frac{x+3}{2x+1}$
- - Consider the relation $\{(0, 7), (1, 7), (7, 1), (8, 2), (x, 9)\}$. How many different values could x assume so that this relation is NOT a function?
 - **(A)** 1
 - **(B)** 2
 - **(C)** 3
 - (D) 4
- What is the simplified form for $\sqrt{12x} 4\sqrt{27x} + 5\sqrt{192x}$?
- **(F)** $30\sqrt{3x}$
- (G) $6\sqrt{23x}$
- **(H)** $2\sqrt{23x}$
- (I) $59\sqrt{3x}$

Answers

- The correct answer is 9300. Substitute 2,594 for *S*. Then 2,594 = 2,000 + (0.18)(d 6,000). This equation simplifies to 2,594 = 2,000 + 0.18d 1,080. Then 0.18d = 2,594 2,000 + 1,080 = 1,674. Thus, $d = \frac{1,674}{0.18} = 9,300$.
- (H) $\frac{x^2 7x 30}{2x^2 + 7x + 3} = \frac{(x+3)(x-10)}{(x+3)(2x+1)}$. Then cancel out the common factor of (x+3) in the numerator and denominator. The result is $\frac{x-10}{2x+1}$.
- If x assumes any of the values 0, 1, 7, or 8, then this relation would contain two elements with the same x value but different y values. By definition, for any function, each given x value must correspond to exactly one y value.
- (F) $\sqrt{12x} = (\sqrt{4})(\sqrt{3x}) = 2\sqrt{3x}$. Also, $4\sqrt{27x} = (4)(\sqrt{9})(\sqrt{3x}) = 12\sqrt{3x}$. In addition, $5\sqrt{192x} = (5)(\sqrt{64})(\sqrt{3x}) = 40\sqrt{3x}$. Thus, $2\sqrt{3x} 12\sqrt{3x} + 40\sqrt{3x} = 30\sqrt{3x}$.