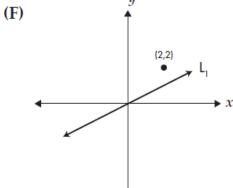
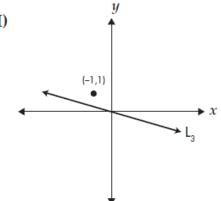
(6	3
V	

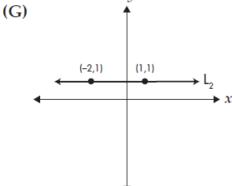
You are given the function $\{(-5, 8), (-3, 16), (-2, 7), (x, y)\}$, which contains four distinct elements. The highest value of the range is 16 and the lowest value of the domain is -5. If x and y are both integers, what is the maximum value of |x-y|?

Which of the following represents the graph of a line whose slope has an absolute value greater than 1?

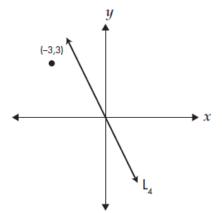


(H)





(I)



Bobby is given the function $f(x) = 2x^2 - x - 13$ and calculates the value of f(6). Diane is then tasked to substitute the value of f(6) for x in the function $g(x) = x^2 - 100$. What numerical value does Diane get?

1 1			
1 1			
1 1			

Answers

- The correct answer is 20. The largest possible y value is 16. The lowest possible x value is -4. Note that x cannot be -5 because this would violate the basic rule of a function, which states that a single value of x cannot be assigned to two different y values. Then 16 (-4) = 20.
 - The line contains the point (0, 0). For x = -3, let k represent the corresponding y value. Then the slope is $\frac{k-0}{-3-0} = -\frac{k}{3}$. Since this point lies above (-3, 3), k > 3. Consequently, $-\frac{k}{3} < -1$, which implies that $\left| -\frac{k}{3} \right| > 1$. For choice (F), the line passes below (2, 2) and contains (0, 0), so its slope is a positive number less than 1. For choice (G), the slope of the line is zero. For choice (H), the line contains (0, 0). The line passes below (-1, 1), so for x = -1, the corresponding y value is a positive number less than 1. Then, its slope is some negative number between -1 and zero (a possible value would be $-\frac{1}{2}$).
- The correct answer is 2709. By substitution, $f(6) = 2(6)^2 6 13 = (2)(36) 6 13 = 53$. Now, using the function $g(x) = x^2 100$, substitute 53 for x. Then $g(53) = (53)^2 100 = 2709$.

Therefore the absolute value of the slope would be less than 1.