[24]. Find the limit $\lim_{x\to\infty}$	$\frac{2x^2}{(x+2)^3}.$						
) 1	(c) 2	(d) 3	(e) The limit does not exist			
[25]. Suppose the total cost, $C(q)$, of producing a quantity q of a product is given by the equation							
C(q) = 5000 + 5q.							
The average cost per unit quantity, $A(q)$, equals the total cost, $C(q)$, divided by the quantity produced, q . Find the limiting value of the average cost per unit as q tends to ∞ . In other words find							
$\lim_{q \to \infty} A(q)$							
(a) 5 (b	6) 6	(c) 5000	(d) 5006	(e) The limit does not exist			
Continuity and differentiability							
[26]. Suppose $f(t) = \begin{cases} Bt & \text{if } t \leq 3\\ 5 & \text{if } t > 3 \end{cases}$							
Find a value of B such that the function $f(t)$ is continuous for all t.							
(a) 3/5 (b) 4/5	(c) $5/3$	(d) 5/4	(e) 5/2			
[27]. Suppose that $f(x) = \begin{cases} A+x & \text{if } x < 2\\ 1+x^2 & \text{if } x \ge 2 \end{cases}$							
Find a value of A such that the function $f(x)$ is continuous at the point $x = 2$.							
(a) $A = 8$ (b)	A = 1	(c) $A=2$	(d) $A = 3$	(e) $A = 0$			
[28]. Suppose $f(t) = \begin{cases} t & \text{if } t \leq 3\\ A + \frac{t}{2} & \text{if } t > 3 \end{cases}$							
Find a value of A such that the function $f(t)$ is continuous for all t.							
(a) 1/2 (b) 1	(c) 3/2	(d) 2	(e) 5/2			
[29]. Consider the function $f(x) = \begin{cases} 2x^2 + 3 & \text{if } x \leq 3 \\ 3x + B & \text{if } x > 3 \end{cases}$.							

Find a value of B such that f(x) is continuous at x = 3.

- (c) 12 (a) 6 **(b)** 9
- (d) 15 (e) There is no such value of B.
- $f(x) = \begin{cases} x^2 + 2x & \text{if } x < a \\ -1 & \text{if } x \ge a \end{cases}$ is continuous everywhere. [30]. Find all values of a such that the function

(a)
$$a = -1$$
 only (b) $a = -2$ only (c) $a = -1$ and $a = 1$

(d) a = -2 and a = 2 (e) all real numbers

[24].	Find the lim	1	1!	$2x^2$
		limit	$\lim_{x\to\infty}$	$(x+2)^3$

Answers

(a) 0 (b) 1

(c) 2

(d) 3

(e) The limit does not exist

[25]. Suppose the total cost, C(q), of producing a quantity q of a product is given by the equation

$$C(q) = 5000 + 5q.$$

The average cost per unit quantity, A(q), equals the total cost, C(q), divided by the quantity produced, q. Find the limiting value of the average cost per unit as q tends to ∞ . In other words find

$$\lim_{q \to \infty} A(q)$$

(a) 5 **(b)** 6

(c) 5000

(d) 5006

(e) The limit does not exist

Continuity and differentiability

 $f(t) = \begin{cases} Bt & \text{if } t \le 3\\ 5 & \text{if } t > 3 \end{cases}$ [26]. Suppose

Find a value of B such that the function f(t) is continuous for all t.

(a) 3/5

(b) 4/5

5/3

(d) 5/4

(e) 5/2

 $f(x) = \begin{cases} A+x & \text{if } x < 2\\ 1+x^2 & \text{if } x \ge 2 \end{cases}$ [27]. Suppose that

Find a value of A such that the function f(x) is continuous at the point x=2.

(a) A = 8

(b) A = 1 (c) A = 2

(d) A = 3 (e) A = 0

[28]. Suppose $f(t) = \begin{cases} t & \text{if } t \leq 3 \\ A + \frac{t}{2} & \text{if } t > 3 \end{cases}$

Find a value of A such that the function f(t) is continuous for all t.

(a) 1/2

(b) 1

(c) 3/2

(d) 2

(e) 5/2

 $f(x) = \begin{cases} 2x^2 + 3 & \text{if } x \le 3\\ 3x + B & \text{if } x > 3 \end{cases}.$ [29]. Consider the function

Find a value of B such that f(x) is continuous at x = 3.

(a) 6

(b) 9

(c) 12

(d) 15

(e) There is no such value of B.

[30]. Find all values of a such that the function $f(x) = \begin{cases} x^2 + 2x & \text{if } x < a \\ -1 & \text{if } x \ge a \end{cases}$ is continuous everywhere.

(a) a = -1 only

(b) a = -2 only

(c) a = -1 and a = 1

(d) a = -2 and a = 2

(e) all real numbers