A. Positive integer exponents:

Meaning of exponents:

example:
$$3^4 = 3 \times 3 \times 3 \times 3$$

= $3 \cdot 3 \cdot 3 \cdot 3 = 81$

example: $4^3 = 4 \cdot 4 \cdot 4 = 64$

Problems 1-12: Find the value:

1.
$$3^2 =$$

$$[7. (-2)^3]$$

$$2. 2^3 =$$

2.
$$2^3 =$$
 8. $100^2 =$

$$(-3)^2 =$$

3.
$$(-3)^2 =$$
 9. $(2.1)^2 =$

4.
$$-(3)^2 =$$

4.
$$-(3)^2 =$$
 10. $(-.1)^3 =$

5.
$$-3^2 = -(3^2) =$$
 11. $(\frac{2}{3})^3 =$

11.
$$\left(\frac{2}{3}\right)^3 =$$

6.
$$-2^3 =$$

6.
$$-2^3 = 12. \left(-\frac{2}{3}\right)^3 =$$

- 1. 9
- 2. 8
- 3. 9
- 4. –9
- 5. –9
- 6. –8
- 7. –8
- 8. 10,000
- 9. 4.41
- 10. -.001
- 11. $\frac{8}{27}$
- 12. $-\frac{8}{27}$

 a^b means use a as a factor b times. (b is the exponent or power of a)

example: 2^5 means $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

2⁵ has a value 32

5 is the exponent or power

2 is the factor

example: $5 \cdot 5$ can be written 5^2 . Its value is 25.

example: $4^1 = 4$

Problems 13-24: Write the meaning and find the value:

13.
$$6^3 = 19. (0.1)^4 =$$

14.
$$\left(-4\right)^2 =$$
 20. $\left(\frac{2}{3}\right)^4 =$

15.
$$0^4 =$$
 $21. \left(1\frac{1}{2}\right)^2 =$

16.
$$7^1 =$$
 22. $2^{10} =$

16.
$$7^1 =$$
 22. $2^{10} =$ 17. $1^4 =$ 23. $(.03)^2 =$

18.
$$(-1)^3 =$$
 24. $3^2 \cdot 2^3 =$

13.
$$6 \cdot 6 \cdot 6 = 216$$

14.
$$(-4)(-4) = 16$$

15.
$$0 \cdot 0 \cdot 0 \cdot 0 = 0$$

16.
$$7 = 7$$

17.
$$1 \cdot 1 \cdot 1 \cdot 1 = 1$$

18.
$$(-1)(-1)(-1) = -1$$

19.
$$(.1)(.1)(.1)(.1)$$

= .0001

20.
$$\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} = \frac{16}{81}$$

21.
$$\frac{3}{2} \cdot \frac{3}{2} = \frac{9}{4} = 2\frac{1}{4}$$

$$23. (.03)(.03) = .0009$$

24.
$$3 \cdot 3 \cdot 2 \cdot 2 \cdot 2 = 72$$

example:
$$\frac{8}{2^4} = \frac{8}{16} = \frac{1}{2}$$

example:
$$\frac{6^3}{6^2} = \frac{216}{36} = 6$$

Problems 25-30: Simplify:

25.
$$\frac{6}{3^2}$$
 =

25.
$$\frac{6}{3^2} =$$
 28. $\frac{10}{4^2 \cdot 5} =$

26.
$$\frac{2^5}{8}$$
 =

26.
$$\frac{2^5}{8}$$
 = 29. $\frac{2^3 \cdot 2^4}{2^5 \cdot 2}$ =

27.
$$\frac{4 \cdot 5}{10} =$$

27.
$$\frac{4 \cdot 5}{10} =$$
 30. $\frac{5 \cdot 12}{6^2 \cdot 10} =$

Problems 31-38: Find the value:

31.
$$3^2 + 4^2 =$$

31.
$$3^2 + 4^2 =$$
 | 35. $(3.1)^2 - (.03)^2 =$

32.
$$5^2 =$$

32.
$$5^2 =$$
 | 36. $(3.1)^2 + (.03)^2 =$

33.
$$3^2 + 4^2 + 12^2$$

33.
$$3^2 + 4^2 + 12^2 = 37. 3^3 + 4^3 + 5^3 =$$

34.
$$13^2$$
 =

$$34. \ 13^2 = 38. \ 6^3 =$$

- 25. $\frac{2}{3}$
- 26. 4
- 27. 2
- 28. $\frac{1}{8}$
- 29. 2
- 30. $\frac{1}{6}$
- 31. 25
- 32. 25
- 33. 169
- 34. 169
- 35. 9.6091
- 36. 9.6109
- 37. 216
- 38. 216

B. <u>Integer exponent laws</u>:

Problems 39-40: Write the meaning (not the value)

$$39. \ 3^2 = 40. \ 3^4 =$$

- 41. Write as a power of 3: $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 =$
- 42. Write the meaning: $3^2 \cdot 3^4 =$
- 43. Write your answer to 42 as a power of 3, then find the value.
- 44. Now find each value and solve: $3^2 \cdot 3^4 =$
- 45. So $3^2 \cdot 3^4 = 3^6$. Circle each of the powers. Note how the circled numbers are related.
- 46. How are they related?

Problems 47-52: Write each expression as a power of the same factor:

example: $3^2 \cdot 3^4 = 3^6$

47.
$$4^1 \cdot 4^2 =$$

47.
$$4^1 \cdot 4^2 = [50. (-1)^5 \cdot (-1)^4 =$$

48.
$$5^3 \cdot 5^3 =$$

48.
$$5^3 \cdot 5^3 = |51. 10 \cdot 10^4 =$$

49.
$$3^3 \cdot 3 =$$

49.
$$3^3 \cdot 3 = 52. 10 \cdot 10 =$$

53. Make a formula by filling in the brackets: $a^b \cdot a^c = a^{[]}$. This is an exponent rule.

- 39. 3 3
- 40. 3 3 3 3
- 41. 3⁶
- 42. 3 3 3 3 3 3
- 43. $3^6 = 729$
- 44. $9 \cdot 81 = 729$
- 45. $3^{(2)} \cdot 3^{(4)} = 3^{(6)}$
- 46. 2 + 4 = 6
- 47. 4³
- 48. 5⁶
- 49. 3⁴
- 50. $(-1)^9$
- 51. 10⁵
- 52. 10²
- 53. $a^b \cdot a^c = a^{[b+c]}$

54.
$$3^6 =$$
 55. $3^4 =$ 56. $729 \div 81 =$

note:
$$3^6 \div 3^4 = \frac{3^6}{3^4} = \frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3}$$

= $\frac{3}{3} \cdot \frac{3}{3} \cdot \frac{3}{3} \cdot \frac{3}{3} \cdot 3 \cdot 3 \cdot 3 = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 3 \cdot 3 = 3^2$

- 57. Circle the exponents: $\frac{3^6}{3^4} = 3^2$
- 58. How are the circled numbers related?

Problems 59-63: Write each expression as a power:

example:
$$\frac{3^6}{3^4} = 3^2$$

59.
$$2^4 \div 2^4 = 60. \frac{2^5}{2} =$$

57.
$$\frac{3^{(6)}}{3^{(4)}} = 3^{(2)}$$

58.
$$6 - 4 = 2$$
59. 2^{0}
60. 2^{4}

$$60 2^4$$

61.
$$\frac{5^2}{5} =$$
 | 63. $\frac{1^5}{1^3} =$

62.
$$\frac{(-4)^7}{(-4)^2} =$$

64. Make a formula by filling in the brackets: $\frac{a^b}{a^c} = a^{[]}$. This is another exponent rule.

Problems 65-67: Find each value:

65.
$$4^3 =$$
66. $4^6 =$

$$67. (4^3)^2 = (64)^2 =$$

Problems 68-69: Write the meaning of each expression:

- 61. 5¹ 62. (-4)⁵
- 63. 1² (or any power of
- $64. \ \frac{a^b}{a^c} = a^{\left[b-c\right]}$
- 65. 64
- 66. 4096
- 67. 4096

example:
$$(4^3)^2 = 4^3 \cdot 4^3 = 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4$$

= $4 \cdot 4 = 4^6$

68.
$$(3^2)^4 =$$
 69. $(5^1)^3 =$

- 70. Circle the three exponents: $(4^3)^2 = 4^6$
- 71. What is the relation of the circled numbers?
- 72. Make a rule: $\left(a^b\right)^c = a^{\left[\right]}$
- 73. Write your three exponent rules below:

I.
$$a^b \cdot a^c =$$
II. $\frac{a^b}{a^c} =$

III.
$$\left(a^{b}\right)^{c} =$$

Problems 74-80: Use the rules to write each expression as a power of the factor, and tell which rule you're using:

74.
$$3^{4} \cdot 3^{6} =$$

75. $\frac{2^{10}}{2^{5}} =$

76. $(2^{5})^{2} =$

77. $(2^{5})^{2} =$

78. $\frac{3^{4}}{3} =$

79. $(5^{1})^{2} =$

80. $(2^{5})^{2} =$

77. $(3^4)^4 =$

68.
$$3^2 \cdot 3^2 \cdot 3^2 \cdot 3^2$$

70.
$$(4^{(3)})^{(2)} = 4^{(6)}$$

71.
$$3 \times 2 = 6$$

$$72. \left(a^b\right)^c = a^{[bc]}$$

73. I.
$$a^{b} \cdot a^{c} = a^{b+c}$$
II. $\frac{a^{b}}{a^{c}} = a^{b-c}$

III.
$$\left(a^b\right)^c = a^{bc}$$

76.
$$2^{10}$$
, rule III

78.
$$3^3$$
, rule II

79.
$$5^2$$
, rule III