C. Scientific notation:

Note that scientific form always looks like $a \times 10^n$, where $1 \le a < 10$, and *n* is an integer power of 10.

example: $32800 = 3.2800 \times 10^4$ if the zeros in the ten's and one's places are significant. If the one's zero is not significant, write: 3.280×10^4 ; if neither is significant: 3.28×10^4 . example: $.0040301 = 4.031 \times 10^{-3}$ example: $2 \times 10^2 = 200$ example: $9.9 \times 10^{-1} = .99$

Problems 81-84: Write in scientific notation:

 81. 93,000,000 =
 83. 5.07 =

 82. .000042 =
 84. -32 =

Problems 85-87: Write in standard notation:

85. $1.4030 \times 10^3 = |87.4 \times 10^{-6} = |86.9.11 \times 10^{-2} = |$

81. 9.3×10^{7} 82. 4.2×10^{-5} 83. 5.0784. -3.2×10 85. 1403.086. 0.091187. .000004 To compute with numbers written in scientific form, separate the parts, compute, then recombine:

example:
$$(3.14 \times 10^5)(2)$$

= $(3.14)(2) \times 10^5 = 6.28 \times 10^5$
example: $\frac{4.28 \times 10^6}{2.14 \times 10^2} = \frac{4.28}{2.14} \cdot \frac{10^6}{10^2} = 2.00 \times 10^4$

Problems 88-95: Write answer in scientific notation

88. $10^{40} \times 10^2 = |91. \frac{3.6 \times 10^5}{1.8 \times 10^3} =$ 89. $\frac{10^{40}}{10^{10}} = |92. \frac{1.8 \times 10^8}{3.6 \times 10^5} =$ 90. $\frac{1.86 \times 10^4}{3 \times 10} = |93. (4 \times 10^3)^2 =$ 94. $(1.5 \times 10^2) \times (5 \times 10^3) =$ 95. $(1.25 \times 10^2)(4 \times 10^{-2}) =$

88.
$$10^{42}$$

89. 10^{30}
90. 6.2×10^{2}
91. 2.0×10^{2}
92. 5.0×10^{2}
93. 1.6×10^{7}
94. 7.5×10^{5}
95. 5

D. Square roots or perfect squares:

$$\sqrt{a} = b$$
 means $b^2 = a$, where $b \ge 0$. Thus
 $\sqrt{49} = 7$, because $7^2 = 49$. Also, $-\sqrt{49} = -7$.
Note: $\sqrt{49}$ does *not* equal -7, (even though
 $(-7)^2$ does = 49) because -7 is not ≥ 0 .

example: If $\sqrt{a} = 10$, then a = 100, because $10^2 = a = 100$

Problems 96-99: Find the value and tell why:

96. If $\sqrt{a} = 5$ then a =97. If $\sqrt{x} = 4$, then x =98. If $\sqrt{36} = b$, then b =99. If $\sqrt{169} = y$, then y =

96. 25;
$$5^2 = 25$$

97. 16; $4^2 = 16$
98. 6; $6^2 = 36$
99. 13; $13^2 = 169$

Problems 100-110: Find the value:

100.	$\sqrt{81} =$	106.	$\sqrt{3^2 + 4^2 + 12^2} =$
101.	$8^2 =$	107.	$\sqrt{17^2 - 15^2} =$
102.	$\sqrt{8^2}$ =	108.	$\sqrt{13^2 - 12^2} =$
103.	$\sqrt{(-7)^2} =$	109.	$\sqrt{4^3} =$
104.	$\sqrt{6^2 + 8^2} =$	110.	$\sqrt{3^4} =$
105.	$\sqrt{3^2 + 4^2} =$		

100. 9 101. 64 102. 8 103. 7 104. 10 105. 5 106. 13 107. 8 108. 5 109. 8 110.9