A. Greatest Common Factor (GCF):

The GCF of two integers is used to simplify (reduce, rename) a fraction to an equivalent fraction. A <u>factor</u> is an integer <u>multiplier</u>. A <u>prime number</u> is a positive whole number with exactly two positive factors.

example: the prime factorization of 18 is $2 \cdot 3 \cdot 3$, or $2 \cdot 3^2$.

Problems 1-2: Find the prime factorization:

1. 24 2. 42

example: Find the factors of 42.
Factor into primes: $42 = 2 \cdot 3 \cdot 7$
1 is always a factor
2 is a prime factor
3 is a prime factor
4 is a prime factor
7 is a prime factor
$2 \cdot 3 = 6$ is a factor
$2 \cdot 7 = 14$ is a factor
$3 \cdot 7 = 21$ is a factor
$2 \cdot 3 \cdot 7 = 42$ is a factor
Thus 42 has 8 factors.

1. $2^3 \cdot 3$ 2. $2 \cdot 3 \cdot 7$ Problems 3-4: Find all positive factors:

3. 18 4. 24

To find the GCF:

example: Looking at the factors of 42 and 24, we see that the common factors of both are 1, 2, 3, and 6, of which the greatest it 6; so: the GCF of 42 and 24 is 6. (Notice that "common factor" means "shared factor.")

Problems 5-7: Find the GCF of:

5. 18 and 36 6. 27 and 36 7. 8 and 15

1, 2, 3, 6. 9, 18
 1, 2, 3, 4, 6, 8, 12, 24
 18
 9
 1

B. Simplifying fractions:

example: Reduce $\frac{27}{36}$: $\frac{27}{36} = \frac{9 \cdot 3}{9 \cdot 4} = \frac{9}{9} \cdot \frac{3}{4} = 1 \cdot \frac{3}{4} = \frac{3}{4}$ (Note that you must be able to find a common factor, in this case 9, in both the top and bottom in order to reduce.)

Problems 8-13: Reduce:

 8. $\frac{13}{52} =$ 11. $\frac{16}{64} =$

 9. $\frac{26}{65} =$ 12. $\frac{24}{42} =$

 10. $\frac{3+6}{3+9} =$ 13. $\frac{24}{18} =$

8.
$$\frac{1}{4}$$

9. $\frac{2}{5}$
10. $\frac{3}{4}$
11. $\frac{1}{4}$
12. $\frac{4}{7}$
13. $\frac{4}{3}$

C. Equivalent Fractions:

example: $\frac{3}{4}$ is equivalent to how many eighths? $\begin{pmatrix} \frac{3}{4} = \frac{1}{8} \end{pmatrix}$ $\frac{3}{4} = 1 \cdot \frac{3}{4} = \frac{2}{2} \cdot \frac{3}{4} = \frac{2 \cdot 3}{2 \cdot 4} = \frac{6}{8}$

Problems 14-17: Complete:

- 14. $\frac{4}{9} = \frac{1}{72}$
- 15. $\frac{3}{5}$ is how many twentieths?

16.
$$\frac{56}{100} = \frac{50}{50}$$

17. How many halves are in 3? (Hint: think $3 = \frac{3}{1} = \frac{3}{2}$)

14. 32
 15. 12
 16. 28
 17. 6

D. <u>Ratio</u>:

If the ratio of boys to girls in a class is 2 to 3, it means that for every 2 boys, there are 3 girls. A ratio is like a fraction: think of the ratio 2 to 3 as the fraction $\frac{2}{3}$.

example: If the class had 12 boys, how many girls are there? Write the fraction ratio: $\frac{number \ of \ boys}{number \ of \ girls} = \frac{2}{3} = \frac{12}{3}$ Complete the equivalent fraction: $\frac{2}{3} = \frac{2 \cdot 6}{3 \cdot 6} = \frac{12}{18}$ So there are 18 girls.

- 18. If the class had 21 girls and the ratio of boys to girls was 2 to 3, how many boys would be in the class?
- 19. If the ratio of X to Y is 4 to 3, and there are 462 Y's, how many X's are there?
- 20. If the ratio of games won to games played is 6 to 7 and 18 games were won, how many games were played?

18. 14
 19. 616
 20. 21

E. Least common multiple (LCM):

The LCM of two or more integers is used to find the lowest common denominator of fractions in order to add or subtract them.

To find the LCM: example: Find the LCM of 27 and 36. First factor into primes: $27 = 3^{3}$ $36 = 2^{2} \cdot 3^{2}$ Make the LCM by taking each prime factor to its greatest power: LCM = $2^{2} \cdot 3^{3} = 4 \cdot 27 = 108$

Problems 21-25: Find the LCM:

21. 6 and 15	24. 8 and 12
22. 4 and 8	25. 8, 12, and 15
23. 3 and 5	1

21. 30
 22. 8
 23. 15
 24. 24
 25. 120

F. Lowest common denominator (LCD):

To find LCD fractions for two or more given fractions: example: Given $\frac{5}{6}$ and $\frac{8}{15}$ First find LCM of 6 and 15: $6 = 2 \cdot 3$ $15 = 3 \cdot 5$ LCM = $2 \cdot 3 \cdot 5 = 30 =$ LCD So $\frac{5}{6} = \frac{25}{30}$ and $\frac{8}{15} = \frac{16}{30}$

Problems 26-32: Find equivalent fractions with the LCD:

- 26. $\frac{2}{3}$ and $\frac{2}{9}$ 27. $\frac{3}{8}$ and $\frac{7}{12}$ 28. $\frac{4}{5}$ and $\frac{2}{3}$ 29. $\frac{1}{2}, \frac{2}{3}, \text{ and } \frac{3}{4}$ 30. $\frac{7}{8}$ and $\frac{5}{8}$
- 31. Which is larger, ⁵/₇ or ³/₄? (Hint: find and compare LCD fractions)
 32. Which is larger, ³/₈ or ¹/₃?

26.	$\frac{6}{9}, \frac{2}{9}$
27.	$\frac{9}{24}, \frac{14}{24}$
28.	$\frac{12}{15}, \frac{10}{15}$
29.	$\frac{6}{12}, \frac{8}{12}, \frac{9}{12}$
30.	$\frac{7}{8}, \frac{5}{8}$
31.	$\frac{3}{4}$ (because $\frac{20}{28} < \frac{21}{28}$)
32.	$\frac{3}{8}$ (because $\frac{9}{24} > \frac{8}{24}$)