(3) (3) Convergent geomseries

with
$$|r|=|\vec{3}|=\vec{3}=1$$
.

Series converges to $\vec{1}=2\vec{4}=5$

Compare with
$$\frac{2}{5}$$
 $n^{5/3}$, a

Commandent p -series:

since $\frac{1}{3 n^5 + 3} \le \frac{1}{n^{5/3}} \forall n \ge 1$,

 $\frac{2}{n^5 + 3} \le \frac{1}{n^{5/3}} \forall n \ge 1$,

 $\frac{2}{n^5 + 5} = \frac{1}{3 n^5 + 5}$ Converges by Direct Comparison

(Limit Comparison Works too!)

(1)
$$\frac{2}{N} = \frac{n^n}{n!}$$

 $\frac{2}{n \to \infty} = \frac{n}{n!} = \infty$
 $\frac{2}{n \to \infty} = \frac{n}{n!} = \infty$
So series diverges by n^{th} term test

(3)
$$2+\frac{1}{2}+\frac{1}{3$$

Coneare with $\frac{3}{2}$ $\frac{3^{n}+4}{2^{n}}$ $\frac{4}{2}$ bivergent test $\frac{3}{2}$ $\frac{4}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{3}{2}$ $\frac{4}{2}$ $\frac{3}{2}$ $\frac{3}{2}$

(20) (a)
$$\stackrel{\sim}{=} \frac{3}{2n}$$
 (convergent geom series)
= $3\stackrel{\sim}{=} 3(\frac{1}{2})^n$
 $S = 3\left[\frac{1}{1-\sqrt{2}}\right] = [6]$

(b)
$$\frac{82}{n=2} \left(-\frac{3}{2}\right)^{2n}$$

 $=\frac{82}{5} \left(-\frac{3}{2}\right)^{2n}$ (convergent grow/alt
 $S=5+\frac{1}{1-(-\frac{3}{2})} = \frac{4}{9} \left(\frac{3}{5}\right) = \frac{4}{15}$

(d)
$$\frac{2}{2} \frac{3}{(2n-1)(2nH)} = 3 \frac{2}{2} \left(\frac{\sqrt{2}}{2n-1} - \frac{\sqrt{2}}{2n+1} \right)$$

 $= \frac{3}{2} \frac{2}{(1-3)} + \left(\frac{1}{3} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}$