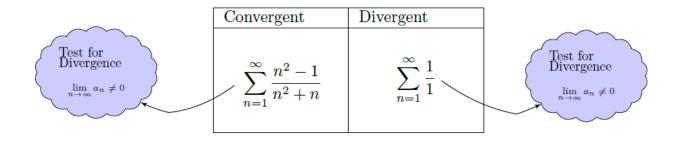
It is usually a good idea to try using the

Test for Divergence as a first step when evaluating a series for convergence or divergence.

If we can show that:

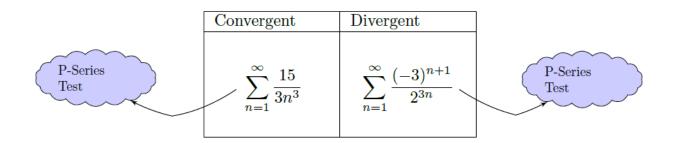
$$\lim_{n \to \infty} a_n \neq 0$$

Then we can say that the series diverges without having to do any extra work.



P-Series Test:

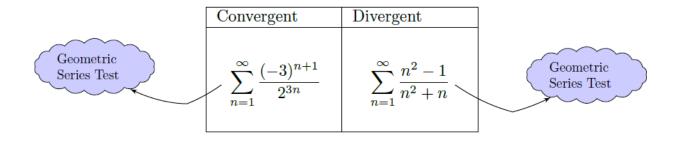
• The series be written in the form: $\sum \frac{1}{n^p}$



Geometric Series Test:

• When the series can be written in the form:

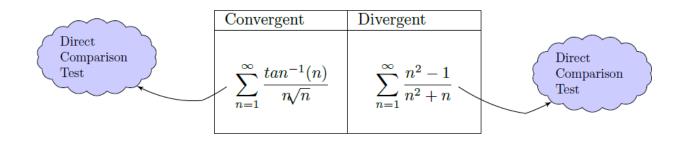
$$\sum a_n r^{n-1}$$
 or $\sum a_n r^n$



Direct Comparison Test:

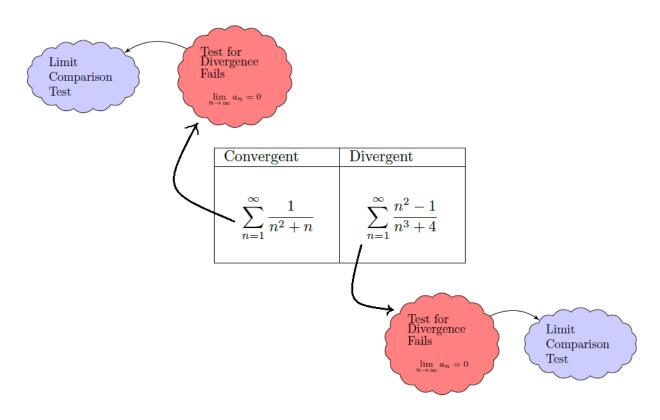
• When the given series, a_n

looks like a known, or more simple, series, b_n



Limit Comparison Test:

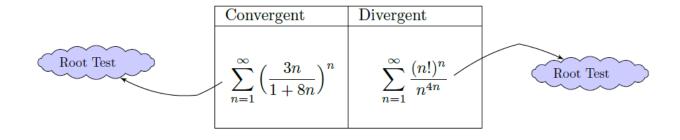
- When you can see that the series looks like another convergent or divergent series, b_n
- But it is hard to say whether $b_n > a_n$ or $b_n < a_n$



Root Test:

• When the series can be written in the form:

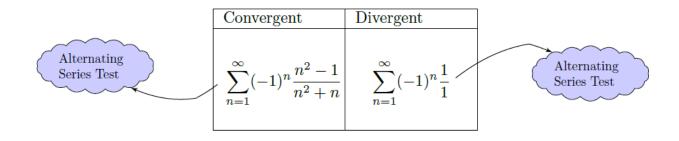
$$\sum (a_n)^n$$



Alternating Series Test:

• When the series can be written in the form:

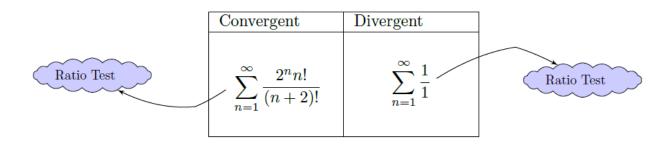
 $\sum (-1)^{n+1} a_n$ or $\sum (-1)^n a_n$



Ratio Test:

- Whenever we are given something involving a factorial, e.g. n!
- Whenever we are given something involving

a constant raised to the n^{th} power, e.g. $\sum \frac{n+5}{5^n}$



Integral Test:

- If the sequence is:
 - continuous
 - positive
 - decreasing (we can use the First Derivative Test here)

