MAT 141 Homework Problem Set 1

Name:			

Date: _____

1. (25 points) Evaluate the integral.

a.
$$(5 pts)$$
 $\int ne^{-n} dn$

b.
$$(5 pts)$$
 $\int (x^2 + 1) \sin x \, dx$ c. $(5 pts)$ $\int (\ln x)^3 \, dx$

d.
$$(5 pts)$$
 $\int \tan^{-1} x dx$

e. (5 pts)
$$\int x^5 e^{x^2} dx$$
 [Hint: Use a substitution first.]

Answers

1. (25 points) Evaluate the integral.

a.
$$(5 pts)$$
 $-ne^{-n} - e^{-n} + C$

b.
$$(5 pts)$$
 $-x^2 \cos x + 2x \sin x + \cos x + C$

c.
$$(5 pts)$$
 $x[(\ln x)^3 - 3(\ln x)^2 + 6 \ln x - 6] + C$

d.
$$(5 pts)$$
 $x tan^{-1} x - \frac{1}{2} ln(1 + x^2) + C$

e.
$$(5 pts)$$
 $\frac{1}{2}(x^4e^{x^2}-2x^2e^{x^2}+2e^{x^2})+C$

 $\mathbf{2.}$ (12 points) Evaluate the integral.

a.
$$(6 pts)$$

$$\int_{1}^{2} x \ln x \ dx$$

b.
$$(6 \ pts)$$
 $\int_0^1 e^n \sin(n\pi) \ dn$

Answers

 $\mathbf{2.}$ (12 points) Evaluate the integral.

a.
$$(6 pts)$$
 $\frac{8 \ln 2 - 3}{4} \approx 0.636$

b.
$$(6 pts)$$
 $\frac{(e+1)\pi}{\pi^2+1} \approx 1.075$

3. (15 points) Evaluate the integral.

a.
$$(5 pts)$$
 $\int_0^{\pi/4} \cos^2 x \sin^3 x \ dx$

b.
$$(5 pts)$$
 $\int \sin^4 t \cos^3 t \ dt$

c.
$$(5 pts)$$
 $\int \tan^5 \theta \sec^3 \theta \ d\theta$

Answers

3. (15 points) Evaluate the integral.

a.
$$(5 pts)$$
 $\frac{16-7\sqrt{2}}{120} \approx 0.051$

b.
$$(5 pts)$$
 $\frac{\sin^5 t}{5} - \frac{\sin^7 t}{7} + C$

c.
$$(5 pts)$$
 $\frac{\sec^7 \theta}{7} - \frac{2 \sec^5 \theta}{5} + \frac{\sec^3 \theta}{3} + C$

4.~(10~points) Evaluate the integral.

a.
$$(5 pts)$$
 $\int \frac{x^2}{\sqrt{9-x^2}} dx$

b.
$$(5 pts)$$
 $\int_0^{\sqrt{3}} \frac{dx}{(x^2+1)^2}$

Answers

4. (10 points) Evaluate the integral.

a.
$$(5 pts)$$
 $\frac{9}{2} \arcsin\left(\frac{x}{3}\right) - \frac{1}{2}x\sqrt{9-x^2} + C$

b.
$$(5 pts)$$
 $\frac{4\pi + 3\sqrt{3}}{24} \approx 0.74$

 $5. (10 \ points)$ Evaluate the integral.

a.
$$(5 pts)$$
 $\int \frac{5x-2}{(x-2)^2} dx$

b.
$$(5 pts)$$
 $\int \frac{2x-1}{16x^4-1} dx$

Answers

5. (10 points) Evaluate the integral.

a.
$$(5 pts)$$
 $5 ln |x-2| - \frac{8}{x-2} + C$

b.
$$(5 pts)$$
 $\frac{1}{8}(\ln(2x+1)^2 - \ln(4x^2+1) + 2\arctan(2x)) + C$

 $6. \hspace{0.1in} (\textit{5 points}) \hspace{0.1in} \text{Use partial fractions to prove the integration formula.}$

$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + C$$

Answers

6. (5 points) Use partial fractions to prove the integration formula.

Begin with a partial fraction decomposition.

$$\frac{1}{a^2 - x^2} = \frac{1}{(a+x)(a-x)} = \frac{A}{a+x} + \frac{B}{a-x}$$

Multiplying through by (a - x)(a + x) gives the equation 1 = (-A + B)x + (Aa + Ba).

This means that -A+B=0, or A=B. Also, Aa+Ba=1. Since A=B, we get $Aa+Ba=1 \implies Aa+Aa=1$

7. (18 points) Evaluate the limit using L'Hôpital's Rule.

a.
$$(3 pts)$$
 $\lim_{t\to 0} \frac{\sin t^2}{t}$

b.
$$(3 pts)$$
 $\lim_{\theta \to \pi/2} \frac{2\theta - \pi}{\cos(2\pi - \theta)}$

c.
$$(3 pts)$$
 $\lim_{t\to 0} \frac{t(1-\cos t)}{t-\sin t}$

d.
$$(3 pts)$$
 $\lim_{x\to 0} \frac{2^x - 1}{3^x - 1}$

e.
$$(3 pts)$$
 $\lim_{t\to\infty} \frac{\log_2 t}{\log_3(t+3)}$

f.
$$(3 pts)$$
 $\lim_{x\to 0^+} \frac{\ln(e^x - 1)}{\ln x}$

Answers

- ${\bf 7.}~~(18~points)~$ Evaluate the limit using L'Hôpital's Rule.
 - a. (3 pts) 0
 - **b.** (3 pts) −2
 - **c.** (3 pts) 3
 - d. (3 pts) $\frac{\ln 2}{\ln 3}$
 - e. (3 pts) $\frac{\ln 3}{\ln 2}$
 - f. (3 pts) 1

8. (20 points) Determine if each integral is convergent or divergent. Evaluate those that are convergent.

a.
$$(5 pts)$$
 $\int_4^\infty \frac{1}{(x-3)^{1/2}} dx$

b.
$$(5 pts)$$
 $\int_{1}^{\infty} \frac{1}{(3x-1)^4} dx$

c.
$$(5 pts)$$
 $\int_{-\infty}^{0} e^{\alpha} d\alpha$

d.
$$(5 pts)$$
 $\int_{3}^{\infty} \frac{2}{x^2 - 4} dx$

Answers

- 8. (20 points) Determine if each integral is convergent or divergent.
 Evaluate those that are convergent.
 - a. (5 pts) Divergent
 - b. (5 pts) Convergent, $\frac{1}{72}$
 - c. (5 pts) Convergent, 1
 - d. (5 pts) Convergent, $\frac{\ln 5}{2}$

9. (5 points) Show by the Comparison Theorem that $\int_3^\infty \frac{\cos^2 x}{x^2} dx$ is convergent.

Answers

9. (5 points) Since $-1 \le \cos x \le 1$ we get $\cos^2 x \le 1$.

Therefore,
$$\frac{\cos^2 x}{x^2} \le \frac{1}{x^2}$$
.

We know that, since p=2, the integral $\int_3^\infty \frac{dx}{x^2}$ is convergent. By comparison, this makes $\int_3^\infty \frac{\cos^2 x}{x^2} dx$ convergent as well.

10. (18 points) Use a table of integrals to evaluate the following integrals.

a.
$$(6 pts)$$

$$\int \sqrt{x^2 + 6x} dx$$

b.
$$(6 pts)$$
 $\int x^2 e^{-3x} dx$

c.
$$(6 pts)$$
 $\int \frac{dx}{\sqrt{2ax - x^2}} dx; \ a > 0$

Answers

10. (18 points) Use a table of integrals to evaluate the following integrals.

a.
$$(6 pts)$$
 $\frac{1}{2}[(x+3)\sqrt{x^2+6x}-9\ln|x+3+\sqrt{x^2+6x}|]+C$

b.
$$(6 pts)$$
 $-\frac{9x^2+6x+2}{27e^{3x}}+C$

c.
$$(6 pts)$$
 $\arccos\left(\frac{a-x}{a}\right) + C$