EXAMPLE 1 Using the Addition and Subtraction Formulas

Find the exact value of each expression.

(a)
$$\cos 75^{\circ}$$
 (b) $\cos \frac{\pi}{12}$

SOLUTION

(a) Notice that $75^{\circ} = 45^{\circ} + 30^{\circ}$. Since we know the exact values of sine and cosine at 45° and 30° , we use the Addition Formula for Cosine to get

$$\cos 75^{\circ} = \cos(45^{\circ} + 30^{\circ})$$

$$= \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$$

$$= \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \frac{1}{2} = \frac{\sqrt{2}\sqrt{3} - \sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

(b) Since $\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$, the Subtraction Formula for Cosine gives

$$\cos \frac{\pi}{12} = \cos \left(\frac{\pi}{4} - \frac{\pi}{6} \right)$$

$$= \cos \frac{\pi}{4} \cos \frac{\pi}{6} + \sin \frac{\pi}{4} \sin \frac{\pi}{6}$$

$$= \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}$$

EXAMPLE 2 Using the Addition Formula for Sine

Find the exact value of the expression $\sin 20^{\circ} \cos 40^{\circ} + \cos 20^{\circ} \sin 40^{\circ}$.

SOLUTION We recognize the expression as the right-hand side of the Addition Formula for Sine with $s = 20^{\circ}$ and $t = 40^{\circ}$. So we have

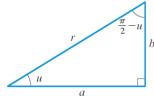
$$\sin 20^{\circ} \cos 40^{\circ} + \cos 20^{\circ} \sin 40^{\circ} = \sin(20^{\circ} + 40^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$

EXAMPLE 3 Proving a Cofunction Identity

Prove the cofunction identity $\cos\left(\frac{\pi}{2} - u\right) = \sin u$.

SOLUTION By the Subtraction Formula for Cosine we have

$$\cos\left(\frac{\pi}{2} - u\right) = \cos\frac{\pi}{2}\cos u + \sin\frac{\pi}{2}\sin u$$
$$= 0 \cdot \cos u + 1 \cdot \sin u = \sin u$$



$$\cos\left(\frac{\pi}{2} - u\right) = \frac{b}{r} = \sin u$$

For acute angles, the cofunction identity in Example 3, as well as the other cofunction identities, can also be derived from the figure in the margin.

EXAMPLE 4 Proving an Identity

Verify the identity
$$\frac{1 + \tan x}{1 - \tan x} = \tan \left(\frac{\pi}{4} + x \right)$$
.

SOLUTION Starting with the right-hand side and using the Addition Formula for Tangent, we get

RHS =
$$\tan\left(\frac{\pi}{4} + x\right) = \frac{\tan\frac{\pi}{4} + \tan x}{1 - \tan\frac{\pi}{4}\tan x}$$
$$= \frac{1 + \tan x}{1 - \tan x} = LHS$$

EXAMPLE 5 An Identity from Calculus

If $f(x) = \sin x$, show that

$$\frac{f(x+h) - f(x)}{h} = \sin x \left(\frac{\cos h - 1}{h} \right) + \cos x \left(\frac{\sin h}{h} \right)$$

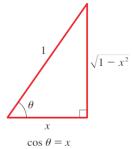
SOLUTION

$$\frac{f(x+h) - f(x)}{h} = \frac{\sin(x+h) - \sin x}{h}$$
Definition of f

$$= \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$
Addition Formula for Sine
$$= \frac{\sin x \left(\cos h - 1\right) + \cos x \sin h}{h}$$
Factor
$$= \sin x \left(\frac{\cos h - 1}{h}\right) + \cos x \left(\frac{\sin h}{h}\right)$$
Separate the fraction

Evaluating Expressions Involving Inverse **Trigonometric Functions**

Expressions involving trigonometric functions and their inverses arise in calculus. In the next examples we illustrate how to evaluate such expressions.



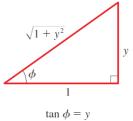


FIGURE 2

EXAMPLE 6 Simplifying an Expression Involving Inverse **Trigonometric Functions**

Write $\sin(\cos^{-1}x + \tan^{-1}y)$ as an algebraic expression in x and y, where $-1 \le x \le 1$ and y is any real number.

SOLUTION Let $\theta = \cos^{-1} x$ and $\phi = \tan^{-1} y$. Using the methods of Section 6.4, we sketch triangles with angles θ and ϕ such that $\cos \theta = x$ and $\tan \phi = y$ (see Figure 2). From the triangles we have

$$\sin \theta = \sqrt{1 - x^2} \qquad \cos \phi = \frac{1}{\sqrt{1 + y^2}} \qquad \sin \phi = \frac{y}{\sqrt{1 + y^2}}$$

From the Addition Formula for Sine we have

$$\sin(\cos^{-1}x + \tan^{-1}y) = \sin(\theta + \phi)$$

$$= \sin\theta\cos\phi + \cos\theta\sin\phi$$
Addition Formula for Sine
$$= \sqrt{1 - x^2} \frac{1}{\sqrt{1 + y^2}} + x \frac{y}{\sqrt{1 + y^2}}$$
From triangles
$$= \frac{1}{\sqrt{1 + y^2}} (\sqrt{1 - x^2} + xy)$$
Factor $\frac{1}{\sqrt{1 + y^2}}$

EXAMPLE 7 Evaluating an Expression Involving Trigonometric Functions

Evaluate $\sin(\theta + \phi)$, where $\sin \theta = \frac{12}{13}$ with θ in Quadrant II and $\tan \phi = \frac{3}{4}$ with ϕ in Quadrant III.

SOLUTION We first sketch the angles θ and ϕ in standard position with terminal sides in the appropriate quadrants as in Figure 3. Since $\sin \theta = y/r = \frac{12}{13}$, we can label a side

and the hypotenuse in the triangle in Figure 3(a). To find the remaining side, we use the Pythagorean Theorem.

$$x^2 + y^2 = r^2$$
 Pythagorean Theorem
 $x^2 + 12^2 = 13^2$ $y = 12$, $r = 13$
 $x^2 = 25$ Solve for x^2
 $x = -5$ Because $x < 0$

Similarly, since $\tan \phi = y/x = \frac{3}{4}$, we can label two sides of the triangle in Figure 3(b) and then use the Pythagorean Theorem to find the hypotenuse.

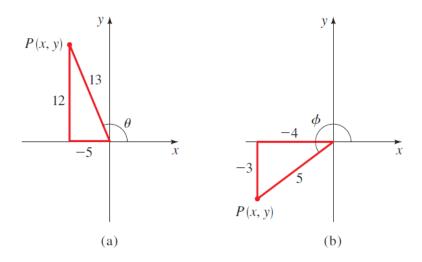


FIGURE 3

Now, to find $\sin(\theta + \phi)$, we use the Addition Formula for Sine and the triangles in Figure 3.

$$\sin(\theta + \phi) = \sin \theta \cos \phi + \cos \theta \sin \phi \qquad \text{Addition Formula}$$

$$= \left(\frac{12}{13}\right)\left(-\frac{4}{5}\right) + \left(-\frac{5}{13}\right)\left(-\frac{3}{5}\right) \qquad \text{From triangles}$$

$$= -\frac{33}{65} \qquad \text{Calculate}$$