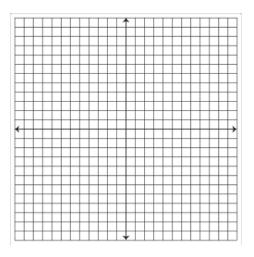
Absolute Value, Rational and Reciprocal Functions

- 1. Write the absolute value function as a piecewise function:
 - a) g(x) = -4|x+2|+3

b) $f(x) = \frac{1}{3}|2x - 7| + 9$

Answers

Absolute Value, Rational and Reciprocal Functions


1. Write the absolute value function as a piecewise function:

a)
$$g(x) = -4|x+2|+3$$

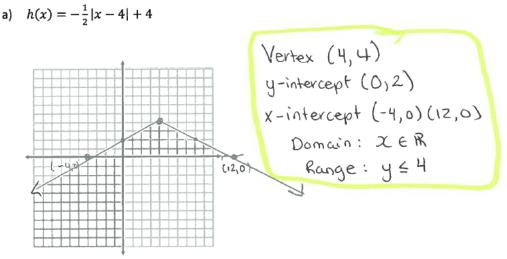
 $g(x) = \begin{cases} -4(x+2)+3, & x \ge -2 \\ +4(x+2)+3, & x < -2 \end{cases}$
 $g(x) = \begin{cases} -4x-5, & x \ge -2 \\ 4x+11, & x < -2 \end{cases}$

b)
$$f(x) = \frac{1}{3}|2x - 7| + 9$$

 $f(x) = \begin{cases} \frac{1}{3}(2x - 7) + 9 & x \ge \frac{7}{2} \\ \frac{1}{3}(2x - 7) + 9 & x \le \frac{7}{2} \end{cases}$
 $f(x) = \begin{cases} \frac{2x}{3} - \frac{7}{3} + \frac{27}{3} & x \le \frac{7}{2} \\ -\frac{2x}{3} + \frac{7}{3} + \frac{27}{3} & x \le \frac{7}{2} \end{cases}$
 $f(x) = \begin{cases} \frac{2x}{3} - \frac{7}{3} + \frac{27}{3} & x \le \frac{7}{2} \\ -\frac{2x}{3} + \frac{7}{3} + \frac{27}{3} & x \le \frac{7}{2} \end{cases}$
 $f(x) = \begin{cases} \frac{2x}{3} + \frac{20}{3} & x \ge \frac{7}{2} \\ -\frac{2x}{3} + \frac{34}{3} & x < \frac{7}{2} \end{cases}$

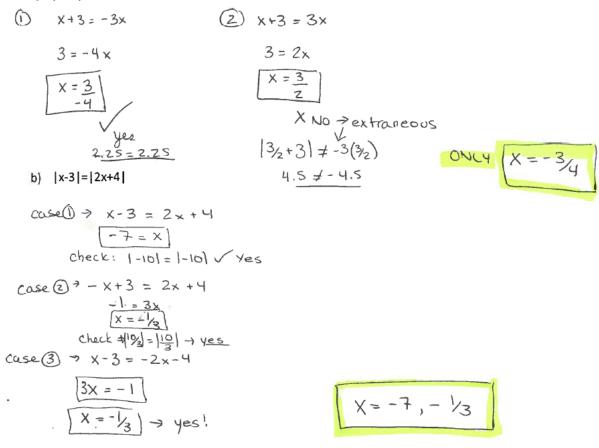
7

- 2. Graph the absolute value function. State the vertex, intercepts (x and y), domain and range.
 - a) $h(x) = -\frac{1}{2}|x-4| + 4$



- 3. Solve the following absolute value functions:
 - a) |x+3|=-3x

b) |x-3|=|2x+4|

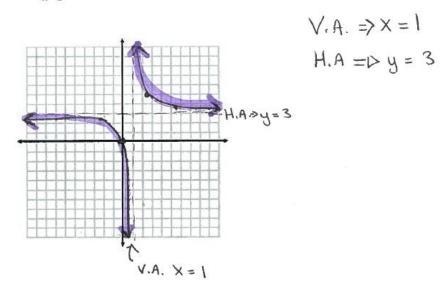

Answers

2. Graph the absolute value function. State the vertex, intercepts (x and y), domain and range.

3. Solve the following absolute value functions:

a) |x+3|=-3x

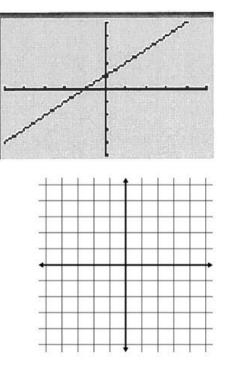
4. Sketch the following graphs and label both the horizontal and vertical asymptotes. State the domain of each function.

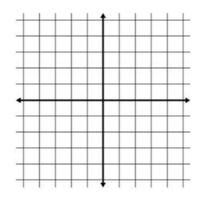

a)
$$f(x) = \frac{3x}{x-1}$$

b)
$$h(x) = \frac{x^2 - 1}{x^2 + 2x - 3}$$

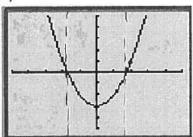
Answers

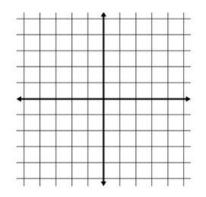
4. Sketch the following graphs and label both the horizontal and vertical asymptotes. State the domain of each function.

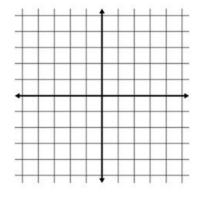

a)
$$f(x) = \frac{3x}{x-1}$$



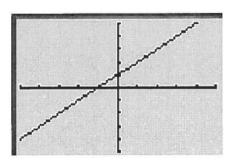
b)
$$h(x) = \frac{x^2 - 1}{x^2 + 2x - 3} = \frac{(x - 1)(x - 1)}{(x + 3)(x - 1)} = \frac{x + 1}{x + 3}$$
 H.A. $y = 1$
V.A. $y = -3$

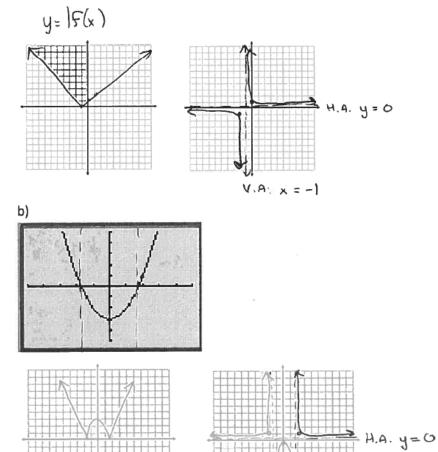



- 5. Given the following graph of y = f(x), sketch the graph of $y = \frac{1}{f(x)}$ and the graph of y = |f(x)|
 - a)



b)

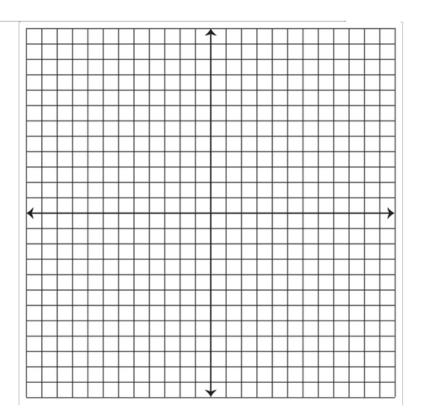



Answers

5. Given the following graph of y = f(x), sketch the graph of $y = \frac{1}{f(x)}$ and the graph of y = |f(x)|a)

11

y=1=(x))

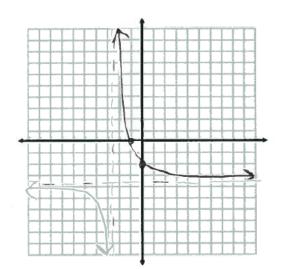


V.A:

X=-1.8 } approx

6. Sketch a graph of a rational function that has the following characteristics.

a)		
x-intercept	-1	
y-intercept	-2	
Vertical Asymptote	x=-2.5	
Horizontal Asymptote	y=-3.5	



Answers

6. Sketch a graph of a rational function that has the following characteristics.

a)

<i>~]</i>		
x-intercept	-1	
y-intercept	-2	
Vertical Asymptote	x=-2.5	
Horizontal Asymptote	y=-3.5	

