Arithmetic Operations

$$ab + ac = a(b + c) \qquad \qquad a\left(\frac{b}{c}\right) = \frac{ab}{c}$$
$$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc} \qquad \qquad \frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$$

- $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad \qquad \frac{a}{b} \frac{c}{d} = \frac{ad bc}{bd}$
- $\frac{a-b}{c-d} = \frac{b-a}{d-c} \qquad \qquad \frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$
- $\frac{ab+ac}{a} = b+c, \ a \neq 0 \qquad \qquad \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{ad}{bc}$

Distance Formula

If $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ are two points the distance between them is

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Common Algebraic Errors

Error	Reason/Correct/Justification/Example
$\frac{2}{0} \neq 0$ and $\frac{2}{0} \neq 2$	Division by zero is undefined!
$-3^2 \neq 9$	$-3^2 = -9$, $(-3)^2 = 9$ Watch parenthesis!
$\left(x^2\right)^3 \neq x^5$	$\left(x^{2}\right)^{3} = x^{2}x^{2}x^{2} = x^{6}$
$\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$	$\frac{1}{2} = \frac{1}{1+1} \neq \frac{1}{1} + \frac{1}{1} = 2$
$\frac{1}{x^2 + x^3} \neq x^{-2} + x^{-3}$	A more complex version of the previous error.
$\frac{\not h + bx}{\not h} \neq 1 + bx$	$\frac{a+bx}{a} = \frac{a}{a} + \frac{bx}{a} = 1 + \frac{bx}{a}$ Beware of incorrect canceling!
$-a(x-1) \neq -ax-a$	-a(x-1) = -ax + a Make sure you distribute the "-"!
$\left(x+a\right)^2 \neq x^2 + a^2$	$(x+a)^2 = (x+a)(x+a) = x^2 + 2ax + a^2$
$\sqrt{x^2 + a^2} \neq x + a$	$5 = \sqrt{25} = \sqrt{3^2 + 4^2} \neq \sqrt{3^2} + \sqrt{4^2} = 3 + 4 = 7$
$\sqrt{x+a} \neq \sqrt{x} + \sqrt{a}$	See previous error.
$(x+a)^n \neq x^n + a^n$ and $\sqrt[n]{x+a} \neq \sqrt[n]{x} + \sqrt[n]{a}$	More general versions of previous three errors.
	$2(x+1)^{2} = 2(x^{2}+2x+1) = 2x^{2}+4x+2$
$2(x+1)^2 \neq (2x+2)^2$	$(2x+2)^2 = 4x^2 + 8x + 4$
	Square first then distribute!
$\left(2x+2\right)^2 \neq 2\left(x+1\right)^2$	See the previous example. You can not factor out a constant if there is a power on the parethesis!
$\sqrt{-x^2 + a^2} \neq -\sqrt{x^2 + a^2}$	$\sqrt{-x^2 + a^2} = (-x^2 + a^2)^{\frac{1}{2}}$ Now see the previous error.
$\frac{a}{\left(\frac{b}{c}\right)} \neq \frac{ab}{c}$	$\frac{a}{\left(\frac{b}{c}\right)} = \frac{\left(\frac{a}{1}\right)}{\left(\frac{b}{c}\right)} = \left(\frac{a}{1}\right)\left(\frac{c}{b}\right) = \frac{ac}{b}$
$\frac{\left(\frac{a}{b}\right)}{c} \neq \frac{ac}{b}$	$\frac{\left(\frac{a}{b}\right)}{c} = \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{1}\right)} = \left(\frac{a}{b}\right)\left(\frac{1}{c}\right) = \frac{a}{bc}$