Formal Definition of Derivative ... Practice Set 1

Definition of the Derivative

Use the definition of the derivative to find the derivative of each function with respect to *x*.

1)
$$y = -2x + 5$$

2) $f(x) = -4x - 2$

3)
$$y = 4x^2 + 1$$

4) $f(x) = -3x^2 + 4$

5)
$$y = -4x^2 - 5x - 2$$

6) $y = 3x^2 + 3x + 3$

7)
$$y = \sqrt{-3x - 5}$$

8) $f(x) = \sqrt{4x - 5}$

9)
$$y = \frac{1}{x+2}$$
 10) $f(x) = -\frac{2}{2x-1}$

Critical thinking question:

11) Use the definition of the derivative to show that f'(0) does not exist where f(x) = |x|.

Formal Definition of Derivative ... Practice Set 1

Answers

Use the definition of the derivative to find the derivative of each function with respect to x.

- 1) y = -2x + 5 $\frac{dy}{dx} = -2$ 3) $y = 4x^2 + 1$ $\frac{dy}{dx} = 8x$ 5) $y = -4x^2 - 5x - 2$ $\frac{dy}{dx} = -8x - 5$ 2) f(x) = -4x - 24) $f(x) = -3x^2 + 4$ f'(x) = -6x6) $y = 3x^2 + 3x + 3$ $\frac{dy}{dx} = 6x + 3$
- 7) $y = \sqrt{-3x-5}$ $\frac{dy}{dx} = -\frac{3}{2\sqrt{-3x-5}}$ 8) $f(x) = \sqrt{4x-5}$ $f'(x) = \frac{2}{\sqrt{4x-5}}$

9)
$$y = \frac{1}{x+2}$$

 $\frac{dy}{dx} = -\frac{1}{x^2+4x+4}$
10) $f(x) = -\frac{2}{2x-1}$
 $f'(x) = \frac{4}{4x^2-4x+1}$

Critical thinking question:

11) Use the definition of the derivative to show that f'(0) does not exist where f(x) = |x|. Using 0 in the definition, we have $\lim_{h \to 0} \frac{|0+h| - |0|}{h} = \lim_{h \to 0} \frac{|h|}{h}$ which does not exist because the left-handed and right-handed limits are different.