Learn: Tangent and Normal Lines to a Curve

Recall: Derivative = slope of the Tangent line at that point's *x*-coordinate Example:

 $f(x) = x^{2} + 3$ (1,4) $f'(x) = 2x \Rightarrow f'(1) = 2 \Rightarrow \text{slope of the tangent line}$ Tangent Line: y - 4 = 2(x - 1)Normal Line: $y - 4 = -\frac{1}{2}(x - 1)$

For each of the following:

- a) Sketch a graph USE GRAPH PAPER !!
- b) Find the slope of the tangent line at the given point.
- c) Find the equations of the tangent line at the given point. Sketch the line.
- d) Find the equation of the normal to the curve at the given point. Sketch the line.
- 1. $y = x^2 3$, (2,1)2. $f(x) = 6 x^2$ (2,2)3. $f(x) = \sqrt{x}$, (4,2)4. $y = 2 4x^{-2}$, (2,1)

Find the equations of the tangent and normal lines to the curve at the given x-value.

- 5. $y = (1+2x)^2$, x = 16. $y = x^2 (3-x)$, x = -27. $y = x - \sqrt{x}$, x = 4
- 8. Find the points on the curve $y = 2x^3 + 3x^2 12x + 1$ where the tangent is horizontal.
- 9. For what values of x does the graph of $f(x) = (x^2 + 1)(x + 3)$ have a horizontal tangent?
- 10. Show that the curve $y = 6x^3 + 5x 3$ has no tangent line with slope 4.
- 11. Find an equation of the tangent line to the curve $y = x\sqrt{x}$ that is parallel to the line y = 1 + 3x.
- 12. Find equations of both lines that are tangent to the curve $y = 1 + x^3$ and are parallel to the line 12x y = 1.
- 13. Find a parabola with equation $y = ax^2 + bx + c$ that has slope 4 at x = 1, slope -8 at x = -1, and passes through the point (2,15).

14. Evaluate
$$\lim_{\Delta x \to 0} \frac{(x + \Delta x)^3 - 2(x + \Delta x) - (x^3 - 2x)}{\Delta x}$$