Practice Problems 6: Differentiability and Rolle's theorem

- 1. Which of the following functions are differentiable at x = 0?
 - (a) $f(x) = x^{\frac{1}{3}}$.
 - (b) $f(x) = x^2$ for rational x and f(x) = 0 for irrational x.
 - (c) $f(x) = x \sin x \cos \frac{1}{x}$ for $x \neq 0$ and f(0) = 0.
- 2. Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is differentiable only at x = 1.

- 1. (a) Note that $\lim_{x\to 0} \frac{x^{\frac{1}{3}}-0}{x-0}$ does not exist.
 - (b) Observe that $\left|\frac{f(x)-0}{x-0}\right| \le |x| \to 0$ as $x \to 0$. Therefore f is differentiable at x = 0.
 - (c) Since $\left|\frac{xsinxcos\frac{1}{x}}{x}\right| \le |sinx| \to 0$, as $x \to 0$, f is differentiable at x = 0.
- 2. Define $f(x) = (x-1)^2$ for rational x and f(x) = 0 for irrational x.

- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable at $x_0 \in \mathbb{R}$.
 - (a) If $f(x_0) \neq 0$, show that |f| is also differentiable at x_0 .
 - (b) If $f(x_0) = 0$, give examples to show that |f| may or may not be differentiable at x_0 .
- 4. Let $f, g : \mathbb{R} \to \mathbb{R}$ be differentiable at $x_0 \in \mathbb{R}$. Define $h(x) = max\{f(x), g(x)\} \ \forall \ x \in \mathbb{R}$. Show that h is differentiable at x_0 if $f(x_0) \neq g(x_0)$.

- 3. (a) If $f(x_0) > 0$, then |f(x)| = f(x) in a neighborhood of x_0 .
 - (b) Consider the examples: (i) f(x) = x (ii) g(x) = x|x|.
- 4. If $f(x_0) > g(x_0)$ then in a neighborhood of x_0 , h(x) = f(x).

- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable at x = 1, f(1) = 1 and $k \in \mathbb{N}$. Show that $\lim_{n \to \infty} n\left(f(1 + \frac{1}{n}) + f(1 + \frac{2}{n}) + \dots + f(1 + \frac{k}{n}) k\right) = \frac{k(k+1)}{2}f'(1).$
- 6. Let $f:[0,1]\to\mathbb{R}$ be differentiable and f(0)=0 and f(1)=1. Show that the equation f'(x)=2x has a solution on (0,1).

- 5. The given limit is $\lim_{n\to\infty} \left(\frac{f(1+\frac{1}{n})-f(1)}{\frac{1}{n}} + 2\frac{f(1+\frac{2}{n})-f(1)}{\frac{2}{n}} + \dots + k\frac{f(1+\frac{k}{n})-f(1)}{\frac{k}{n}} \right)$.
- 6. Apply Rolle's Theorem for $g(x) = f(x) x^2$ on [0, 1].

- 7. Find the number of real solutions of the following equations.
 - (a) $2x \cos^2 x + \sqrt{7} = 0$
 - (b) $x^{17} e^{-x} + 5x + \cos x = 0$
 - (c) $x^{18} + e^{-x} + 5x^2 2\cos x = 0$.
- 8. Let $f:[a,b]\to\mathbb{R}$ be such that f'''(x) exists for all $x\in[a,b]$. Suppose that f(a)=f(b)=f'(a)=f'(b)=0. Show that the equation f'''(x)=0 has a solution.

- 7. (a) Let $f(x) = 2x \cos^2 x + \sqrt{7}$. Since f'(x) has no real root, by Rolle's theorem f(x) has at most one real root. Now f(0) > 0 and f(-2) < 0. So by IVP there exists a real solution for f(x) = 0. Therefore f(x) = 0 has exactly one real solution.
 - (b) Let $f(x) = x^{17} e^{-x} + 5x + \cos x$. Observe that $f'(x) > 0 \ \forall \ x \in \mathbb{R}$, f(2) > 0 and f(-2) < 0. By IVP and Rolle's theorem f(x) = 0 has exactly one real solution.
 - (c) Let $f(x) = x^{18} + e^{-x} + 5x^2 2\cos x$. Since $f''(x) > 0 \ \forall \ x \in \mathbb{R}$, f'(x) has at most one real root. Note that f(0) < 0, f(2) > 0 and f(-2) > 0. Therefore by IVP and Rolle's theorem f(x) = 0 has exactly two real solutions.
- 8. By Rolle's theorem there exists $d \in (a, b)$ such that f'(d) = 0. Again, by applying Rolle's theorem for f'', there exists $c_1 \in (a, d)$ and $c_2 \in (d, b)$ such that $f''(c_1) = 0$ and $f''(c_2) = 0$. Apply Rolle's Theorem for f'' on $[c_1, c_2]$.

- 9. Let $a_1, a_2, ..., a_n$ be real numbers such that $a_1 + a_2 + ... + a_n = 0$. Show that the polynomial $q(x) = a_1 + 2a_2x + 3a_3x^2 + ... + na_nx^{n-1}$ has at least one real root.
- 10. Let $f, g : \mathbb{R} \to \mathbb{R}$ be differentiable functions. Suppose that $f'(x)g(x) \neq f(x)g'(x)$ for any $x \in \mathbb{R}$. Show that between any two real solutions of f(x) = 0, there is at least one real solution of g(x) = 0.

- 9. Let $p(x) = a_1x + a_2x^2 + ... + a_nx^n$. Then p(0) = 0 and p(1) = 0. By Rolle's theorem, p'(x) = q(x) has a real root.
- 10. Let f(a) = f(b) = 0 and a < b. Since $f'(a)g(a) \neq f(a)g'(a)$, $g(a) \neq 0$. Similarly $g(b) \neq 0$. If g(x) = 0 has no real solution then $h(x) = \frac{f(x)}{g(x)}$ is well defined and h(a) = h(b) = 0. By Rolle's theorem, there exists $c \in (a,b)$ such that h'(c) = 0. That is f'(c)g(c) = f(c)g'(c) which is a contradiction.

- 11. Let $f:[0,1] \to \mathbb{R}$ be differentiable function such that f(0) = 0 and f(x) > 0 for all $x \in (0,1]$. Show that there exists $c \in (0,1)$ such that $\frac{f'(1-c)}{f(1-c)} = \frac{2f'(c)}{f(c)}$.
- 12. Let P(x) be a polynomial of degree n, n > 1 and $P(x_0) = 0$ for some $x_0 \in \mathbb{R}$.
 - (a) Show that $P(x) = (x x_0)Q(x)$ where Q(x) is a polynomial of degree n 1.
 - (b) Show that $P'(x_0) = 0$ if and only if $P(x) = (x x_0)^2 R(x)$ where R(x) is a polynomial of degree n 2.
 - (c) Show that if all roots of P(x) are real then all roots of P'(x) are also real.

- 11. Let $g(x) = (f(x))^2 f(1-x)$. Then g(0) = g(1) = 0. Apply Rolle's theorem for g on [0,1].
- 12. (a) Use $P(x) = P(x) P(x_0)$ and $x^k x_0^k = (x x_0)(x^{k-1} + x^{k-2}x_0 + \dots + xx_0^{k-2} + x_0^{k-1})$.
 - (b) Suppose $P(x) = (x x_0)Q(x)$. Then $P'(x) = Q(x) + (x x_0)Q'(x)$. If $P'(x_0) = 0$ then $Q(x_0) = 0$. Therefore $Q(x) = (x x_0)R(x)$ for a polynomial R(x) of degree n 2.
 - (c) First observe that if x_0 is a zero of P(x) of order k then it is a zero of P'(x) of order k-1. Use Rolle's theorem that between any two real zeros of P(x) there is one real zero of P'(x).

13. (*) Let $f:(0,\infty)\to\mathbb{R}$ satisfy f(xy)=f(x)+f(y) for all $x,y\in(0,\infty)$. Suppose that f is differentiable at x=1. Show that f is differentiable at every $x\in(0,\infty)$ and $f'(x)=\frac{1}{x}f'(1)$ for every $x\in(0,\infty)$.

13. Observe that
$$f(1) = 0$$
, $f(\frac{1}{x}) = -f(x)$ and $f(\frac{x}{y}) = f(x) - f(y)$. Now $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
$$= \lim_{h \to 0} \frac{1}{h} f\left(\frac{x+h}{x}\right) = \lim_{k \to 0} \frac{f(1+k)}{kx} = \lim_{k \to 0} \frac{1}{x} \frac{f(1+k) - f(1)}{k} = \frac{1}{x} f'(1).$$