Power Rule for Derivatives Practice

Differentiate each function with respect to the given variable.

1)
$$h(r) = 2$$

2)
$$y = -3$$

3)
$$h(r) = -4r^4$$

4)
$$g(t) = 2t^3$$

5)
$$f = -\frac{1}{t^2}$$

6)
$$f = -2x^{-3}$$

7)
$$g = \frac{4}{x^4}$$

8)
$$f = 4s^{-4}$$

9)
$$g(x) = \frac{4}{x^2}$$

10)
$$h(t) = 3t^{\frac{1}{5}}$$

11)
$$g(s) = \sqrt[5]{s}$$

12)
$$g(w) = 5\sqrt[5]{w^2}$$

13)
$$f(w) = 2\sqrt[4]{w}$$

14)
$$h = \sqrt[4]{r}$$

15)
$$s = 4\sqrt[4]{r}$$

16)
$$h(r) = 5\sqrt[5]{r}$$

$$17) \ h(t) = -4t^a$$

18)
$$g(w) = 3w^{4b}$$

Answers

1) h'(r) = 0

2) $\frac{dy}{dt} = 0$

3) $h'(r) = -16r^3$ 4) $g'(t) = 6t^2$

5) $\frac{df}{dt} = 2t^{-3}$ 6) $\frac{df}{dx} = 6x^{-4}$ 7) $\frac{dg}{dx} = -16x^{-5}$ 8) $\frac{df}{ds} = -16s^{-5}$

9) $g'(x) = -8x^{-3}$

10) $h'(t) = \frac{3}{5}t^{-\frac{4}{5}}$ 11) $g'(s) = \frac{1}{5}s^{-\frac{4}{5}}$ 12) $g'(w) = 2w^{-\frac{3}{5}}$

13) $f'(w) = \frac{1}{2}w^{-\frac{3}{4}}$ 14) $\frac{dh}{dr} = \frac{1}{4}r^{-\frac{3}{4}}$ 15) $\frac{ds}{dr} = r^{-\frac{3}{4}}$ 16) $h'(r) = r^{-\frac{4}{5}}$

17) $h'(t) = -4at^{a-1}$

18) $g'(w) = 12bw^{4b-1}$

For each problem, find the instantaneous rate of change of the function at the given value.

19)
$$y = x^2 + 2x - 2$$
; -1

20)
$$y = -2x^2 + 2$$
; -1

21)
$$y = 2x^2 - 1$$
; 1

22)
$$y = x^2 + 2x + 1$$
; -2

For each problem, find the equation of the tangent line to the function at the given point.

23)
$$y = x^2 - 1$$
; (2, 3)

24)
$$v = x^2 + x + 2$$
; $(-1, 2)$

25)
$$y = x^2 + x + 1$$
; (-2, 3)

26)
$$y = x^2 + 1$$
; (0, 1)

Evaluate each limit.

27)
$$\lim_{h \to 0} \frac{\left(\frac{2}{3} + h\right)^2 - \left(\frac{2}{3}\right)^2}{h}$$

28)
$$\lim_{h \to 0} \frac{\left(\frac{5}{3} + h\right)^2 - \left(\frac{5}{3}\right)^2}{h}$$

29)
$$\lim_{t \to 0} \frac{\left(\frac{1}{3} + t\right)^4 - \left(\frac{1}{3}\right)^4}{t}$$

30)
$$\lim_{t \to 0} \frac{\left(\frac{2}{3} + t\right)^2 - \left(\frac{2}{3}\right)^2}{t}$$

31)
$$\lim_{x \to 0} \frac{\sqrt[3]{5+x} - \sqrt[3]{5}}{x}$$

32)
$$\lim_{x \to 0} \frac{\left(-\frac{1}{3} + x\right)^3 - \left(-\frac{1}{3}\right)^3}{x}$$

Answers

19) 0

20) 4

21) 4

22) -2

23) y = 4x - 5

24) y = -x + 1

25) y = -3x - 3

26) y = 1

27) $\frac{4}{3}$

28) $\frac{10}{3}$

29) $\frac{4}{27}$

30) $\frac{4}{3}$

31) $\frac{\sqrt[3]{5}}{15}$

32) $\frac{1}{3}$

Power Rule for Derivatives Practice

Differentiate each function with respect to the given variable.

1)
$$h(r) = 2$$

2)
$$y = -3$$

3)
$$h(r) = -4r^4$$

4)
$$g(t) = 2t^3$$

5)
$$f = -\frac{1}{t^2}$$

6)
$$f = -2x^{-3}$$

7)
$$g = \frac{4}{x^4}$$

8)
$$f = 4s^{-4}$$

9)
$$g(x) = \frac{4}{x^2}$$

10)
$$h(t) = 3t^{\frac{1}{5}}$$

11)
$$g(s) = \sqrt[5]{s}$$

12)
$$g(w) = 5\sqrt[5]{w^2}$$

13)
$$f(w) = 2\sqrt[4]{w}$$

14)
$$h = \sqrt[4]{r}$$

15)
$$s = 4\sqrt[4]{r}$$

16)
$$h(r) = 5\sqrt[5]{r}$$

$$17) \ h(t) = -4t^a$$

18)
$$g(w) = 3w^{4b}$$

Answers

1) h'(r) = 0

2) $\frac{dy}{dt} = 0$

3) $h'(r) = -16r^3$ 4) $g'(t) = 6t^2$

5) $\frac{df}{dt} = 2t^{-3}$ 6) $\frac{df}{dx} = 6x^{-4}$ 7) $\frac{dg}{dx} = -16x^{-5}$ 8) $\frac{df}{ds} = -16s^{-5}$

9) $g'(x) = -8x^{-3}$

10) $h'(t) = \frac{3}{5}t^{-\frac{4}{5}}$ 11) $g'(s) = \frac{1}{5}s^{-\frac{4}{5}}$ 12) $g'(w) = 2w^{-\frac{3}{5}}$

13) $f'(w) = \frac{1}{2}w^{-\frac{3}{4}}$ 14) $\frac{dh}{dr} = \frac{1}{4}r^{-\frac{3}{4}}$ 15) $\frac{ds}{dr} = r^{-\frac{3}{4}}$ 16) $h'(r) = r^{-\frac{4}{5}}$

17) $h'(t) = -4at^{a-1}$

18) $g'(w) = 12bw^{4b-1}$

For each problem, find the instantaneous rate of change of the function at the given value.

19)
$$y = x^2 + 2x - 2$$
; -1

20)
$$y = -2x^2 + 2$$
; -1

21)
$$y = 2x^2 - 1$$
; 1

22)
$$y = x^2 + 2x + 1$$
; -2

For each problem, find the equation of the tangent line to the function at the given point.

23)
$$y = x^2 - 1$$
; (2, 3)

24)
$$y = x^2 + x + 2$$
; $(-1, 2)$

25)
$$y = x^2 + x + 1$$
; (-2, 3)

26)
$$y = x^2 + 1$$
; (0, 1)

Evaluate each limit.

27)
$$\lim_{h \to 0} \frac{\left(\frac{2}{3} + h\right)^2 - \left(\frac{2}{3}\right)^2}{h}$$

28)
$$\lim_{h \to 0} \frac{\left(\frac{5}{3} + h\right)^2 - \left(\frac{5}{3}\right)^2}{h}$$

29)
$$\lim_{t \to 0} \frac{\left(\frac{1}{3} + t\right)^4 - \left(\frac{1}{3}\right)^4}{t}$$

30)
$$\lim_{t \to 0} \frac{\left(\frac{2}{3} + t\right)^2 - \left(\frac{2}{3}\right)^2}{t}$$

31)
$$\lim_{x \to 0} \frac{\sqrt[3]{5+x} - \sqrt[3]{5}}{x}$$

32)
$$\lim_{x \to 0} \frac{\left(-\frac{1}{3} + x\right)^3 - \left(-\frac{1}{3}\right)^3}{x}$$

Answers

19) 0

20) 4

21) 4

22) -2

23) y = 4x - 5

24) y = -x + 1

25) y = -3x - 3

26) y = 1

27) $\frac{4}{3}$

28) $\frac{10}{3}$

29) $\frac{4}{27}$

30) $\frac{4}{3}$

31) $\frac{\sqrt[3]{5}}{15}$

32) $\frac{1}{3}$