Derivative Power Rule

	Power Rule Conditions:	
Derivative Power Rule : $\frac{d}{dx}x^n = n * x^{n-1}$	i) ii) iii)	All Radicals converted to Rational Exponents All denominator variables brought up to the numerator All parentheses resolved, all terms expanded

Finding a Derivative use the rules of differentiation to find the derivative of the function.

(1)
$$y = x^7$$

(2) $y = \frac{1}{x^5}$
(3) $y = \frac{3}{x^7}$
(4) $f(x) = \sqrt[5]{x}$
(5) $f(t) = -2t^2 + 3t - 6$
(6) $y = \frac{5}{2x^2}$
(7) $y = \frac{3}{2x^4}$
(8) $y = \frac{6}{(5x)^3}$

General Power Differentiation Rule ... Set 2

Answers

Finding a Derivative use the rules of differentiation to	find the derivative of the function.
$y = x^{7}$ $y' = 7x^{6}$	2) $y = \frac{1}{x^5}$ $y' = -5x^{-6}$ $y = x^{-5}$ $y' = \frac{-5}{x^6}$
3) $y = \frac{3}{x^7}$ $y = 3 \cdot 7 \times \frac{8}{x^8}$ $y = 3 \times \frac{7}{x^8}$ $y' = -\frac{21}{x^8}$	4) $f(x) = \sqrt[5]{x}$ $f(x) = x^{1/5}$ $f'(x) = \frac{1}{5}x^{-\frac{4}{5}}$
5) $f(t) = -2t^2 + 3t - 6$ f'(t) = -4t + 3	6) $y = \frac{5}{2x^2}$ $y' = \frac{5}{2} \cdot -2x^{-3}$ $y = \frac{5}{2}x^{-2}$ $y' = \frac{-5}{x^3}$
7) $y = \frac{3}{2x^4} y' = \frac{3}{2} - 4x^{-5}$ $y = \frac{3}{2}x^{-4} y' = \frac{-12}{2}x^{-5}$ $y' = \frac{-6}{x^5}$	8) $y = \frac{6}{(5x)^3}$ $y' = \frac{6}{125} \cdot -3x^{-4}$ $y' = \frac{6}{125} \cdot -3x^{-4}$ $y' = \frac{-18}{125} \cdot -4$ $y' = \frac{-18}{125} \cdot -4$ $y' = \frac{-18}{125} \cdot -4$ $y' = \frac{-18}{125} \cdot -4$

2

General Power Differentiation Rule ... Set 2

Derivative Power Rule:iAll Radicals converted to Rational Exponents
$$\frac{d}{dx}x^n = n * x^{n-1}$$
iiAll denominator variables brought up to the numeratoriii)All parentheses resolved, all terms expandedFind the derivative of the functions below: (f) $g(t) = t^2 - \frac{4}{t^3}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{4x^3 + 3x^2}{x}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{4x^3 + 3x^2}{x}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{4x^3 + 3x^2}{x}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{4x^3 + 3x^2}{x}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{4x^3 + 3x^2}{x}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{4x^3 + 3x^2}{x}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{4x^3 + 3x^2}{x}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{4x^3 + 3x^2}{x}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{4x^3 + 3x^2}{x}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{4x^3 + 3x^2}{x}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \sqrt{x} - 6\sqrt[3]{x}$ $I(g)$ $f(x) = \frac{2x^4 - x}{x^3}$ $I(g)$ $f(x) = \frac{1}{x^3}$ $I(g)$ $f(x) = \frac{1}{x^3}$ $I(g)$ $f(x) = \frac{1}{x^3}$ $I(g)$ $I(g)$ $I(g)$ $f(x) = \frac{1}{x^3}$ $I(g)$ $I(g)$ $f(x) = \frac{1}{x^3}$ $I(g)$ $I(g)$

Finding an Equation of a Tangent Line In Exercises (a) find an equation of the tangent line to the graph of f at the given point.

15)
$$y = x^4 - 3x^2 + 2$$
 (1, 0) **16)** $y = x^3 - 3x$ (2, 2)

Answers

Find the derivative of the functions below:

$$\begin{array}{l} 10 \ g(t) = t^{2} - \frac{4}{t^{3}} \\ g(t) = t^{2} - 4t^{-3} \\ g'(t) = t^{2} - 4t^{-3} \\ g'(t) = t^{2} - 4t^{-3} \\ g'(t) = 2t - 4(-3t^{-4}) \\ 11 \ f(x) = (4x^{3} + 3x^{2})x^{-1} \\ f(x) = (4x^{3} + 3x^{2})x^{-1} \\ f(x) = (4x^{3} + 3x^{2})x^{-1} \\ f(x) = 4x^{2} + 3x \\ 12 \ f(x) = \frac{2x^{4} - x}{x^{3}} \\ f(x) = 2t - 4(-3t^{-4}) \\ 13 \ y = x^{2}(2x^{2} - 3x) \\ g = 2x^{4} - 3x^{3} \\ g = 2x^{4} - 3x^{4} \\ g = 2x^{4} -$$

Finding an Equation of a Tangent Line In Exercises (a) find an equation of the tangent line to the graph of f at the given point. Equation of tangent line:i)Find ordered pair $((x_1, y_1) using f(x))$ ii)Find slope m using f'(x)iii) $y - y_1 = m(x - x_1)$

16)
$$y = x^4 - 3x^2 + 2$$
 (1,0)
 $y' = 4x^3 - 6x$ | point: (1,0) | $y - 0 = -2(x - 1)$
 $y'(1) = 4(1)^3 - 6(1) = -2$ | $5t_{ope: m} = -2$ | $y = -2(x - 1)$
17) $y = x^3 - 3x$ (2,2)
 $y' = 3x^2 - 3$ | $point: (2,2)$ | $y - 2 = 9(x - 2)$
 $y'(2) = 3(2)^2 - 3 = 9$ | $slope: m = 9$ | $y - 2 = 9(x - 2)$

I