2nd Derivative Test ... Set 1

Critical Points and Classifying Local Maxima and Minima

To find and classify critical points of a function f(x)

First steps:

- 1. Take the derivative f'(x).
- 2. Find the critical points by setting f' equal to 0, and solving for x.

To finish the job, use either the first derivative test or the second derivative test.

2nd Derivative Test ... Set 1

Via First Derivative Test

- 3. Determine if f' is positive (so f is increasing) or negative (so f is decreasing) on both sides of each critical point.
 - Note that since all that matters is the sign, you can check *any* value on the side you want; so use values that make it easy!
 - Optional, but helpful in more complex situations: draw a sign diagram.

For example, say we have critical points at 11/8 and 22/7. It's usually easier to evaluate functions at integer values than non-integers, and it's especially easy at 0. So, for a value to the left of 11/8, choose 0; for a value to the right of 11/8 and the left of 22/7, choose 2; and for a value to the right of 22/7, choose 4. Let's say f'(0) = -1; f'(2) = 5/9; and f'(4) = 5. Then we could draw this sign diagram:

Value of x	1	18	<u>22</u> 7
Sign of $f'(x)$	negative	positive	positive

- 4. Apply the first derivative test (textbook, top of p. 172, restated in terms of the derivative):
 - If f' changes from negative to positive: f has a local **minimum** at the critical point
 - If f' changes from positive to negative: f has a local **maximum** at the critical point
 - If f' is positive on both sides or negative on both sides: f has neither one

For the above example, we could tell from the sign diagram that 11/8 is a local minimum of f(x), while 22/7 is neither a local minimum nor a local maximum.

A simple but complete example: Let $y = f(x) = x^3$.

- 1. $f'(x) = 3x^2$
- 2. $3x^2 = 0 = > x = 0$; this is the only critical point.
- 3. f'(-1) = 3 = > sign for f'(x) to the left of the critical point is positive; f'(1) = 3 = > sign to the right is also positive.
- 4. So 0 is neither local maximum or minimum.

2nd Derivative Test ... Set 1

Via Second Derivative Test

- 3. Take the 2^{nd} derivative f''(x).
- 4. Determine if f''(x) is positive (so f is concave up), negative (so f is concave down), or zero at each critical point.

Apply the second derivative test (textbook, p. 172, restated in terms of the 2nd derivative):

If f'' is positive: f has a local **minimum** at the critical point

If f'' is negative: f has a local **maximum** at the critical point

If f'' is zero: f has neither one

A simple but complete example: Let $y = f(x) = x^3 - 12x$.

- 1. $f'(x) = 3x^2 12$
- 2. $3x^2 = 12 = 0 = > x = -2$, x = 2; these are the critical points.
- 3. f''(x) = 6x
- 4. f''(-2) = -12 ==> f has a local maximum at -2

f''(2) = 12 ==> f has a local minimum at 2