Average rates of change (Word Problems)

[1].	40 m	A train travels from A to B to C . The distance from A to B is 10 miles and the distance from B to C is 10 miles. The average velocity from A to B was 20 miles per hour and the average velocity from B to C was 40 miles per hour. What was the average velocity from A to C in miles per hour?								
	(a)	180/5	(b)	90/3	(c)	100/3	(d)	180/3	(e)	100/5
[2].										at city B at 1:30 pm. The train in miles per hour?
	(a)	60	(b)	150	(c)	50	(d)	75	(e)	130
[3].	A train travels from city A to city B to city C . The distance from A to B is 20 miles. The distance from B to C is 45 miles. The train took 1 hour for the trip from A to B , stopped at city B for 30 minutes, and then went from B to C at an average velocity of 30 miles per hour. What was the average velocity of the train for the entire trip (in miles per hour)?									
	(a)	65	(b)	25	(c)	$\frac{65}{2}$	(d)	50	(e)	$\frac{65}{3}$
[4].	A train travels from A to B to C. The distance from A to B is 30 miles and the distance from B to C is 80 miles. The train leaves A at 10:00 AM and arrives at C at 3:00 PM. The average speed from A to E was 30 miles per hour. What was the average speed from B to C in miles per hour?								verage speed from A to B	
	(a)	20	(b)	25	(c)	30	(d)	35	(e)	40
[5].	[5]. A train travels from city A to city B. The cities are 600 miles apart. The distance from city A at t has after the train leaves A is given by $d(t) = 50t + t^2.$							nce from city A at t hours		
	What is the average velocity of the train in miles per hour during the trip from A to B? (Hint: First find how long it takes for the train to get from A to B.)									n A to B?
	(a)	50	(b)	55	(c)	60	(d)	65	(e)	70
[6].	hour arriv	s since his gi ing at Colum listance from	rlfrier bus a Ashla	nd Mary is no fter a three-h and to Colum	ot yet our d bus is	ready. Ther	n they tance ind th	drive togeth from Lexingt ne average vel	er fronto on to	00 am. He stops for two om Ashland to Columbus Ashland is 110 miles and of John's car in miles per aces.

Average rates of change

[7]. If $g(x) = (x-1)^2$ what is the average rate of change of g(x) with respect to x as x changes from -3 to 3?

(c) .05 (d) .04

(d) 2

(e) 4

(c) 0

[8]. Suppose that $h(t) = \frac{2}{t}$. Find the average rate of change of h(t) from t = 5 to t = 10.

[9]. Find the average rate of change of the function $R(t) = \sqrt{2t+7}$ as t changes from 1 to 9.

(a) -4 (b) -2

(a) -.05 (b) -.04

	(a)	$\frac{1}{3}$	(b)	$\frac{1}{2}$	(c)	$\frac{1}{4}$	(d)	4	(e)	2
[10].	If $g(x)$	$x) = x - 7 \le x$	hat is	s the average	rate (of change of g	(x) w	ith respect to	x as	s x changes from -3 to 3 ?
	(a)	-2	(b)	-1	(c)	0	(d)	1	(e)	2
[11].	Find	the average i	rate o	f change of th	ne fun	action $G(t) =$	$ t^2-$	1 as t change	es fro	om -1 to 2 .
	(a)	0	(b)	1	(c)	2	(d)	3	(e)	4
[12].	Let <i>g</i> 8.	$\eta(s) = s^2 - 3s$	+1. l	Find a value A	$4 \ge 0$	such that the	avera	age rate of cha	ange	of $g(s)$ from 0 to A equals
	(a)	0	(b)	8	(c)	11	(d)	15	(e)	22
[13].		pose $f(t) = t^3$ equals 2.	+1.	Find a value .	$A \ { m gre}$	ater than 0 su	ich th	at the averag	e rat	e of change of $f(t)$ from 0
	(a)	1	(b)	$\sqrt{2}$	(c)	$\sqrt{3}$	(d)	2	(e)	$\sqrt{5}$

Difference quotients

- [14]. Compute $\frac{f(2+h)-f(2)}{h}$ where $f(x)=3x^2+1$.
 - (a) 12

- (b) 12 + h (c) 12 + 2h (d) 12 + 3h (e) None of the above
- [15]. What is the average rate of change of $g(s) = s^2 4$ as s changes from 1 to 1 + h?
 - (a) 6 + 3h
- (b) 2+h (c) 4+2h (d) 2 (e) h
- [16]. Let $f(x) = 2x^2 3x$. Find the average rate of change of f(x) from x = 3 to x = 3 + h.

- (a) 9-h (b) 9+h (c) 9 (d) 9-2h (e) 9+2h
- [17]. Let $g(t) = (t-5)^2 + 1$. What is the average rate of change of g(t) as t changes from 4 to 4 + h?
 - (a) $h^2 2h$ (b) h + 2 (c) $h^2 + 2h$ (d) h 2 (e) 1

[18]. If $f(t) = 3t^2 + 4$ then

$$\frac{f(1+h) - f(1)}{h} =$$

- (a) 4+3h (b) 3+4h (c) 6+3h (d) 8+3h (e) 8+4h

[19]. If f(t) = 1/t then

$$\frac{f(t+h) - f(t)}{h} =$$

(a) $1/(h^2)$

- (b) 1/(t(t+h)) (c) -1/(t(t+h))
- (d) 1/(t(t-h)) (e) -1/(t(t-h))

					Instanta	neou	us rates of	cha	ange		
[20].	0]. Consider a triangle with base x and height $2x$. Find the instantaneous rate of change of the area of the triangle with respect to x when $x = 5$.										
	(a)	1	(b)	2	(c)	5	(d) 1	10	(e)	20
[21].	Find	the instanta	neous	rate of o	change of	the fi	unction $H(t)$	=t	t^3 at $t=2$.		
	(a)	2	(b)	3	(c)	8	(d) 1	12	(e)	27
		In what follo	ows, y								quadratic function.
				If $p(x)$	$(x) = Ax^2$	+Bx	c + C, then	1	p'(x) = 2Ax	+B	

- [22]. If $g(s) = 3s^2 + s 2$ what is the value of g(s) when the instantaneous rate of change of g(s) with respect to s equals 1?
 - (a) -2
- (b) -1
- (c) 0
- (d) 1
- (e) 2
- [23]. If $g(s) = 3s^2 + 2s 2$ what is the value of s for which the instantaneous rate of change of g(s) with respect to s equals 8?
 - (a) -2
- (b) -1
- (c) 0
- (d) 1
- (e) 2
- [24]. Suppose the price of a good is given by the quadratic function $P(t) = 2.58 + .14t + .01t^2$. What is the instantaneous rate of change in the price when t = 3?
 - (a) .18
- (b) .20
- (c) .22
- (d) .24
- (e) .26

- [25]. Let $g(x) = x^2 + 4x + 5$. Find a value of c between 1 and 10 such that the average rate of change of g(x)from x = 1 to x = 10 is equal to the instantaneous rate of q(x) at x = c.
 - (a) 4.75
- (b) 5.0
- (c) 5.25
- (d) 5.5 (e) 5.75
- [26]. Find a nonnegative number A such that the average rate of change of $F(t) = t^2 2t + 1$ from t = 1 to t=A equals the instantaneous rate of change of F(t) at t=2.
 - (a) A = 0
- (b) A = 2 (c) A = 3 (d) A = 4 (e) A = 5

- [27]. Suppose the cost C(q) (in dollars) of producing a quantity q of a product equals

$$C(q) = 500 + 2q + \frac{1}{5}q^2.$$

The marginal cost MC(q) equals the instantaneous rate of change of the total cost. Find the marginal cost when a quantity of 10 items are being produced.

- (a) 2
- (b) 6
- (c) 10
- (d) 20
- (e) 500

Tangent lines

					L	Tangent inte	,,,,			
[28].	Find	the slope of	the ta	ngent line to	the g	graph of $f(x)$	$=3x^2$	$x^2 - 7x + 4$ at	x =	2.
	(a)	5	(b)	6	(c)	7	(d)	8	(e)	9
[29].						e curve $y = 2x$ $y = 11 + 9(x)$				y = 22 + 13(x - 3)
		,				3)				
[30].		oose G(x) = x c-axis?	$x^2 + x$	- 2. For wha	at val	lue of x is the	ange	ent line to th	e gra	ph of $y = G(x)$ parallel to

[31]. Suppose $g(s) = s^2 + 4s + 1$. Find a point of the graph of t = g(s) such that the tangent line to the graph is parallel to the s-axis.

(a) (2,9) (b) (-1,-2) (c) (-2,-3) (d) (-4,8) (e) (-4,1)

(a) x = -1 (b) x = 0 (c) x = 2 (d) x = 1/2 (e) x = -1/2

[32]. What is the value of x such that the slope of the tangent line to the graph of $f(x) = x^2 - 10x + 14$ is 6?

(a) 6 (b) 7 (c) 8 (d) 9 (e) There is no such x

[33]. Suppose $g(s) = s^2 + 1$. Find a point on the graph of t = g(s) such that the tangent line to the graph is parallel to the line with equation t = s.

 ${\bf (a)} \quad (0,1) \qquad \qquad {\bf (b)} \quad (1/2,5/4) \quad {\bf (c)} \quad (1,2) \qquad \qquad {\bf (d)} \quad (3/2,13/4) \quad {\bf (e)} \quad (2,5)$

Velocity

[34]. Suppose h(t) represents the height of an object above the ground at time t, where the height is measured in feet and the time t is measured in seconds. If

$$h(t) = -16t^2 + 48t + 144,$$

what is the velocity of the object at time t = 0?

- (a) 48 feet per second
- (b) 144 miles per hour
- (c) 32 furlongs per fortnight

- (d) 64 feet per second
- (e) 96 feet per second

[35]. If h(t) represents the height of an object above ground level at time t and h(t) is given by

$$h(t) = -16t^2 + 96t + 1,$$

find the height of the object at the time when the velocity is zero.

- (a) 144
- (b) 145
- (c) 148
- (d) 150
- (e) 160

[36]. Suppose the position P(t) of an object at time t is given by $t^2 + 1$. Find a value of t at which the instantaneous velocity of the object equals the average velocity on the interval [0,1].

- (a) 1/2
- (b) 1
- (c) 3/2
- (d) 2
- (e) 5/2