Derivative of Sine and Cosine ... Set 1

$\frac{d}{dx}\sin u = \cos u * u'$	$\frac{d}{dx}\cos u = -\sin u \ast u'$
$\frac{d}{dx}\tan u = \sec^2 u \ast u'$	$\frac{d}{dx}\cot u = -\csc^2 u * u'$
$\frac{d}{dx}\sec u = \sec u \tan u \ast u'$	$\frac{d}{dx}\csc u = -\csc u \cot u * u'$

Finding a Derivative of a Trigonometric Function In Exercises 39-54, find the derivative of the trigonometric function.

44. $y = x + \cot x$
53 ((a) - sin a son a
$52. \ f(x) = \sin x \cos x$
54. $h(\theta) = 5\theta \sec \theta + \theta \tan \theta$
-

Answers

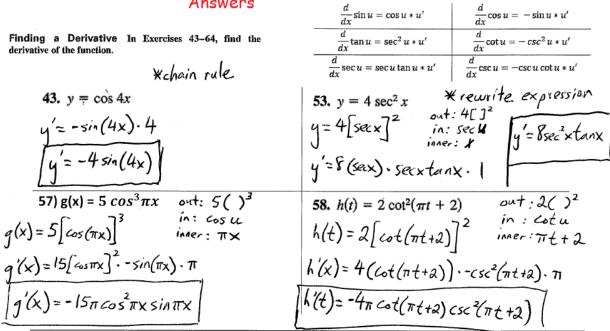
Calculus	Trig Derivatives	
$\frac{d}{dx}\sin u = \cos u * u'$	$\frac{d}{dx}\cos u = -\sin u \ast u'$	
$\frac{d}{dx}\tan u = \sec^2 u \ast u'$	$\frac{d}{dx}\cot u = -\csc^2 u * u'$	
$\frac{d}{dx}\sec u = \sec u \tan u \ast u'$	$\frac{d}{dx}\csc u = -\csc u\cot u * u'$	

Finding a Derivative of a Trigonometric Function In Exercises 39-54, find the derivative of the trigonometric function.

Exercises 39-54, find the derivative of the trigonometric	
function. * product rule	*quotient rule.
39. $f(t) = t^2 \sin t$ $f'_g + f'_g$	42. $f(x) = \frac{\sin x}{x^3}$ $f'_{g} = \frac{f'_{g}}{f'_{g}}$ $f'_{g} = \frac{f'_{g}}{f'_{g}}$
$f'(t) = \frac{f'_{1}}{2t} \cdot \frac{g}{sint} + \frac{f}{t^2} \cdot \frac{g}{cos(t)}$	$f'(x) = \frac{f'_{1,2}}{(x^{2})^{2}} \frac{f'_{1,2}}{(x^{2})^{2}} f'(x) = \frac{g'_{1,2}}{(x^{2})^{2}} \frac{g'_{1,2}}{(x^{2})^{2}} f'(x) = \frac{g'_{1,2}}{(x^{2})^{2}} \frac{g'_{1,2}}{(x^{2})^$
$f'(t) = 2t sin(t) + t^2 cos(t)$	g ² ×6
	$f'(x) = \frac{x^{3}cosx - 3x^{2}sinx}{x^{6}}$ $f'(x) = \frac{xcosx - 3sinx}{x^{4}}$
$43. f(x) = -x + \tan x$	$44. y = x + \cot x$
$f'(x) = -1 + \sec^2 x$	$y'=1-csc^2x$
de la companya de la	
51. $f(x) = x^2 \tan x$	52. $f(x) = \sin x \cos x$
$f(x) = \frac{f'}{2x} \frac{g}{\tan x + x^2} \cdot \frac{g}{\sec^2 x}$	f (x) = r=1+1+1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
$f'(x) = 2x \tan x + x^2 \sec^2 x$	$f'(x) = \cos^2 x - \sin^2 x$
53. $y = 2x \sin x + x^2 \cos x$	54. $h(\theta) = 5\theta \sec \theta + \theta \tan \theta$
$y' = \frac{f'}{2 \cdot \sin x} + \frac{f'}{2 \cdot \cos x} + \frac{f'}{2 \cdot \cos x} + \frac{g'}{2 \cdot \sin x}$	h'(0) = 5. sec 0+ 50 sector 0+ 1 tan 0+ 0. sec ² 0
$y' = 4xcosx + 2sinx - x^2sinx$	$h'(0) = 5 \sec 0 + 50 \sec 0 \tan 0 + \tan 0 + 0 \sec^2 0$

Finding a Derivative In Exercises 43-64, find the derivative of the function.

Finding a Derradive In Exercises 43-04, Into the		
derivative of the function.	$\frac{d}{dx}\sin u = \cos u * u'$	$\frac{d}{dx}\cos u = -\sin u \ast u'$
	$\frac{d}{dx}\tan u = \sec^2 u \ast u'$	$\frac{d}{dx}\cot u = -\csc^2 u * u'$
	$\frac{d}{dx}\sec u = \sec u \tan u \ast u'$	$\frac{d}{dx}\csc u = -\csc u \cot u * u'$
43. $y = \cos 4x$	53. $y = 4 \sec^2 x$	
54) g(x) = 5 $cos^3 \pi x$	58. $h(t) = 2 \cot^2(\pi t + 2)$	


Finding a Derivative In Exercises 1-16, find dy/dx by implicit differentiation.

11. $\sin x + 2\cos 2y = 1$ 13. $\sin x = x(1 + \tan y)$ 15. $y = \sin xy$ 14. $\cot y = x - y$

Derivative of Sine and Cosine ... Set 1

Answers

Finding a Derivative In Exercises 43-64, find the derivative of the function.

Finding a Derivative In Exercises 1-16, find dy/dx by implicit differentiation.

11.
$$\sin x + 2\cos 2y = 1$$

11) $\cos x - 2\sin(2y) \cdot 2\binom{dy}{dx} = 0$
 $-4\sin^2 y \binom{dy}{dx} = -\cos x$
 $\frac{dy}{dx} = \frac{-\cos x}{-4\sin^2 y}$
13. $\sin x = x(1 + \tan y)$
 $\sin x = x(1 + \tan y)$
 $\sin x = x + x + \tan y$
 $\sin x = x + x + \tan y$
 $\sin x = x(1 + \tan y)$
 $\sin x = x(1 + \tan y)$

* indicit