Derivatives in Your Head!

Differentiate with respect to x:

	А	В	С	D	Е	F	G
1.	x ³	4x ³	$\frac{8x^2}{3}$	$\chi^{\frac{1}{2}}$	$3x^{\frac{1}{3}}$	x ^{q+2}	\sqrt{x}
2.	x ¹⁰	8x	$\frac{-7x^2}{2}$	$\chi^{\frac{3}{4}}$	$4x^{\frac{3}{4}}$	x ^{3m}	$\sqrt[5]{\chi}$
3.	x ⁴	$5x^4$	$\frac{5x^3}{4}$	$\chi^2_{\overline{3}}$	$-6x^{\frac{2}{3}}$	x ^{p+q}	$-\sqrt[7]{x^2}$
4.	x ⁵	-3x ²	$\frac{2x^5}{3}$	$\chi^{\frac{5}{4}}$	$-10x^{-\frac{3}{5}}$	-x ¹⁷¹	$\sqrt[4]{\chi^3}$
5.	x ⁶	2x	$-\frac{6x^7}{7}$	$\chi^{\frac{3}{2}}$	$9\chi^{\frac{2}{3}}$	x ⁿ⁺¹	$\sqrt[3]{\chi^8}$
6.	x ²	8	$\frac{2}{9}x^3$	x ^{1.8}	$14x^{-\frac{3}{7}}$	X ^{m+n+1}	$-\sqrt{\chi^{1.8}}$
7.	x ⁷	-7x ⁶	$\frac{11}{5}x^5$	x ^{6.1}	$-2x^{-\frac{4}{5}}$	-X ^{5d-k+6}	$\sqrt[3]{\chi^{2.4}}$
8.	x ⁹	9x ⁵	$-\frac{3}{4}x^{6}$	x ^{3.4}	$4x^{\frac{5}{3}}$	$\chi^{\sqrt{2}+1}$	$\sqrt[3]{\chi^{-5.1}}$
9.	х	-12x ⁷	$\frac{3}{7}x^4$	$\chi^{-\frac{1}{2}}$	$-7x^{\frac{2}{3}}$	x ^{3π+4}	$\sqrt{\frac{1}{x^{7.6}}}$
10.	x ⁰	-14	$\frac{5}{8}x^3$	$x^{-\frac{7}{2}}$	$\frac{4x^{\frac{5}{4}}}{5}$	x ³ⁱ⁻²	$-\frac{1}{\sqrt[4]{x^3}}$
11.	x-2	-8x ⁰	$\frac{-7x^{-3}}{3}$	$\chi \frac{4}{3}$		π^3	$\frac{7}{\sqrt[5]{x^2}}$
12.	x-1	11x ⁻⁷	$\frac{2x^{-6}}{9}$	$x^{-\frac{5}{4}}$	$\frac{4}{21}x^{\frac{7}{2}}$	-5x ²ⁿ⁺¹	$-\sqrt[3]{\frac{1}{x^2}}$
13.	x-4	9x ⁻⁸	$-\frac{4x^{-5}}{15}$	x ^{-5.3}	$-\frac{9}{4}x^{-\frac{4}{3}}$	3x ^{5k+4}	$\frac{1}{\sqrt{x^3}}$
14.	x-3	-14x ⁻¹⁰	$\frac{5x^{-14}}{7}$	x ^{-2.6}	$\frac{-2x^{\frac{5}{4}}}{5}$	$-4x^{\sqrt{3}+7}$	$x\sqrt{x}$
15.	x ⁻¹⁰	4x ⁻³	$-\frac{2}{9}x^{-3}$	x ^{-8.3}	$\frac{4}{3}\chi^{\frac{7}{3}}$	$\sqrt{3}x^{\pi-2}$	$-\frac{5}{3\sqrt{x}}$
16.			$\frac{1}{5}x^{-3}$				
17.	x ⁻¹⁶	-2x ⁻⁶	$\frac{-8}{5}x^{-4}$	$\chi^{\frac{5}{7}}$	$-\frac{9x^{-\frac{8}{5}}}{4}$	2.5x ^{2e+3}	$-\frac{3}{7\sqrt{x^{1.4}}}$
18.	x-9	3x ⁻⁵	$\frac{4}{7}x^{-6}$	$x^{-\frac{9}{2}}$	$-\frac{3}{14}x^{\frac{7}{3}}$	$0.4x^{6f}$	$\frac{14}{3\sqrt[7]{x^3}}$
19.	x- ⁶	-7x ⁻⁴	$\frac{5}{8}x^3$	-7x ⁻⁴	$\frac{10}{9}x^{-\frac{3}{5}}$	2x ^{a+b}	$x^2\sqrt[3]{x}$
20.	x ⁻¹¹	6x ⁻²	$\frac{5}{8}x^3$ $-\frac{5}{14}x^{-7}$	6x ⁻²	$\frac{7x^{-\frac{5}{3}}}{2}$	$3.5x^{4w+2}$	$-\frac{2x^3}{\sqrt[5]{x}}$

Answers

	А	В	С	D	E	F	G
1.	3x ²	12x ²	$\frac{16x}{3}$	$\frac{x^{-\frac{1}{2}}}{2}$	$x^{-\frac{2}{3}}$		
2.	10x9	8	-7x	$\frac{3x^{-\frac{1}{4}}}{4}$	$3x^{-\frac{1}{4}}$	3mx ^{3m-1}	$\frac{x^{-\frac{4}{5}}}{5} = \frac{1}{5\sqrt[5]{x^4}}$
3.	4x ³	$20x^3$	$\frac{15x^2}{4}$	$\frac{2x^{-\frac{1}{3}}}{3}$	$-4x^{-\frac{1}{3}}$	$(p+q)x^{p+q-1}$	$-\frac{2x^{-\frac{5}{7}}}{7} = -\frac{2}{7\sqrt[7]{\sqrt{x^5}}}$
4.	$5x^4$	-6x	$\frac{10x^4}{3}$	$\frac{5x^{\frac{1}{4}}}{4}$	$6x^{\frac{8}{5}}$	-171x ¹⁷⁰	$\frac{3x^{-\frac{1}{4}}}{4} = \frac{3}{4\sqrt[4]{x}}$
5.	6x ⁵	2	$-6x^{6}$	$\frac{3x^{\frac{1}{2}}}{2}$	$6x^{-\frac{1}{3}}$	(n+1)x ⁿ	$\frac{8x^{\frac{5}{3}}}{3} = \frac{8\sqrt[8]{x^5}}{3}$
6.	2x	0	$\frac{2}{3}x^2$	1.8x ^{0.8}	$-6x^{-\frac{10}{7}}$		$-0.9x^{-0.1}$
7.	$7x^6$	-42x ⁵	$11x^{4}$	6.1x ^{5.1}	$\frac{8x^{-\frac{9}{5}}}{5}$	-(5d-k+6)X ^{5d-k+5}	$0.8x^{-0.2}$
8.	9x ⁸	45x ⁴	$-\frac{9}{2}x^{5}$	3.4x ^{2.4}	$-\frac{20x^{\frac{8}{3}}}{3}$	$(\sqrt{2}+1)x^{\sqrt{2}+1}$	$-1.7x^{-2.7}$
9.	1	-84x ⁶	$\frac{12}{7}x^3$	$-\frac{x^{-\frac{3}{2}}}{2}$	$-\frac{14x^{\frac{1}{3}}}{3}$	$(3\pi+4)x^{3\pi+3}$	$-3.8x^{-4.8}$
10.	0	0	$\frac{15}{8}x^2$		$\frac{4x^{\frac{5}{4}}}{5}$	$(3i-2)x^{3i-3}$	$\frac{3x^{-\frac{7}{4}}}{4} = \frac{3}{4\sqrt[4]{x^7}}$
11.	-2x ⁻³	0	$7x^{-4}$	$-\frac{4x^{-\frac{7}{3}}}{3}$		0	$\frac{14x^{-\frac{7}{5}}}{5} = \frac{14}{5\sqrt[5]{x^7}}$
12.	-x ⁻²	-77x ⁻⁸	$-\frac{4x^{-7}}{3}$	$-\frac{5x^{-\frac{9}{4}}}{4}$	$\frac{2}{3}x^{\frac{5}{2}}$	$-5(2n+1)x^{2n}$	$\frac{2x^{-\frac{5}{3}}}{3} = \frac{2}{3\sqrt[8]{x^5}}$
13.	- 4x ⁻⁵	-72x ⁻⁹	$\frac{4x^{-6}}{3}$	-5.3x ^{-6.3}	$3x^{-\frac{7}{3}}$		$-\frac{3x^{\frac{5}{2}}}{2} = -\frac{3}{2\sqrt{x^5}}$
14.	-3x ⁻⁴	140x ⁻¹¹	$-10x^{-15}$	-2.6x ^{-3.6}	$-\frac{x^{\frac{1}{4}}}{2}$	$-4(\sqrt{3}+7)x^{\sqrt{3}+6}$	$\frac{3x^{\frac{1}{2}}}{2} = \frac{3\sqrt{x}}{2}$
15.	-10x ⁻¹¹		$\frac{2}{3}x^{-4}$			$\sqrt{3}(\pi-2)x^{\pi-2}$	
			$-\frac{3}{5}x^{-4}$				
17.	-16x ⁻¹⁷	12x ⁻⁷	$\frac{32}{5}x^{-5}$	$\frac{5x^{-\frac{2}{7}}}{7}$	$\frac{18x^{\frac{13}{5}}}{45}$	2.5(2e+3)X ^{2e+2}	$0.3x^{-1.7}$
18.	-9x ⁻¹⁰	-15x ⁻⁶	$-\frac{24}{7}x^{-7}$	$-\frac{9x^{-\frac{11}{2}}}{2}$	$-\frac{1}{2}\chi^{\frac{4}{3}}$	2.4fx ^{6f-1}	$-2x^{-\frac{10}{7}} = -\frac{2}{\sqrt[7]{x^{10}}}$
19.	-6x ⁻⁷	28x ⁻⁵	$\frac{15}{8}x^2$	28x ⁻⁵	$-\frac{2}{3}x^{-\frac{8}{5}}$	$2(a+b)x^{a+b-1}$	$\frac{7x^{\frac{4}{3}}}{3} = \frac{7\sqrt[2]{x^4}}{3}$
20.	-11x ⁻¹²	-12x ⁻³	$\frac{5}{2}x^{-8}$	-12x ⁻³	$-\frac{35x^{-\frac{8}{3}}}{6}$	(14w+7)X ^{4w+1}	$\frac{28x^{\frac{9}{5}}}{5} = \frac{28\sqrt[5]{x^9}}{5}$

Derivatives of Powers

Find $\frac{dy}{dx}$ if:

Find the derivative if:

25.
$$f(x) = ax^3 + bx^2 + cx + d$$
 26. $k = \frac{1}{a}(x^2 + \frac{b}{x} + c)$ 27. $b = -3m^{-8} + 3\sqrt{7}$
28. $f = ax^4 + bx^2 + c$ 29. $r = \frac{t^4}{4} - \frac{t^3}{3} + \frac{t^2}{2} - t + 4$ 30. $g = -8h^5 + 3h^{-2} + h^{1.6}$

Find the derivative with respect to the variable indicated:

31.
$$C = 2\pi r$$
[r]32. $y = mx + b$ [x]33. $v = u + at$ [t]34. $A = \pi r^2$ [r]35. $E = \frac{1}{2}mv^2$ [v]36. $P = \frac{v^2}{R}$ [V]37. $s = ut + \frac{1}{2}at^2$ [t]38. $P = RI^2$ [I]39. $V = \frac{4\pi r^3}{3}$ [r]

40.
$$F = \frac{\pi r^4 P}{8\eta l}$$
 [r] 41. $T = 2\pi \sqrt{\frac{l}{g}}$ [1] 42. $v = \sqrt{\frac{2GM}{r}}$ [r]

43.
$$F = \frac{GMm}{r^2}$$
 [r] 44. $E = \frac{q}{4\pi\varepsilon_0 r^2}$ [r] 45. $\Lambda = \sqrt{\frac{h^2}{2\pi mkT}}$ [T]

Calculate the first, second, third, and fourth derivatives of:

46.
$$y = 4x^4 + 2x^3 + 3$$
 47. $k = x^3 + 7x - 11$ 48. $b = -m^{-2} + 3m^3$

Find the gradient of the tangent to the curve at the point indicated:

49.
$$y = x^2 + 3x$$
 (2,10) 50. $y = 2x^3 - 4$ (3,50)

Find the equation of the tangent to the curve at the point indicated:

52.
$$y = 3x^2 - x$$
 (1,2) 53. $y = x^3 + 4x$ (-1,-5) 54. $y = x^2 - \frac{1}{x}$ (1,2)

51. $y = -x^2 + \frac{1}{x}$ (-2,-4.5)

Find the value of x that satisfies the equation given:

55.
$$y = x^4 + 3x + 1$$

56. $y = \frac{1}{x}, x \neq 0$
 $y^{IV} - y^{III} + \frac{2y^{II}}{x^2} = 0$
 $x^3 y^{II} + x^3 y^I + xy = 0$

Answers

1.	$\frac{dy}{dx} = 1 + \frac{1}{2\sqrt{x}}$	2.	$\frac{dy}{dx} = 5x^4 - \frac{3}{2\sqrt{x}}$	3.	$\frac{dy}{dx} = \frac{5x^{\frac{3}{2}}}{2} + \frac{2}{x^2}$
4.	$y' = 12x^3 + \frac{2}{x^2} - \frac{12}{x^3}$	5.	y' = 2x + 7	6.	y' = 30x - 4
7.	$y' = 100x^4 - 21x^2 - 3$	8.	$y' = 8x^3 + 9x^2 + 2$	9.	$y' = 10x^9 - 24x^5 + 8x$
10.	$y' = 9x^2 - 4x - 7$	11.	$y' = 3x^2 - 6ax + 3a^2$	12.	$y' = 24x^2 + 72x + 54$
13.	$\frac{dy}{dx} = 18x^2 - 28x + 16$	14.	$\frac{dy}{dx} = 12x^3 - 9x^2 - 12x$	15.	$\frac{dy}{dx} = 2x - \frac{2}{x^3}$
16.	$\frac{dy}{dx} = -\frac{5}{x^2}$	17.	$\frac{dy}{dx} = 2x + \frac{2}{x^2}$	18.	$\frac{dy}{dx} = 1 - \frac{7}{x^2}$
19.	$\frac{dy}{dx} = 1 - \frac{3}{x^2} + \frac{4}{x^3}$	20.	$\frac{dy}{dx} = 6x^3 + \frac{7}{x^3} - \frac{33}{2x^4}$	21.	$\frac{dy}{dx} = 4 + \frac{9}{x^2}$
22.	$\frac{dy}{dx} = -\frac{2}{x^3} - \frac{18}{x^4}$	23.	$\frac{dy}{dx} = -\frac{2}{x^3} - \frac{2}{x^5} - \frac{10}{x^6}$	24.	$\frac{dy}{dx} = \frac{1}{2\sqrt{x}} + \frac{3}{2\sqrt{x^3}}$
25.	$f'(x) = 3ax^2 + 2bx + c$	26.	$\frac{dk}{dx} = \frac{1}{a}(2x - \frac{b}{x^2})$	27.	$\frac{db}{dm} = 24m^{-9}$
28.	$\frac{df}{dx} = 4ax^3 + 2bx$	29.	$\frac{dr}{dt} = t^3 - t^2 + t - 1$	30.	$\frac{dg}{dh} = -40h^4 - \frac{6}{h^3} + 1.6h^{0.6}$
31.	$\frac{dC}{dr} = 2\pi$	32.	$\frac{dy}{dx} = m$	33.	$\frac{dv}{dt} = a$
34.	$\frac{dA}{dr} = 2\pi r$	35.	$\frac{dE}{dv} = mv$	36.	$\frac{dP}{dV} = \frac{2V}{R}$
37.	$\frac{ds}{dt} = u + at$	38.	$\frac{dP}{dI} = 2RI$	39.	$\frac{dV}{dr} = 4\pi r^2$
40.	$\frac{dF}{dr} = \frac{\pi r^3 P}{2\eta l}$	41.	$\frac{dT}{dl} = \frac{\pi}{\sqrt{gl}}$	42.	$\frac{dv}{dr} = -\sqrt{\frac{GM}{2r^2}}$
43.	$\frac{dF}{dr} = -\frac{2GMm}{r^3}$	44.	$\frac{dE}{dr} = -\frac{q}{2\pi\varepsilon_0 r^2}$	45.	$\frac{\mathrm{d}\Lambda}{\mathrm{d}T} = -\frac{h}{\sqrt{8\pi m k T^2}}$
46.	$y' = 16x^3 + 6x^2$	47.	$\frac{dk}{dx} = 3x^2 + 7$	48.	$\frac{db}{dm} = 2m^{-3} + 9m^2$
	$y'' = 48x^2 + 12x$		$\frac{d^2k}{dx^2} = 6x$		$\frac{d^2b}{dm^2} = -6m^{-4} + 18m$
	$y''' = 96x + 12$ $y^{IV} = 96$		u.r.		um
	y ¹¹ = 96		$\frac{d^3k}{dx^3} = 6$		$\frac{d^3b}{dm^3} = 24m^{-5} + 18$
			$\frac{d^4k}{dx^4} = 0$		$\frac{d^4b}{dm^4} = -120m^{-6}$
49.	$\frac{dy}{dx} = 2x + 3 = 7 at (2,1)$	50.	$\frac{dy}{dx} = 6x^2 = 54$ at (3,-1)	51.	$y' = -2x - \frac{1}{x^2} = \frac{15}{4}$ at (-2,3)
52.	y = 5x - 3	53.	y = 7x + 2	54.	y = 3x - 1
55.	$y' = 4x^3 + 3, y'' = 12x^2, y'$	‴ = 2·	$4x, y^{IV} = 24$ and		
	x = 2				
56.	$y' = -\frac{1}{x^2}, y'' = \frac{2}{x^3}$ and				
	x = 3				

4

Chain Rule

Differentiate:

1.	$(x + 3)^4$	2.	$(2x + 5)^3$	3.	$(1-x)^7$
4.	$(7x-2)^6$	5.	$(x^2 + 1)^3$	6.	$(x^6 + x^3)^{20}$
7.	$(x^2 - 1)^{100}$	8.	$(3x^2 - 2x)^2$	9.	$2(5x-3)^8$
10.	$3(x+13)^2$	11.	$(3x^2 + 7x)^4$	12.	$(x^2 + 7x - 1)^8$
13.	$2(x^7 + 3x^2 - 1)^6$	14.	$3(x^5 - 2x)^2$	15.	$(5x^2 + 4)^{11}$
16.	$\frac{(x - x^2 - x^4)^5}{5}$	17.	$\frac{(5-x)^{-2}}{2}$	18.	$(2x+1)^{-1}$
19.	$(9-4x)^{-3}$	20.	$(4x^2 - 3x^3 + x)^{-2}$	21.	$5(x^2-9)^{-3}$
22.	$(x^{-1} - 2x^{-2})^{-3}$	23.	$(3x+1)^{\frac{1}{2}}$	24.	$(6x+1)^{\frac{1}{3}}$
25.	$(5x+7)^{\frac{3}{2}}$	26.	$(x^3 - 5x^2 + x)^{\frac{3}{4}}$	27.	$(x^5 - 5x)^{\frac{1}{5}}$
28.	$(4x^2 - 6x + 1)^{\frac{7}{3}}$	29.	$(2x^3 - 9x + 12)^{-\frac{2}{3}}$	30.	$(x^{-4} + 7x^{-2} + 8)^{-\frac{5}{2}}$

Find y':

31.
$$y = \frac{1}{3x - 1}$$
32. $y = \frac{2}{3x^2 - x + 5}$ 33. $y = \frac{1}{x^3 + x^2 + x + 1}$ 34. $y = \frac{3}{(7x^2 - 3x + 7)^{10}}$ 35. $y = \frac{1}{9 - x^2}$ 36. $y = \frac{7}{3(5x^2 + 2)^3}$ 37. $y = \frac{3}{4(2x - 5)^8}$ 38. $y = \frac{1}{x^4 + 5x^3 - 2x}$ 39. $y = \frac{1}{12(4x - 1)^3}$ 40. $y = \sqrt{2x + 5}$ 41. $y = \sqrt{x^2 - 3}$ 42. $y = \sqrt[3]{9x - 4}$ 43. $y = \sqrt[3]{x^3 - 3x}$ 44. $y = \sqrt{4 - x^2}$ 45. $y = \sqrt[3]{8x^3 + 27}$ 46. $y = \sqrt[3]{(11 - 3x)^2}$ 47. $y = \sqrt[3]{(4x - 1)^4}$ 48. $y = \sqrt[6]{7x^3 - 2x^2 + 5}$

Find the derivative:

Calculate $\frac{dy}{dx}$ for the following functions:

$$58. \quad y = (x-3)\sqrt{(x-3)} \qquad 59. \quad y = \sqrt{4 - \sqrt{x+2}} \qquad 60. \quad y = [(2x+1)^{10} + 1]^{10}$$

$$61. \quad y = (x - \frac{1}{x})^4 \qquad 62. \quad y = (x^2 + \frac{1}{x^2})^3 \qquad 63. \quad y = (3x-1)^{2k+1}$$

$$64. \quad y = (\frac{x^3}{3} + \frac{x^2}{2} + x)^{-k} \qquad 65. \quad y = [(2x+1)^2 + (x+1)^2]^3 \qquad 66. \quad y = (7x + \sqrt{x^2 + 3})^6$$

$$67. \quad y = \sqrt{x + \sqrt{x + \sqrt{x}}} \qquad 68. \quad y = [(1 + \frac{1}{x})^{-1} + 1]^{-1} \qquad 69. \quad y = [x^2 + (x^2 + 9)^{\frac{1}{2}}]^{\frac{1}{2}}$$

Answers

	4(c (2 , r)?		7(1)6
1. 4.	$4(x+3)^3$ $42(7x-2)^5$	2. 5.	$6(2x+5)^2$ $6x(x^2+1)^2$	3. 6.	$-7(1-x)^{6}$ $60x^{59}(2x^{3}+1)(x^{3}+1)^{19}$
4. 7.	$42(7x-2)^5$ $200x(x^2-1)^{99}$	э. 8.	4x(3x-1)(3x-2)	o. 9.	$80(5x-3)^7$
10.	6(x + 13)	11.	$4x^{3}(6x + 7)(3x + 7)^{3}$	12.	$8(x^2+7)(x^2+7x-1)^7$
	$12x(7x^5+6)(x^7+3x^2)$				
13.	-1) ⁵	14.	$6x(x^4-2)(5x^4-2)$	15.	$110x(5x^2+4)^{10}$
16.	$(1-2x-4x^3)(x-x^2)(x-x^4)^4$	17.	$(5-x)^{-3}$	18.	$-2(2x+1)^{-2}$
19.	$12(9-4x)^{-4}$	20.	$-\frac{2(8x-9x^2+1)}{(4x^2-3x^3+x)^3}$	21.	$-30x(x^2-9)^{-4}$
22.	$-3x^{5}(4-x)(x-2)^{-4}$	23.	$\frac{3}{2\sqrt{3x+1}}$	24.	$2(6x+1)^{-\frac{2}{3}}$
25.	$\frac{15(5x+7)^{\frac{1}{2}}}{2}$	26.	$\frac{3(3x^2 - 10x + 1)}{4\sqrt[4]{x^3 - 5x^2 + x}}$	27.	$(x^4 - 1)(x^5 - 5x)^{-\frac{4}{5}}$
28.	$\frac{14(4x-3)(4x^2-6x+1)^{\frac{4}{3}}}{3}$	29.	$-\frac{2(2x^2-3)}{\sqrt[3]{(2x^3-9x+12)^5}}$	30.	$\frac{5(2-7x^2)}{x^5\sqrt{(x^{-4}+7x^{-2}+8)^7}}$
31.	$y' = -\frac{3}{3x - 1^2}$	32.	$y' = -\frac{2(6x-1)}{3x^2 - x + 5^2}$	33.	$y' = -\frac{(3x^2 + 2x + 1)}{x^3 + x^2 + x + 1^2}$
34.	$y' = -\frac{30(14x - 3)}{(7x^2 - 3x + 7)^{11}}$	35.	$y' = \frac{2x}{(9-x^2)^2}$	36.	$y' = -\frac{70x}{(5x^2 + 2)^4}$
37.	$y' = -\frac{12}{(2x-5)^9}$	38.	$y' = \frac{(4x^3 + 15x - 2)}{(x^4 + 5x^3 - 2x)^2}$	39.	$y' = -\frac{1}{(4x-1)^4}$
40.	$y' = \frac{1}{\sqrt{2x+5}}$	41.	$y' = \frac{x}{\sqrt{x^2 - 3}}$	42.	$y' = \frac{3}{\sqrt[3]{(9x-4)^2}}$
43.	$y' = \frac{x^2 - 1}{\sqrt[2]{(x^3 - 3x)^2}}$	44.	$y' = -\frac{x}{\sqrt{4-x^2}}$	45.	$y' = \frac{8x^2}{\sqrt[3]{(8x^3 + 27)^2}}$
46.	$y' = -\frac{2}{\sqrt[3]{11-3x}}$	47.	$y' = \frac{16\sqrt[3]{4x-1}}{3}$	48.	$y' = \frac{x(21x - 4)}{5\sqrt[5]{(7x^3 - 2x^2 + 5)^4}}$
49.	$\frac{dy}{dm} = \frac{21m^2 - 8m}{4\sqrt[4]{(7m^3 - 4m^2 + 2)^3}}$	50.	$\frac{dc}{dk} = \frac{16k}{3\sqrt[3]{4k^2 + 3}}$	51.	$\frac{dr}{dw} = 5\sqrt[4]{4w+3}$
52.	$\frac{dd}{dx} = -\frac{3}{2\sqrt{(x+2)^3}}$	53.	$\frac{df}{de} = -\frac{4}{\sqrt{(4e+5)^3}}$	54.	$g'(x) = \frac{1}{\sqrt{(1-2x)^3}}$
55.	$k'(n) = -\frac{4n}{\sqrt{(n^2 + 6)^3}}$		$p'(r) = \frac{15}{\sqrt[4]{(7-r)^9}}$		$q'(z) = -\frac{5z^4}{\sqrt[5]{(z^5 - 32)^6}}$
58.	$\frac{dy}{dx} = \frac{3\sqrt{(x-3)}}{2}$	59.	$\frac{dy}{dx} = \frac{1}{4\sqrt{4 - \sqrt{x + 2}}, \sqrt{x + 2}}$	60.	$\frac{dy}{dx} = 200(2x+1)^9.$ $[(2x+1)^{10}+1]^9$
61.	$\frac{dy}{dx} = 4(1 + \frac{1}{x^2})(x - \frac{1}{x})^3$	62.	$\frac{dy}{dx} = 6(x - \frac{1}{x^3})(x^2 + \frac{1}{x^2})^2$	63.	$\frac{dy}{dx} = 3(2k+1)(3x-1)^{2k}$
6 4.	$\frac{dy}{dx} = -\frac{k(x^2 + x + 1)}{(\frac{x^3}{3} + \frac{x^2}{2} + x)^{k+1}}$	65.	$\frac{dy}{dx} = 6(5x+3).$ $[(2x+1)^2 + (x+1)^2]^2$	66.	$\frac{dy}{dx} = 6\left(7x + \sqrt{x^2 + 3}\right)^5.$ $\left[7 + \frac{x}{\sqrt{x^2 + 3}}\right]$
6 7.	$\frac{dy}{dx} = \frac{1 + \frac{1 + \frac{1}{2\sqrt{x}}}{2\sqrt{x + \sqrt{x}}}}{2\sqrt{x + \sqrt{x} + \sqrt{x}}}$	<u>68</u> .	$\frac{dy}{dx} = \frac{1}{x^2(1+\frac{1}{x})^2[(1+\frac{1}{x})^{-1}+1]^2}$	69.	$\frac{dy}{dx} = \frac{2x + \frac{x}{\sqrt{x^2 + 9}}}{\sqrt{x^2 + (x^2 + 9)^{\frac{1}{2}}}}$

Product Rule

Expand and differentiate, and compare by differentiating using the product rule:

1. (3x-1)(4x+3)2. 5x(6x-1)3. $x^3(3x+2)$ 4. $4x^2(2x^3-1)$ 5. $3x^4(7x-2)$ 6. $(2x^2-5)(3x^2+8x)$

Differentiate mentally without simplification (check your answers below):

7.	(3x-2)(5x+7)	8.	$(4-x^2)(3x+5)$	9.	(5x-2)(x-3)
10.	(5x-2)(x-1)	11.	$(x^2 - 1)(x + 7)$	12.	$(x^4 + 8)(6 - 5x)$
13.	$(2x+9)(x^2-4)$	14.	(3x + 5)(8x - 1)	15.	$(9x^2 - 5)(3x - 8)$
16.	$5x^2(3x-8)$	17.	$4x^5(2x^2-5x+3)$	18.	$(x^2 - 7x + 1)(3x - 4)$
19.	$(5x^3 + 2)(4x - x^3)$	20.	$(x^2 + 3x + 1)(x^3 - 4x + 5)$	21.	$(x^{100} - 5)(5x^8 - 11x + 1)$

Differentiate on paper without simplification:

22.	$(x+2)(x^2-2x+7)$	23.	$(1-x^3)(7x+4)$	24.	$(3x-5)(x^3+2x^2-8)$
25.	$(x^2 - 2)(5x - x^3)$	26.	$(x^2 + 3x - 1)(x^3 - 4x + 7)$	27.	$(x^3 - 2x + 8)(6 - 5x)$
28.	$(8x^2 - 5x)(13x^2 - 4)$	29.	$(x^5 - 2x^3)(7x^2 + x - 8)$	30.	$(3-x^3)(8x+1)$
31.	(x+1)(x+2)(x+3)	32.	$(x + 1)(x^2 + 2)(x^3 + 3)$	33.	4x(x-1)(2x-3)

Differentiate (using an embedded chain rule):

34.	$x^2(x+1)^3$	35.	$8x(3x-2)^5$	36.	$2x^4(3-x)^3$
37.	$(x+1)(2x-5)^4$	38.	$(x^3 - 4x^2 + 1)(x^2 + 3)^5$	39.	$(3x^2 - 2x - 1)(x^2 + 5x - 2)^2$
40.	$4x^3(2x-1)^{-3}$	41.	$2x^8(11-x)^{-7}$	42.	$(4x-3)(5x+3)^{-2}$
43.	$2x(x+3)^{\frac{1}{2}}$	44.	$(3x-1)(6-x)^{-\frac{3}{4}}$	45.	$4x^3(8x-1)^{\frac{4}{5}}$
46.	$(2x+9)\sqrt{x^2-4}$	47.	$x\sqrt{11-x}$	48.	$x^2\sqrt[3]{4x-7}$
49.	$(3x+8)^3(x+1)^4$	50.	$(2x^2 - 3x + 1)^2(5x - 1)^4$	51.	$(5x+3)^4(x-2)^{-\frac{1}{2}}$
52.	$(8x+1)^3\sqrt[4]{9-x^3}$	53.	$(2x+7)^8\sqrt[3]{(x+4)^5}$	54.	$(6x+1)^8(3x-7)^{-5}$
55.	$\frac{x}{(2x-9)^5}$	56.	$(x + x^{-1})(x - x^{-2})$	57.	$(x + \sqrt{x})(1 + \sqrt{x})$

Find the equation of the tangent to the following curves at the point indicated):

58. $y = x^2(x+1)^3$ (-1,0) 59. $y = x(3x-2)^2$ (1,1) 60. $y = (x+1)\sqrt{x+3}$ (-2,-1)

Answers

1.24x + 52.60x - 53. $12x^3 + 6x^2$ 4. $40x^4 - 8x$ 5. $105x^5 - 24x^3$ 6. $24x^3 + 48x^2 - 30x - 40$

Answers with structure, but no simplification:

22.	$\frac{1(x^2 - 2x + 7) +}{(x+2)(2x-2)}$	23.	$-3x^2(7x+4) + (1-x^3)(7)$	24.	$3(x^3 + 2x^2 - 8) + (3x - 5)(3x^2 + 4x)$
25.	$2x(5x - x^3) + (x^2 - 2)(5 - 3x^2)$	26.	$\begin{array}{l}(2x+3)(x^3-4x+7)+\\(x^2+3x-1)(3x^2-4)\end{array}$	27.	$\begin{array}{l} (3x^2 - 2)(6 - 5x) + \\ (x^3 - 2x + 8)(-5) \end{array}$
28.	$\begin{array}{l}(16x-5)\big(13x^2-4\big)+\\(8x^2-5x)(26x)\end{array}$	29.	$\begin{array}{l}(5x^4-6x^2)(7x^2+x-8)+\\(x^5-2x^3)(14x+1)\end{array}$	30.	$\begin{array}{l} -3x^2(8x+1) + \\ (3-x^3)(8) \end{array}$
31.	(1)(x+2)(x+3) + (x+1)(1)(x+3) + (x+1)(x+2)(1)	32.	$(1)(x^{2}+2)(x^{3}+3) + (x+1)(2x)(x^{3}+3) + (x+1)(x^{2}+2)(3x^{2})$	33.	$\begin{array}{l} 4(x-1)(2x-3) + \\ 4x(1)(2x-3) + \\ 4x(x-1)(2) \end{array}$

Simplified answers (equivalent expressions use or remove radicals or negative indices):

34.	$x(5x+2)(x+1)^2$	35.	$16(9x-1)(3x-2)^4$	36.	$-2x^3(7x-12)(3-x)^2$
37.	$(10x+3)(2x-5)^3$	38.	$ \begin{array}{l} x(13x^3 - 48x^2 + 9x - 14). \\ (x^2 + 3)^4 \end{array} $	39.	$2(x^2 + 5x - 2).$ (5x ³ + 29x ² + 10x - 8)
40.	$-12x^2(2x-1)^{-4}$	41.	$-2x^{7}(x-88)(11-x)^{-8}$	42.	$-2(10x - 21)(5x + 3)^{-3}$
43.	$3(x+2)(x+3)^{-\frac{1}{2}}$	44.	$-\frac{3(4x^2-27x+1)(6-x)^{-\frac{7}{4}}}{4}$	45.	$\frac{4x^2(152x-15)(8x-1)^{-\frac{1}{5}}}{5}$
46.	$\frac{4x^2+9x-8}{\sqrt{x^2-4}}$	47.	$-\frac{(3x-22)}{2\sqrt{11-x}}$	48.	$\frac{14x(2x-3)}{3\sqrt[3]{(4x-7)^2}}$
49.	$(21x + 41)(3x + 8)^2.$ $(x + 1)^3$	50.	$2(2x^2 - 3x + 1).(40x^2 - 49x + 13)(5x - 1)^3$	51.	$\frac{(35x-43)(5x+3)^3}{2\sqrt{(x-1)^3}}$
52.	$-\frac{(8x+1)^2(120x^3+3x^2-864)}{4\sqrt[4]{(9-x^3)^3}}$	53.	$\frac{1}{3}(58x+227)(2x+7)^7.$ ^a $\sqrt{(x+4)^2}$	54.	$\frac{3(18x - 117)(6x + 1)^7}{(3x - 7)^6}$
55.	$-\frac{8x+9}{(2x-9)^6}$	56.	$2x + \frac{1}{x^2} + \frac{3}{x^4}$	57.	$2 + \frac{3\sqrt{x}}{2} + \frac{1}{2\sqrt{x}}$

The equations of the tangents are:

58.
$$y = 0$$
 59. $y = 7x - 6$ 60. $y = \frac{x}{2}$

Quotient Rule

Divide each term of the numerator by the denominator before differentiating. Compare this with the result you get by using the quotient rule:

1.
$$\frac{x+6}{x}$$

2. $\frac{x^3-1}{x^2}$
3. $\frac{3x-1}{x^2}$
4. $\frac{x^3-3x^2}{x}$
5. $\frac{x^4+2x^3}{x^2}$
6. $\frac{2x^2+5x-1}{x}$

Using negative indices, differentiate by using the product rule. Compare this with the result you get by using the quotient rule:

$$x + 5$$
 $x - 3$
 $y.$
 $\frac{3x + 8}{x - 5}$
 $10.$
 $\frac{x^2 - 2}{x^2 + 9}$
 $11.$
 $\frac{x^3}{x + 4}$
 $12.$
 $\frac{x + 1}{3x^2 - 7}$

Differentiate mentally without simplification (check your answers on the following page):

13.	$\frac{1}{2x-1}$	14.	$\frac{x^3}{x^2 - 4}$	15.	$\frac{x+4}{x-6}$
16.	$\frac{2x+5}{4x-3}$	17.	$\frac{x}{2x^2 - 8}$	18.	$\frac{x-7}{x^2}$
19.	$\frac{x^2+4x-1}{x+3}$	20.	$\frac{x^2 - 9x + 11}{2x + 5}$	21.	$\frac{3x-1}{x^2+12}$
22.	$\frac{6x+7}{x^2-x+3}$	23.	$\frac{x^3 + x}{x^2 - x - 1}$	24.	$\frac{5x^2 - 2x}{3x + 1}$

Differentiate (using an embedded chain rule):

25.
$$\frac{2x}{(x+1)^{\frac{1}{2}}}$$
 26. $\frac{(2x+7)^3}{4x-1}$ 27. $\frac{x-1}{(7x+3)^4}$

28.
$$\frac{(3x-4)^5}{(2x+1)^3}$$
 29. $\frac{2x-5}{\sqrt{x+1}}$ 30. $\frac{\sqrt{x-1}}{4x+1}$

31.
$$\frac{\sqrt{x^2+1}}{(x-8)^2}$$
 32. $\frac{x-4}{\sqrt[3]{x}}$ 33. $\frac{(x+3)^4}{x^2}$

Find the derivative of:

34.
$$y = \frac{x+3}{\sqrt{x}+2}$$
 35. $f = \frac{p^2}{2p+1}$ 36. $b = \frac{\sqrt[3]{w}}{w^2+5}$

37.
$$m = \frac{h^3 - 1}{h^3 + 1}$$

38. $g = \frac{7t^4 + 11}{t + 8}$
39. $e = \left(\frac{4y + 3}{5y - 1}\right)^3$
40. $k = \frac{8n^2 - 5n + 11}{41}$
41. $r = \frac{v - 6}{\sqrt{1 - 1}}$
42. $z = \frac{4a - 9}{3}$

40.
$$k = \frac{1}{n+2}$$
 41. $l = \frac{1}{\sqrt{(v+1)^5}}$ 42. $l = \frac{1}{(a+5)^4}$

Find the equation of the tangent to the following curves at the point indicated):

43.
$$y = \frac{x+3}{x-1}$$
 (2,5) 44. $y = \frac{x+3}{3x-2}$ (1,4) 45. $y = \frac{x}{x-2}$ (3,3)

46.
$$y = \frac{x^2}{x-1}$$
 (-1,-1/2) 47. $y = \frac{x^2+1}{x^2-3}$ (2,5) 48. $y = \frac{x-7}{x^2}$ (1,-6)

Answers

You should discover that the results are the same and that it is advisable to simplify expressions first!

1. $-\frac{6}{x^2}$ 2. $\frac{x^3+2}{x^3} = 1 + \frac{2}{x^3}$ 3. $-\frac{3x-2}{x^3}$ 4. 2x-35. 2x+26. $\frac{2x^2+1}{x^2} = 2 + \frac{1}{x^2}$

You should discover that the results are the same and that the quotient rule is (usually) simpler to use.

7.
$$-\frac{9}{(2x+1)^2}$$

8. $\frac{17}{(5x+2)^2}$
9. $-\frac{23}{(x-5)^2}$
10. $\frac{22x}{(x^2+9)^2}$
11. $\frac{2x^2(x+6)}{(x+4)^2}$
12. $-\frac{3x^2+6x+7}{(3x^2-7)^2}$

You should have found the following structures:

13.
$$\frac{0(2x-1)-1(2)}{(2x-1)^2}$$
 14.
$$\frac{3x^2(x^2-4)-x^3(2x)}{(x^2-4)^2}$$
 15.
$$\frac{1(x-6)-(x+4)1}{(x-6)^2}$$

16.
$$\frac{2(4x-3) - (2x+5)4}{(4x-3)^2}$$
 17.
$$\frac{1(2x^2-8) - x(4x)}{(2x^2-8)^2}$$
 18.
$$\frac{1(x^2) - (x-7)(2x)}{x^4}$$

19.
$$\frac{(2x+4)(x+3)-(x^2+4x-1)1}{(x+3)^2}$$
 20.
$$\frac{(2x-9)(2x+5)-(x^2-9x+11)2}{(2x+5)^2}$$
 21.
$$\frac{3(x^2+12)-(3x-1)(2x)}{(x^2+12)^2}$$

22.
$$\frac{6(x^2 - x - 3) - (6x + 7)(2x - 1)}{(x^2 - x + 3)^2}$$
 23.
$$\frac{(3x^2 + 1)(x^2 - x - 1) - (x^3 + x)(2x - 1)}{(x^2 - x - 1)^2}$$
 24.
$$\frac{(10x - 2)(3x + 1) - (5x^2 - 2x)3}{(3x + 1)^2}$$

The derivatives are:

25.
$$\frac{x+2}{(x+1)^{\frac{3}{2}}}$$
 26. $\frac{2(8x-17)(2x+7)^2}{(4x-1)^2}$ 27. $-\frac{21x-31}{(7x+3)^5}$

28.
$$\frac{3(4x+13)(3x-4)^4}{(2x+1)^4}$$
 29. $\frac{2x+9}{2\sqrt{(x+1)^3}}$ 30. $-\frac{4x-9}{2\sqrt{x-1}(4x+1)^2}$

31.
$$-\frac{x^2+8x+2}{\sqrt{x^2+1}(x-8)^3}$$
 32. $\frac{2(x+2)}{3\sqrt[3]{x^4}}$ 33. $\frac{2(x-3)(x+3)^3}{x^3}$

The derivatives are:

34.
$$\frac{dy}{dx} = \frac{x + 4\sqrt{x} - 3}{2\sqrt{x}(\sqrt{x} + 2)^2}$$
 35.
$$\frac{df}{dp} = -\frac{2(p-1)}{3\sqrt[3]{p}(2p+1)^2}$$
 36.
$$\frac{db}{dw} = -\frac{5(w^2 - 1)}{3w^{\frac{2}{3}}(w^2 + 5)^2}$$

$$37. \quad \frac{dm}{dh} = \frac{6h^2}{(h^3 + 1)^2} \qquad 38. \quad \frac{dg}{dt} = \frac{21t^4 + 224t^3 - 11}{(t+8)^2} \qquad 39. \quad \frac{de}{dy} = -\frac{57(4y+3)^2}{(5y-1)^4} \\ 40. \quad \frac{dk}{dn} = \frac{8n^2 + 32n - 21}{(n+2)^2} \qquad 41. \quad \frac{dr}{dv} = -\frac{3v - 32}{2\sqrt{(v+1)^7}} \qquad 42. \quad \frac{dz}{da} = \frac{4a + 107}{4(a+5)^{\frac{7}{4}}} \\ \end{cases}$$

The equations of the tangents (in gradient-intercept form) are:

43.
$$y = -4x + 13$$
44. $y = -11x + 15$ 45. $y = -2x + 9$ 46. $y = \frac{3x}{4} + \frac{1}{4}$ 47. $y = -16x + 37$ 48. $y = 13x - 19$

Exponential Functions

Differentiate with respect to x:

1.	$y = e^x$	2.	$y = 3e^x$	3.	$y = e^{4x}$
4.	$y = 2e^{5x}$	5.	$y = e^{5x} - e^{2x}$	6.	$y = 2e^{3x} + e^{-x}$
7.	$y = e^{3.5x} + e^{1.9x}$	8.	$y = 6e^{2x} - \frac{e^{-2x}}{2}$	9.	$y = e^{2x} \cdot e^{7x}$
10.	$y = e^{x^2}$	11.	$y = e^{x^2 - 2x + 7}$	12.	$y = 3e^{-x^4}$
13.	$y = 8e^{5x-1}$	14.	$y = x^3 e^{2x}$	15.	$y = (2x+1)e^{-x}$
Find th	ne derivative function:				
16.	$y = xe^{-2x}$	17.	$y = x^3 e^{-x}$	18.	$y = x^3 - xe^{4x}$
19.	$y = (x^2 - 6)e^{8x}$	20.	$y = \sqrt{x}e^x$	21.	$y = 4e^{2x^2}$
22.	$y = xe^{x^2}$	23.	$y = e^{(e^x)}$	24.	$y = \frac{e^{2x+1}}{2x+7}$
25.	$y = \frac{e^{3x}}{x^2}$	26.	$y = e^{\sqrt{x}}$	27.	$y = \frac{e^x + 1}{e^x - 1}$

Calculate $\frac{dy}{dx}$:

28.	$y = \frac{x}{e^{-x}}$	29.	$y = (e^x + 2)^8$	30.	$y = e^{4\sqrt{x}} - e^{-\frac{1}{x}}$
31.	$y = e^{\sqrt{x}} + e^{\frac{5}{4}}$	32.	$y = 4x^3 + 3x^2 - e^{-2x}$	33.	$y = 2e^{1-x}$
34.	$y = (e^x + x)^{10}$	35.	$y = e^{x^3 + 1}$	36.	$y = x^e e^x$

Find the derivative of:

...

...

37.
$$y = x^e e^{x-e}$$
38. $p = m^2 e^{-\pi m}$ 39. $a = \frac{k-1}{e^{2k}-1}$ 40. $v = (t^2 - 3t)e^{8t}$ 41. $j = \sqrt{d}e^{d+4}$ 42. $b = \frac{e^{2q}}{e^q + 4}$ 43. $f = \frac{e^g - e^{-g}}{2}$ 44. $h = A + Be^{-6w}$ 45. $l = \frac{1 - n^2}{2e^n}$

Given the function on the left, demonstrate that the relationship on the right is true:

46.	$y = e^x + e^{-x}$	y'' = y
47.	$y = 4e^{-x} + 5e^{-3x}$	y'' + 4y' + 3y = 0
48.	$y = e^{2x} + e^{8x}$	y'' - 10y' + 16y = 0
49.	$y = e^{2x} + e^{4x}$	y'' - 6y' + 8y = 0
50.	$y = (x+1)e^{5x}$	y'' - 10y' + 25y = 0
51.	$y = A + Be^{-4x}$	y'' + 4y' = 0

Find the equation of the tangent to the following curves at the point indicated):

52.
$$y = e^x$$
 (0,1) 53. $y = e^{-x}$ (0,1) 54. $y = e^{x-2}$ (3,e)

Find the minimum value of each function (and its location) given:

55.
$$y = (x - 2)e^x$$
 56. $y = -e^{-x^2}$ 57. $y = xe^{x-1}$

Answers

1.	$y' = e^x$	2.	$y' = 3e^x$	3.	$y' = 4e^{4x}$
4.	$y' = 10e^{5x}$	5.	$y' = 5e^{5x} - 2e^{2x}$	6.	$y' = 6e^{3x} - e^{-x}$
7.	$y' = 3.5e^{3.5x} + 1.9e^{1.9x}$	8.	$y' = 12e^{2x} + e^{-2x}$	9.	$y' = 9e^{9x}$
10.	$y' = 2xe^{x^2}$	11.	$y' = (2x - 2)e^{x^2 - 2x + 7}$	12.	$y' = -12x^3 e^{-x^4}$
13.	$y' = 40e^{5x-1}$	14.	$y' = 3x^2e^{2x} + 2x^3e^{2x}$	15.	$y' = e^{-x} - 2xe^{-x}$
16.	$y' = e^{-2x} - 2xe^{-2x}$	17.	$y' = 3x^2 e^{-x} - x^3 e^{-x}$	18.	$y' = 3x^2 - e^{4x} - 4xe^{4x}$
19.	$y' = 2(4x^2 + x - 24)e^{8x}$	20.	$y' = \frac{e^x}{2\sqrt{x}} + \sqrt{x}e^x$	21.	$y' = 16xe^{2x^2}$
22.	$y' = e^{x^2} + 2x^2 e^{x^2}$	23.	$y' = e^x e^{(e^x)}$	24.	$y' = \frac{4(x+3)e^{2x+1}}{2x+7^2}$
25.	$y' = \frac{(3x - 2)e^{3x}}{x^3}$	26.	$y' = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$	27.	$y' = -\frac{2e^x}{(e^x - 1)^2}$
28.	$\frac{dy}{dx} = e^x + xe^x$	29.	$\frac{dy}{dx} = 8e^x(e^x + 2)^7$	30.	$\frac{dy}{dx} = \frac{e^{4\sqrt{x}}}{4^{4}\sqrt{x^3}} - \frac{e^{-\frac{1}{x}}}{x^2}$
31.	$\frac{dy}{dx} = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$	32.	$\frac{dy}{dx} = 12x^2 + 6x + 2e^{-2x}$	33.	$\frac{dy}{dx} = -2e^{1-x}$
34.	$\frac{dy}{dx} = 10(e^x + 1)(e^x + x)^9$	35.	$\frac{dy}{dx} = 3x^2 e^{x^3 + 1}$	36.	$\frac{dy}{dx} = (x+e)x^{e-1}e^x$
37.	$\frac{dy}{dx} = (x+e)x^{e-1}e^{x-e}$	38.	$\frac{dp}{dm} = (2 - \pi m)me^{-\pi m}$	39.	$\frac{da}{dk} = \frac{3e^{2k} - 2ke^{2k} - 1}{(e^{2k} - 1)^2}$
40.	$\frac{dv}{dt} = (8t^2 - 22t - 3)e^{8t}$	41.	$\frac{dj}{dd} = \frac{(2d+1)e^{d+4}}{2\sqrt{d}}$	42.	$\frac{db}{dq} = \frac{e^{3q} + 8e^{2q}}{(e^q + 4)^2}$
43.	$\frac{df}{dg} = \frac{e^g + e^{-g}}{2}$	44.	$\frac{dh}{dw} = -6Be^{-6w}$	45.	$\frac{dl}{dn} = \frac{n^2 - 2n - 1}{2e^n}$

The derivatives required in order to demonstrate the relationships are:

46.	$y = e^x + e^{-x}$	$y' = e^x - e^{-x}$	$y'' = e^x + e^{-x}$
47.	$y = 4e^{-x} + 5e^{-3x}$	$y' = -4e^{-x} - 15e^{-3x}$	$y'' = 4e^{-x} + 45e^{-3x}$
48.	$y = e^{2x} + e^{8x}$	$y' = 2e^{2x} + 8e^{8x}$	$y'' = 4e^{2x} + 64e^{8x}$
49.	$y = e^{2x} + e^{4x}$	$y' = 2e^{2x} + 4e^{4x}$	$y'' = 4e^{2x} + 16e^{4x}$
50.	$y = (x+1)e^{5x} = e^{5x} + xe^{5x}$	$y' = 6e^{5x} + 5xe^{5x}$	$y'' = 35e^{5x} + 25xe^{5x}$
51.	$y = A + Be^{-4x}$	$y' = -4Be^{-4x}$	$y^{\prime\prime} = 16Be^{-4x}$

The equations of the tangents (in gradient-intercept form) are:

52.
$$y = x + 1$$
 53. $y = -x + 1$ 54. $y = ex - 2e$

The minimum values of the functions are:

55.
$$y = -e (at x = 1)$$
 56. $y = -1 (at x = 0)$ 57. $y = -\frac{1}{e^2} (at x = -1)$

Logarithmic Functions

Differentiate with respect to x:

1. $y = log_e x$ 2. $y = log_e(3x)$ 3. $y = 2log_e x$ 4.y = ln(3x + 1)5.y = ln 3x + 16.y = lnx + 2x7.y = 5ln(3x)8. $y = ln(x^2)$ 9. $y = ln(x^5)$ 10. $y = ln(x^2 - 5)$ 11.y = 2lnx + 5ln(2x)12. $y = 7x - ln(4x^3)$

Simplify, using logarithmic laws, before finding the derivative function:

13.
$$y = ln\sqrt{x+9}$$
 14. $y = ln\frac{x+1}{x+3}$ 15. $y = ln(x-5)(x+8)$

Calculate the derivative:

16.
$$y = ln(2x-1)(x+8)$$
17. $y = ln(x+6)^4$ 18. $y = ln\frac{(x+1)(x+2)}{(x+3)}$ 19. $y = ln\frac{x}{x-2}$ 20. $y = ln\sqrt{x+4}$ 21. $y = ln\sqrt{(x+1)^3}$ 22. $y = ln\frac{1}{x}$ 23. $y = ln\frac{1}{3x+2}$ 24. $y = ln\frac{1}{2x^5}$

Calculate $\frac{dy}{dx}$:

25.
$$y = x \ln x$$

26. $y = 2x^3 \ln (x + 4)$
27. $y = x \ln x - 3x$
28. $y = \ln(x^2)$
30. $y = \ln(\ln x)$
31. $y = (1 + \ln x)^5$
32. $y = (\ln x - x)^9$
33. $y = (x^2 + \ln x)^6$
34. $y = \frac{\ln x}{x - 2}$
35. $y = (2x + 1) \ln x$
36. $y = x^3 \ln(x + 1)$
37. $y = \log(x)$
38. $y = \log_7(5x)$
39. $y = \log\left(\frac{2x^2 - 1}{\sqrt{x}}\right)$
40. $y = \frac{e^{2x}}{\ln x}$
41. $y = e^x \ln x$
42. $y = \ln \frac{e^x + 1}{e^x - 1}$

Given the function on the left, solve the equation on the right:

43.	y = lnx	$xy'' + (y')^2 = 2$
44.	$y = (lnx)^2$	xy'' + y' = 1
45.	y = x ln x	y'' + xy' - y = 2
46.	$y = x^2 lnx$	xy'' - y' = 8
47.	y = (x+3)lnx	xy'' + y' = 3
48.	$y = \ln(x^2 - 1)$	$2(x^2 - 1)y'' + 5y' = 0$
49.	$y = e^x lnx$	$y^{\prime\prime} - y^{\prime} = 0$

Find the equation of the tangent to the following curves at the point indicated):

50.
$$y = ln\sqrt{2-x}$$
 (1,0) 51. $y = xlnx$ (e,e) 52. $y = e^x + lnx$ (1,e)

Find the minimum value of each function (and its location) given:

53.
$$y = (lnx)^2$$
 54. $y = x^2 - lnx$ 55. $y = \frac{1}{x} + lnx$

Answers

1.	$y' = \frac{1}{x}$	2.	$y' = \frac{1}{x}$	3.	$y' = \frac{2}{x}$
4.	$y' = \frac{3}{3x+1}$	5.	$y' = \frac{1}{x} + 1$	6.	$y' = \frac{1}{x} + 2$
7.	$y' = \frac{5}{x}$	8.	$y' = \frac{2}{x}$	9.	$y' = \frac{5}{x}$
10.	$y' = \frac{2x}{x^2 - 5}$	11.	$y' = \frac{7}{x}$	12.	$y' = 7 - \frac{3}{x}$
13.	$y' = \frac{1}{2(x+9)}$	14.	$y' = \frac{1}{x+1} - \frac{1}{x+3}$	15.	$y' = \frac{1}{x-5} + \frac{1}{x+8}$
16.	$y' = \frac{2}{2x - 1} + \frac{1}{x + 8}$	17.	$y' = \frac{4}{x+6}$	18.	$y' = \frac{1}{x+1} + \frac{1}{x+2} - \frac{1}{x+3}$
19.	$y' = \frac{1}{x} - \frac{1}{x-2}$	20.	$y' = \frac{1}{2(x+4)}$	21.	$y' = \frac{3}{2(x+1)}$
22.	$y' = -\frac{1}{x}$	23.	$y' = -\frac{3}{3x+2}$	24.	$y' = -\frac{5}{x}$
25.	$\frac{dy}{dx} = lnx + 1$	26.	$\frac{dy}{dx} = 6x^2 ln (x+4) + \frac{2x^3}{x+4}$	27.	$\frac{dy}{dx} = lnx - 2$
28.	$\frac{dy}{dx} = \frac{2}{x}$	29.	$\frac{dy}{dx} = \frac{2lnx}{x}$	30.	$\frac{dy}{dx} = \frac{1}{x \ln x}$
31.	$\frac{dy}{dx} = \frac{5(1+\ln x)^4}{x}$	32.	$\frac{dy}{dx} = 9(lnx - x)^8(\frac{1}{x} - 1)$	33.	$\frac{dy}{dx} = 6(x^2 + \ln x)^5(2x + \frac{1}{x})$
34.	$\frac{dy}{dx} = \frac{(x-2) - xlnx}{x(x-2)^2}$	35.	$\frac{dy}{dx} = 2lnx + \frac{2x+1}{x}$	36.	$\frac{dy}{dx} = 3x^2ln(x+1) + \frac{x^3}{x+1}$
37.	$\frac{dy}{dx} = \frac{1}{x \ln 10}$	38.	$\frac{dy}{dx} = \frac{1}{x \ln 7}$	39.	$\frac{dy}{dx} = \frac{6x^2 + 1}{2ln10.x(2x^2 - 1)}$
40.	$\frac{dy}{dx} = \frac{(2xlnx - 1)e^{2x}}{xln^2x}$	41.	$\frac{dy}{dx} = e^x lnx + \frac{e^x}{x}$	42.	$\frac{dy}{dx} = -\frac{2e^x}{e^{2x} - 1}$

The solutions to the equations are:

43.	y = lnx	$xy'' + (y')^2 = 2$	(½, - <i>ln</i> 2)
44.	$y = (lnx)^2 = ln^2x$	xy'' + y' = 1	$(2, ln^2 2)$
45.	y = x ln x	y'' + xy' - y = 2	(1, 0)
46.	$y = x^2 lnx$	xy'' - y' = 8	(4, 16 <i>ln</i> 4)
47.	y = (x+3)lnx	xy'' + y' = 3	(e, e+3)
48.	$y = ln(x^2 - 1)$	$2(x^2 - 1)y'' + 5y' = 0$	(2, <i>ln</i> 3)
49.	$y = e^{x} lnx$	$y^{\prime\prime} - y^{\prime} = 0$	(1, 0)

The equations of the tangents (in gradient-intercept form) are:

50.
$$y = -\frac{x}{2} + \frac{1}{2}$$
 51. $y = 2x - e$ 52. $y = (e + 1)x - 1$

The minimum values of the functions are:

53.
$$y = 0$$
 (at $x = 1$) 54. $y = \frac{1}{2}(1 + \ln 2)$ (at $x = \frac{1}{\sqrt{2}}$) 55. $y = 1$ (at $x = 1$)

Trigonometric Functions

Differentiate with respect to x:

1.	$y = \tan x^2$	2.	$y = \tan^2 x$	3.	$y = \sin 3x$
4.	$y = 2\cos x$	5.	$y = \sin x \cos x$	6.	$y = \sin x + 5\cos x$
7.	$y = \tan 2x$	8.	$y = x \sin x$	9.	$y = \sin 2x \tan 3x$
10.	$y = \frac{\sin x}{x}$	11.	$y = \frac{x}{\cos x}$	12.	$y = \frac{\sin x}{x^2}$
13.	$y = \sin\left(x + \frac{\pi}{4}\right)$	14.	$y = x^2 + \tan\frac{x}{2}$	15.	$y = \cos\frac{\pi x}{3}$
16.	$y = \frac{\cos x}{1 + \sin x}$	17.	$y = \frac{3x + 4}{\sin 5x}$	18.	$y = x^2 \cos x$
19.	$y = \sin x^3$	20.	$y = \cos^3 x$	21.	$y = x^3 \tan 8x$
22.	$y = \sin^2 4x$	23.	$y = \cos\left(x^2 + 1\right)$	24.	$y = \tan \pi x$
25.	$y = \cos \sqrt{x}$	26.	$y = \sqrt{\cos 2x}$	27.	$y = \sin^4 \sqrt{x}$
28.	$y = \tan^3 x$	29.	$y = \sin^2 x + \cos^2 x$	30.	$y = (\sin x + \cos x)^2$
31.	$y = \tan\left(x^2 - 1\right)$	32.	$y = \tan(\pi - x)$	33.	$y = (2x + \tan 7x)^9$
34.	$y = 7\tan\left(x^2 + 5\right)$	35.	$y = \sin(\cos x)$	36.	$y = \cos(\sin x)$
37.	$y = \sin x \left(1 + \cos x \right)$	38.	$y = \sqrt[3]{\frac{\tan x}{x}}$	39.	$y = \tan\left(\sqrt{\cos x}\right)$
	. dv				

Calculate $\frac{dy}{dx}$:

40. $y = \cot x$ 41. $y = \sec x$ 42. $y = \csc x$ 43. $y = \sec^2 4x$ 44. $y = \tan x^\circ$ 45. $y = \sin 3x^\circ$ 46. $y = \sin bx$ 47. $y = \cos(bx + c)$ 48. $y = \tan(ax^2 + c)$

Find the derivative of:

49.	$y = e^x \sin x$	50.	$m = e^{\sin w}$	51.	$j = e^{-a} \cos a$
52.	$p = e^{4r} \sin 2r$	53.	$s = \sin(e^t + t)$	54.	$b = \cos(\ln s)$
55.	$k = \ln(\cos q)$	56.	$c = \ln(\sin 2n)$	57.	$f = \ln\left(\tan h^2\right)$
58.	$l = \sin(1 - \ln v)$	59.	$z = \frac{e^{4u}}{\tan u}$	60.	$q = \frac{\sin m^2}{e^m}$

Find the equation of the tangent to the following curves at the point indicated):

61.	$y = x \cos x$	(0, 0)	62.	$y = \sin x \tan x$	$\left(\frac{\pi}{6}, \frac{1}{2\sqrt{3}}\right)$	63.	$y = \sec x$	$\left(\frac{\pi}{4},\sqrt{2}\right)$
64.	$y = \sin x$	(0,0)	65.	$y = x + \tan x$	(0, 0)	66.	$y = \csc x$	$\left(\frac{\pi}{3}, \frac{2}{\sqrt{3}}\right)$

Find the (relative) minimum value(s) of each function (and their locations) in the domain $0 \le x \le 2\pi$.

67. $y = x + 2 \sin x$ 68. $y = \sqrt{3} \sin x + \cos x$ 69. $y = 2 \sec x + \tan x$ 70. $y = \sin^2 x$ 71. $y = \tan x - 2x$ 72. $y = \cos x - \sqrt{3} \sin x$

Answers

1.	$y' = 2x \sec^2 x^2$	2.	$y' = 2\tan x \sec^2 x$	3.	$y' = 3\cos 3x$
4.	$y' = -2\sin x$	5.	$y' = \cos^2 x - \sin^2 x$	6.	$y' = \cos x - 5 \sin x$
7.	$y' = 2\sec^2 2x$	8.	$y' = \sin x + x \cos x$	9.	$y' = 2\cos 2x \tan 3x + 3\sin 2x \sec^2 3x$
10.	$y' = \frac{x\cos x - \sin x}{x^2}$	11.	$y' = \frac{\cos x + x \sin x}{\cos^2 x}$	12.	$y' = \frac{x\cos x - 2\sin x}{x^3}$
13.	$y' = \cos\left(x + \frac{\pi}{4}\right)$	14.	$y' = 2x + \frac{1}{2}\sec^2\frac{x}{2}$	15.	$y' = -\frac{\pi}{3}\sin\frac{\pi x}{3}$
16.	$y' = -\frac{1}{1+\sin x}$	17.	$y' = \frac{3\sin 5x - 5(3x + 4)\cos 5x}{\sin^2 5x}$	18.	$y' = 2x\cos x - x^2\sin x$
19.	$y' = 3x^2 \cos x^3$	20.	$y' = -3\sin x \cos^2 x$	21.	$y' = 3x^2 \tan 8x + 8x^3 \sec^2 8x$
22.	$y' = 8\sin 4x\cos 4x$	23.	$y' = -2x\sin(x^2 + 1)$	24.	$y' = \pi \sec^2 \pi x$
25.	$y' = -\frac{\sin\sqrt{x}}{2\sqrt{x}}$	26.	$y' = -\frac{\sin 2x}{\sqrt{\cos 2x}}$	27.	$y' = \frac{2\sin^3\sqrt{x}\cos\sqrt{x}}{\sqrt{x}}$
28.	$y' = 3\tan^2 x \sec^2 x$	29.	y' = 0	30.	$y' = 2\left(\cos^2 x - \sin^2 x\right)$
31.	$y' = 2x \sec^2(x^2 - 1)$	32.	$y' = -\sec^2(\pi - x)$	33.	$y' = 9(2x + \tan 7x)^8.$ (2 + 7 sec ² 7x)
34.	$y' = 14x \sec^2(x^2 + 5)$	35.	$y' = -\sin x . \cos(\cos x)$	36.	$y' = -\cos x . \sin(\sin x)$
37.	$y' = \cos x + \cos^2 x - \sin^2 x$	38.	$y' = \frac{x \sec^2 x - \tan x}{3x^{\frac{4}{3}} \tan^{\frac{2}{3}} x}$	39.	$y' = -\frac{\sin x \sec^2(\sqrt{\cos x})}{2\sqrt{\cos x}}$
40.	$\frac{dy}{dx} = -\csc^2 x$	41.	$\frac{dy}{dx} = \tan x \sec x$	42.	$\frac{dy}{dx} = -\cot x \operatorname{cosec} x$
43.	$\frac{dy}{dx} = 8\tan 4x \sec^2 4x$	44.	$\frac{dy}{dx} = \frac{\pi}{180} \sec^2 x^\circ$	45.	$\frac{dy}{dx} = \frac{\pi}{180} \cos 3x^{\circ}$
46.	$\frac{dy}{dx} = b\cos bx$	47.	$\frac{dy}{dx} = -b\sin(bx+c)$	48.	$\frac{dy}{dx} = 2ax\sec^2(ax^2 + c)$
49.	$\frac{dy}{dx} = e^x(\sin x + \cos x)$	50.	$\frac{dm}{dw} = \cos w e^{\sin w}$	51.	$\frac{dj}{da} = -\frac{\sin a + \cos a}{e^a}$
52.	$\frac{dp}{dr} = 4e^{4r}\sin 2r + 2e^{4r}\cos 2r$	53.	$\frac{ds}{dt} = (e^t + 1)\cos(e^t + t)$	54.	$\frac{db}{ds} = -\frac{\sin(\ln s)}{s}$
55.	$\frac{dk}{dq} = -\tan q$	56.	$\frac{dc}{dn} = 2\cot 2n$	57.	$\frac{df}{dh} = \frac{2h}{\cos h^2 \sin h^2}$
58.	$\frac{dl}{dv} = -\frac{\cos(1-\ln v)}{v}$	59.	$\frac{dz}{du} = e^{4u} (4\cot u - \csc^2 u)$	<u>60</u> .	$\frac{dq}{dm} = \frac{2m\cos m^2 - \sin m^2}{e^m}$
The or	mations of the tengents (in or	adiant	intercent form) are:		

The equations of the tangents (in gradient-intercept form) are:

61.
$$y = x$$
62. $y = \frac{7x}{6} + \frac{1}{2\sqrt{3}} - \frac{7\pi}{36}$ 63. $y = \sqrt{2}x + \sqrt{2} - \frac{\sqrt{2}\pi}{4}$ 64. $y = x$ 65. $y = 2x$ 66. $y = -\frac{2x}{3} + \frac{2}{\sqrt{3}} + \frac{2\pi}{9}$

The (relative) minimum values of the functions are:

$$\begin{array}{ll} 67. \quad y = \frac{4\pi}{3} - \sqrt{3} \ (at \ x = \frac{4\pi}{3}) \\ 70. \quad y = 0 \ (at \ x = 0, \pi, 2\pi) \end{array} \begin{array}{ll} 68. \quad y = -2 \ (at \ x = \frac{4\pi}{3}) \\ y = 1 - \frac{\pi}{2} \ (at \ x = \frac{\pi}{4}) \\ y = 1 - \frac{5\pi}{2} \ (at \ x = \frac{5\pi}{4}) \end{array} \begin{array}{ll} 69. \quad y = \sqrt{3} \ (at \ x = \frac{11\pi}{6}) \\ 71. \quad y = -2 \ (at \ x = \frac{2\pi}{3}) \\ y = 1 - \frac{5\pi}{2} \ (at \ x = \frac{5\pi}{4}) \end{array}$$

Differentiate mentally without simplification

7.	(3x-2)(5x+7)	8.	$(4-x^2)(3x+5)$	9.	(5x-2)(x-3)
10.	(5x-2)(x-1)	11.	$(x^2 - 1)(x + 7)$	12.	$(x^4 + 8)(6 - 5x)$
13.	$(2x+9)(x^2-4)$	14.	(3x + 5)(8x - 1)	15.	$(9x^2 - 5)(3x - 8)$
16.	$5x^2(3x-8)$	17.	$4x^5(2x^2-5x+3)$	18.	$(x^2 - 7x + 1)(3x - 4)$
19.	$(5x^3 + 2)(4x - x^3)$	20.	$(x^2 + 3x + 1)(x^3 - 4x + 5)$	21.	$(x^{100} - 5)(5x^8 - 11x + 1)$

Answers

Mental Calculations

7.	3(5x+7) + (3x-2)5	8.	$-2x(3x+5) + (4-x^2)3$	9.	5(x-3) + (5x-2)1
10.	5(x-1) + (5x-2)1	11.	$2x(x+7) + (x^2 - 1)1$	12.	$4x^3(6-5x) + (x^4+8)(-5)$
13.	$2(x^2-4) + (2x+9)(2x)$	14.	3(8x - 1) + (3x + 5)8	15.	$18x(3x - 8) + (9x^2 - 5)3$
16.	$10x(3x-8) + 5x^2(3)$	17.	$20x^4(2x^2 - 5x + 3) + 4x^5(4x - 5)$	18.	$(2x-7)(3x-4) + (x^2 - 7x + 1)3$
19.	$\begin{array}{r} 15x^2(4x-x^3) + \\ (5x^3+2)(4-3x^2) \end{array}$	20.	$\begin{array}{c} (2x+3)(x^3-4x+5) + \\ (x^2+3x+1)(3x^2-4) \end{array}$	21.	$\begin{array}{c} 100x^{99}(5x^8-11x+1)+\\(x^{100}-5)(40x^7-11) \end{array}$