Which functions are called elementary

In our calculus course, we are going to deal mostly with *elementary functions*. They are power functions $(x^2, \sqrt{x}, x^{1/3}, ...)$, exponential functions $(2^x, \pi^x, e^x, ...)$, logarithmic functions $(\ln x, \log_2 x, ...)$, trigonometric functions $(\sin x, \cos x, \tan x, ...)$, inverse trigonometric functions $(\arcsin x, \arctan x, ...)$ and their sums, differences, products, quotients, and compositions. For example, $f(x) = \frac{\arcsin \sqrt{x^2 - 3}}{\ln(x^4 + 5) - \tan e^{\cos x}}$ is an elementary function. There are many non-elementary functions, for example $f(x) = \int_{0}^{x} \frac{\sin t}{t} dt$ is **not** an elementary function.

Elementary Functions

Elementary functions of a single variable *x* include:

- Constant functions: $2, \pi, e,$ etc.
- Rational powers of x: $x, x^2, \sqrt{x} (x^{rac{1}{2}}), x^{rac{2}{3}}$, etc.
- more general algebraic functions: f(x) satisfying $f(x)^5 + f(x) + x = 0$, which is not expressible through n-th roots or rational powers of x alone
- Exponential functions: e^x, a^x
- Logarithms: $\ln x, \ \log_a x$
- Trigonometric functions: $\sin x$, $\cos x$, $\tan x$, etc.
- Inverse trigonometric functions: $\arcsin x$, $\arccos x$, etc.
- Hyperbolic functions: $\sinh x$, $\cosh x$, etc.
- Inverse hyperbolic functions: $\operatorname{arsinh} x$, $\operatorname{arcosh} x$, etc.
- All functions obtained by adding, subtracting, multiplying or dividing a finite number of any of the previous functions^[6]
- All functions obtained by root extraction of a polynomial with coefficients in elementary functions^[7]