Higher Order Differentiation

For each problem, find the indicated derivative with respect to x.

1) f(x) = x Find f''2) $f(x) = -2x^2$ Find f''

3)
$$f(x) = 2x$$
 Find f''
4) $f(x) = x^4 + 3x$ Find f'''

5)
$$f(x) = 5x^5 - 4x^4$$
 Find f''' 6) $f(x) = x^2 - x$ Find f'''

7)
$$f(x) = 3x^3 + 4x^2$$
 Find f'''

Find the second derivative f''(x).

8)
$$f(x) = (-x^4 + 4) \cdot -4x^3$$

9) $f(x) = (-3x^4 - 2) \cdot 2x^3$

10)
$$f(x) = (2x^5 - 4) \cdot -4x^3$$

11) $f(x) = (x^2 + 4) \cdot -4x^2$

12)
$$f(x) = \frac{5}{2x^5 + 4}$$
 13) $f(x) = \frac{5x^3}{x^3 - 3}$

Answer

For each problem, find the indicated derivative with respect to x.

1) f(x) = x Find f'' f''(x) = 02) $f(x) = -2x^2$ Find f''f''(x) = -4

3)
$$f(x) = 2x$$
 Find f''
 $f''(x) = 0$
4) $f(x) = x^4 + 3x$ Find f'''
 $f'''(x) = 24x$

5)
$$f(x) = 5x^5 - 4x^4$$
 Find f'''
 $f'''(x) = 300x^2 - 96x$
6) $f(x) = x^2 - x$ Find f'''
 $f'''(x) = 0$

7)
$$f(x) = 3x^3 + 4x^2$$
 Find f'''
 $f'''(x) = 18$

Find the second derivative f''(x).

8)
$$f(x) = (-x^4 + 4) \cdot -4x^3$$

 $f'(x) = 28x^6 - 48x^2$
9) $f(x) = (-3x^4 - 2) \cdot 2x^3$
 $f'(x) = -42x^6 - 12x^2$

10)
$$f(x) = (2x^5 - 4) \cdot -4x^3$$

 $f'(x) = -64x^7 + 48x^2$
11) $f(x) = (x^2 + 4) \cdot -4x^2$
 $f'(x) = -16x^3 - 32x$

12)
$$f(x) = \frac{5}{2x^5 + 4}$$

 $f'(x) = -\frac{25x^4}{2x^{10} + 8x^5 + 8}$
13) $f(x) = \frac{5x^3}{x^3 - 3}$
 $f'(x) = -\frac{45x^2}{x^6 - 6x^3 + 9}$

14)
$$f(x) = (-5x^3 + 4)^3$$
 15) $f(x) = (-3x^4 - 2)^4$

16)
$$f(x) = (5x^2 - 3)^4$$
 17) $f(x) = (4x^5 + 5)^3$

For each problem, find the indicated derivative with respect to x.

18)
$$f(x) = 4x^4 + 5x^3 + 3x$$
 Find $f^{(4)}$ 19) $f(x) = -3x^3 + 2x^2 - 5x$ Find f''

20)
$$f(x) = 3x^4 - 5x^3 - x^2$$
 Find f''' 21) $f(x) = -3x^4 + 5x^3 + 4x$ Find $f^{(4)}$

22)
$$f(x) = \frac{3}{x^2} + \frac{4}{x^3}$$
 Find f''' 23) $f(x) = -2x^5 + 3x^{-2}$ Find f'''

Answer

14)
$$f(x) = (-5x^3 + 4)^3$$

 $f'(x) = -45x^2(-5x^3 + 4)^2$
15) $f(x) = (-3x^4 - 2)^4$
 $f'(x) = -48x^3(-3x^4 - 2)^3$

16)
$$f(x) = (5x^2 - 3)^4$$

 $f'(x) = 40x(5x^2 - 3)^3$
17) $f(x) = (4x^5 + 5)^3$
 $f'(x) = 60x^4(4x^5 + 5)^2$

For each problem, find the indicated derivative with respect to *x*.

18)
$$f(x) = 4x^4 + 5x^3 + 3x$$
 Find $f^{(4)}$
 $f^{(4)}(x) = 96$
19) $f(x) = -3x^3 + 2x^2 - 5x$ Find f''
 $f''(x) = -18x + 4$

20)
$$f(x) = 3x^4 - 5x^3 - x^2$$
 Find f'''
 $f'''(x) = 72x - 30$
21) $f(x) = -3x^4 + 5x^3 + 4x$ Find $f^{(4)}$
 $f^{(4)}(x) = -72$

22)
$$f(x) = \frac{3}{x^2} + \frac{4}{x^3}$$
 Find f'''
 $f'''(x) = -\frac{72}{x^5} - \frac{240}{x^6}$
23) $f(x) = -2x^5 + 3x^{-2}$ Find f'''
 $f'''(x) = -120x^2 - \frac{72}{x^5}$

Differentiate each function with respect to x.

24)
$$y = ((-x^4 + 5)^4 - 2)^2$$
 25) $y = ((2x^3 + 5)^4 + 2)^3$

26)
$$y = (x+4)(3x^4+5)^5$$

27)
$$y = (5x^3 + 3)^5$$

28)
$$y = \frac{3x^4 + 5}{(-3x^2 - 1)^3}$$

For each problem, find the equation of the line tangent to the function at the given point. Your answer should be in slope-intercept form.

29)
$$y = -\frac{x^2}{2x+4}$$
 at $\left(2, -\frac{1}{2}\right)$ 30) $y = -(x-2)^{\frac{2}{3}}$ at $(3, -1)$

Answer

Differentiate each function with respect to x.

24)
$$y = ((-x^4 + 5)^4 - 2)^2$$

 $\frac{dy}{dx} = -32x^3(-x^4 + 5)^3((-x^4 + 5)^4 - 2)$
25) $y = ((2x^3 + 5)^4 + 2)^3$
 $\frac{dy}{dx} = 72x^2((2x^3 + 5)^4 + 2)^2 \cdot (2x^3 + 5)^3$

26)
$$y = (x + 4)(3x^4 + 5)^5$$

$$\frac{dy}{dx} = (3x^4 + 5)^4(63x^4 + 240x^3 + 5)$$

27)
$$y = (5x^3 + 3)^5$$

$$\frac{dy}{dx} = 75x^2(5x^3 + 3)^4$$

28)
$$y = \frac{3x^4 + 5}{(-3x^2 - 1)^3}$$
$$\frac{dy}{dx} = \frac{6x(3x^4 - 2x^2 + 15)}{(-3x^2 - 1)^4}$$

For each problem, find the equation of the line tangent to the function at the given point. Your answer should be in slope-intercept form.

29)
$$y = -\frac{x^2}{2x+4}$$
 at $\left(2, -\frac{1}{2}\right)$
 $y = -\frac{3}{8}x + \frac{1}{4}$
30) $y = -(x-2)^{\frac{2}{3}}$ at $(3, -1)$
 $y = -\frac{2}{3}x + 1$