Definition of Derivative Practice Worksheet

1) Use the Limit Definition of a derivative to find f'(x) if $f(x) = 2x^2 - 3x + 1$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Answers

1) Use the Limit Definition of a derivative to find f'(x) if $f(x) = 2x^2 - 3x + 1$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \qquad f() = 2()^2 - 3() + 1$$

$$f'(x) = \lim_{h \to 0} \frac{2(x+h)^2 - 3(x+h) + 1 - (2x^2 - 3x + 1)}{h} \qquad f'(x) = \lim_{h \to 0} \frac{4x^2 + 2x^2 + 1}{h} \qquad f'(x) = \lim_{h \to 0} \frac{4x^2 + 2x^2 + 1}{h} \qquad f'(x) = \lim_{h \to 0} \frac{4x^2 + 4x^2 + 2x^2 + 1}{h} \qquad f'(x) = \lim_{h \to 0} \frac{4x^2 + 4x^2 + 2x^2 + 1}{h} \qquad f'(x) = \lim_{h \to 0} \frac{4x^2 + 4x^2 + 2x^2 + 1}{h} \qquad f'(x) = 4x - 3$$

2) Use the Alternative definition of the derivative to find f'(2) if $f(x) = \sqrt{2-x}$ $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$

Answers

2) Use the Alternative definition of the derivative to find H'(2) if $H(x) = \sqrt{3-x}$ $f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ $h'(2) = \lim_{x \to 2} \frac{h(x) - h(2)}{x - 2}$ $h'(2) = \lim_{x \to 2} \frac{h(x) - h(2)}{x - 2}$ $h'(2) = \lim_{x \to 2} \frac{3 - x - 1}{(x - 2)(\sqrt{3 - x} + 1)}$ $h'(2) = \lim_{x \to 2} \frac{\sqrt{3 - x} - 1}{(x - 2)(\sqrt{3 - x} + 1)}$ $h'(2) = \lim_{x \to 2} \frac{(3 - x)(-1)}{(x - 2)(\sqrt{3 - x} + 1)}$ $h'(2) = \lim_{x \to 2} \frac{(3 - x)(-1)}{(x - 2)(\sqrt{3 - x} + 1)}$ $h'(2) = \lim_{x \to 2} \frac{(3 - x)(-1)}{(x - 2)(\sqrt{3 - x} + 1)}$ $h'(2) = \lim_{x \to 2} \frac{(3 - x)(-1)}{(x - 2)(\sqrt{3 - x} + 1)}$ $h'(2) = \lim_{x \to 2} \frac{(3 - x)(-1)}{(x - 2)(\sqrt{3 - x} + 1)}$ $h'(2) = \lim_{x \to 2} \frac{(3 - x)(-1)}{(x - 2)(\sqrt{3 - x} + 1)}$

3) Use the Limit Definition of a Derivative to find f'(x) if $f(x) = \sqrt{2x-1}$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Answers

3) Use the Limit Definition of a Derivative to find f'(x) if $f(x) = \sqrt{2x-1}$

3) Use the Limit Definition of a Derivative to find
$$f'(x)$$
 if $f(x) = \sqrt{2x-1}$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h) = \sqrt{2(x+h) - 1}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x) - \lim_{h \to 0$$

4) Use the Limit Definition of a derivative to find f'(3) if $f(x) = \frac{2}{5-x}$

Answers

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
4) Use the Limit Definition of a derivative to find $f'(3)$ if $f(x) = \frac{2}{5-x}$

$$f'(x) = \lim_{h \to 0} \frac{2}{5-(x+h)} - \frac{2}{5-x}$$

$$h$$

$$f'(x) = \lim_{h \to 0} \frac{2}{5-(x+h)} - \frac{2}{5-x}$$

$$h$$

$$\lim_{h \to 0} \frac{2h}{h(5-x)(5-x-h)}$$

5) Use either general or alternative method above to find the equation of the tangent line to $f(x) = 2x - 3x^2$ at x = -1. $y - y_1 = m(x - x_1)$

Answers

5) Use either general or alternative method above to find the equation of the tangent line to $f(x) = 2x - 3x^2$ at x = -1, $y - y_4 = m(x - x_4)$

tangent line to
$$f(x) = 2x - 3x^2$$
 at $x = -1$. $y - y_1 = m(x - x_1)$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(y)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2(x+h) - 3(x+h)^2 - (2x - 3x^2)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2(x+h) - 3(x+h)^2 - (2x - 3x^2)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^2 + 2x + 1)^2 - 2x + 3x^2}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{2x + 2h - 3(x^$$