Chain Rule

Differentiate each function with respect to x.

1)
$$f(x) = (4x^3 - 5)^4$$

2)
$$f(x) = (-x^5 + 5)^4$$

3)
$$y = (x^4 + 3)^2$$

4)
$$y = (2x^2 + 5)^4$$

5)
$$f(x) = (2x^4 + 3)^{\frac{1}{2}}$$

6)
$$f(x) = (-5x^3 + 2)^{-5}$$

7)
$$y = (-x^3 - 2)^{\frac{1}{2}}$$

8)
$$f(x) = (4x^4 + 3)^{-5}$$

9)
$$f(x) = \sqrt{5x+4}$$

10)
$$y = (5x^3 + 3)^5$$

11)
$$y = (5x^3 - 3)^3$$

12)
$$y = (-5x^4 + 3)^4$$

13)
$$f(x) = \cos 2x^2$$

$$14) \ f(x) = \cos 4x^3$$

15)
$$y = \sin 4x^4$$

16)
$$y = \cos 4x^5$$

Answers

1)
$$f'(x) = 4(4x^3 - 5)^3 \cdot 12x^2$$

1)
$$f'(x) = 4(4x^3 - 5)^3 \cdot 12x^2$$
 2) $f'(x) = 4(-x^5 + 5)^3 \cdot -5x^4$

3)
$$\frac{dy}{dx} = 2(x^4 + 3) \cdot 4x^3$$

4)
$$\frac{dy}{dx} = 4(2x^2 + 5)^3 \cdot 4x$$

5)
$$f'(x) = \frac{1}{2}(2x^4 + 3)^{-\frac{1}{2}} \cdot 8x^3$$

6)
$$f'(x) = -5(-5x^3 + 2)^{-6} \cdot -15x^2$$

7)
$$\frac{dy}{dx} = \frac{1}{2}(-x^3 - 2)^{-\frac{1}{2}} \cdot -3x^2$$

8)
$$f'(x) = -5(4x^4 + 3)^{-6} \cdot 16x^3$$

9)
$$f'(x) = \frac{1}{2}(5x+4)^{-\frac{1}{2}} \cdot 5$$

$$10) \ \frac{dy}{dx} = 5(5x^3 + 3)^4 \cdot 15x^2$$

11)
$$\frac{dy}{dx} = 3(5x^3 - 3)^2 \cdot 15x^2$$

12)
$$\frac{dy}{dx} = 4(-5x^4 + 3)^3 \cdot -20x^3$$

11)
$$\frac{dy}{dx} = 3(5x^3 - 3)^2 \cdot 15x^2$$
 12) $\frac{dy}{dx} = 4(-5x^4 + 3)^3 \cdot -20x^3$ 13) $f'(x) = -\sin 2x^2 \cdot 4x$
= $-4x\sin 2x^2$

14)
$$f'(x) = -\sin 4x^3 \cdot 12x^2$$

= $-12x^2 \sin 4x^3$

15)
$$\frac{dy}{dx} = \cos 4x^4 \cdot 16x^3$$

= $16x^3 \cos 4x^4$

15)
$$\frac{dy}{dx} = \cos 4x^4 \cdot 16x^3$$
 16) $\frac{dy}{dx} = -\sin 4x^5 \cdot 20x^4$
= $16x^3 \cos 4x^4$ = $-20x^4 \sin 4x^5$

$$17) \ f(x) = \tan 3x^3$$

$$18) \ f(x) = \tan 4x^4$$

19)
$$y = \sec x^2$$

20)
$$y = \csc 5x^2$$

$$21) \ f(x) = \sin\left(\sin x^3\right)$$

$$22) \quad y = \sin\left(\cos 5x^5\right)$$

23)
$$y = e^{x^3}$$

24)
$$y = \ln 2x^5$$

25)
$$y = \ln x^4$$

26)
$$y = e^{x^5}$$

Answers

17)
$$f'(x) = \sec^2 3x^3 \cdot 9x^2$$

= $9x^2 \sec^2 3x^3$

17)
$$f'(x) = \sec^2 3x^3 \cdot 9x^2$$

= $9x^2 \sec^2 3x^3$
18) $f'(x) = \sec^2 4x^4 \cdot 16x^3$
= $16x^3 \sec^2 4x^4$
19) $\frac{dy}{dx} = \sec x^2 \tan x^2 \cdot 2x$

19)
$$\frac{dy}{dx} = \sec x^2 \tan x^2 \cdot 2x$$
$$= 2x \sec x^2 \tan x^2$$

20)
$$\frac{dy}{dx} = -\csc 5x^2 \cot 5x^2 \cdot 10x$$

= -10xcsc 5x² cot 5x²

20)
$$\frac{dy}{dx} = -\csc 5x^2 \cot 5x^2 \cdot 10x$$
 21) $f'(x) = \cos(\sin x^3) \cdot \cos x^3 \cdot 3x^2 = 3x^2 \cos(\sin x^3) \cos x^3$

22)
$$\frac{dy}{dx} = \cos(\cos 5x^{5}) \cdot -\sin 5x^{5} \cdot 25x^{4}$$
$$= -25x^{4}\cos(\cos 5x^{5})\sin 5x^{5}$$

$$23) \frac{dy}{dx} = e^{x^3} \cdot 3x^2$$

23)
$$\frac{dy}{dx} = e^{x^3} \cdot 3x^2$$
 24) $\frac{dy}{dx} = \frac{1}{2x^5} \cdot 10x^4$
$$= \frac{5}{x}$$

25)
$$\frac{dy}{dx} = \frac{1}{x^4} \cdot 4x^3$$
 26) $\frac{dy}{dx} = e^{x^5} \cdot 5x^4$

$$26) \ \frac{dy}{dx} = e^{x^5} \cdot 5x^4$$

For each problem, you are given a table containing some values of differentiable functions f(x), g(x) and their derivatives. Use the table data and the rules of differentiation to solve each problem.

27)	x	f(x)	f'(x)	g(x)	g'(x)
	1	2	2	1	1
	2	4	$\frac{1}{2}$	2	1
	3	3	-1	3	1
	4	2	-1	4	1

Part 1) Given
$$h_1(x) = (f(x))^2$$
, find $h_1'(3)$
Part 2) Given $h_2(x) = f(g(x))$, find $h_2'(1)$

Part 1) Given
$$h_1(x) = (f(x))^2$$
, find $h_1'(1)$
Part 2) Given $h_2(x) = f(g(x))$, find $h_2'(1)$

Part 1) Given
$$h_1(x) = (f(x))^2$$
, find $h_1'(2)$
Part 2) Given $h_2(x) = f(g(x))$, find $h_2'(4)$

Part 1) Given
$$h_1(x) = (f(x))^2$$
, find $h_1'(2)$
Part 2) Given $h_2(x) = f(g(x))$, find $h_2'(2)$

Answers

27)
$$h_1'(3) = -6$$

 $h_2'(1) = 2$

28)
$$h_1'(1) = 2$$

 $h_2'(1) = 2$

29)
$$h_1'(2) = 6$$

 $h_2'(4) = -2$

30)
$$h_1'(2) = 0$$

 $h_2'(2) = -\frac{9}{4}$