Limit of a function

 $\lim_{x\to a} f(x) = L$ if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a but not equal to a.

Example: Let $f(x) = \frac{\sqrt{t^2 + 9} - 3}{t^2}$. Discuss the behavior of the values of $f(x)$ when x is close to 0.

Solution: Make a table to see the behavior...

As t approaches 0, the values of the function seem to approach 0.16666...

$$
\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = 0.16666
$$

One-Sided Limits

Definition: We write $Lim f(x) = L$ and say the **left-hand limit** of f(x) as x approaches a is equal to L if $x \rightarrow a'$ we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a and less than a i.e x approaches a from the left.

Definition: We write $\lim_{x\to a^+} f(x) = L$ and say the **right-hand limit** of f(x) as x approaches a is equal to L if we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a and greater than a i.e x approaches a from the right

 $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^{-}} f(x) = L$ and $\lim_{x \to a^{+}} f(x) = L$

Infinite limits

Definition: Let f be a function defined on both sides of a. Then

Lim $f(x) = \infty$ means that the values of $f(x)$ can be made arbitrarily large by taking x sufficiently close to a, but not equal to a.

Definition: Let f be a function defined on both sides of a. Then

Lemminon: Let 1 be a function defined on both sides of a. Then
 $\lim_{x\to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

Vertical Asymptotes

Definition: The line $x = a$ is called a vertical asymptote of the curve $y = f(x)$ if at least one of the following statements is true:

Example: Find the vertical asymptotes of $f(x) = \tan x$ Solution: Because $\tan x = \frac{\sin x}{\cos x}$

There are potential vertical asymptotes where $\cos x = 0$. In fact, since $\cos x \rightarrow 0^+$ as

 $x \to (\pi/2)^{-}$ and $\cos x \to 0^{-}$ as $x \to (\pi/2)^{+}$, whereas sin x is positive when x is near $\pi/2$, we have $\lim_{x \to (\frac{\pi}{2})^{-}} \tan x = \infty$ and $\lim_{x \to (\frac{\pi}{2})^{+}} \tan x = -\infty$. This shows that the line $x = \frac{\pi}{2}$ is a vertical asymptote.

Similar reasoning shows that the lines $x = (2n+1)\frac{\pi}{2}$, (odd multiples of $\frac{\pi}{2}$), where n is an integer, are all vertical asymptotes of $f(x) = \tan x$.

Calculating Limits Using the Limit Laws

Suppose that c is a constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. Then

- 1. $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- 2. $\lim_{x \to a} [f(x) g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- 3. $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$
- 4. $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$ 5. $\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} if \lim_{x \to a} g(x) \neq 0$
- 6. $\lim_{x\to a}[f(x)]^n = [\lim_{x\to a}f(x)]^n$ where n is a positive integer.

7.
$$
\lim_{x \to a} c = c \qquad \text{8. } \lim_{x \to a} x = a
$$

- 9. $Lim x^n = a^n$, where n is a positive integer.
- 10. $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$, where n is a positive integer.
- 11. $\lim_{x\to a}\sqrt[n]{f(x)} = \sqrt{\lim_{x\to a}f(x)}$, where n is a positive integer.

Evaluate
$$
\lim_{x \to 2} \frac{x^3 + 2x^2 - 1}{5 - 3x}
$$

Solution:
$$
\lim_{x \to 2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{\lim_{x \to -2} (x^3 + 2x^2 - 1)}{\lim_{x \to -2} (5 - 3x)} = \frac{\lim_{x \to -2} x^3 + 2 \lim_{x \to -2} x^2 - \lim_{x \to -2} 1}{\lim_{x \to -2} 5 - 3 \lim_{x \to -2} x} = \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)} = -\frac{1}{11}
$$

Example. Find $\lim_{x\to 1} \frac{x^2-1}{x-1}$

Solution: Let $f(x) = \frac{x^2 - 1}{x - 1}$. We can't find the limit by substituting x=1 because $f(1)$ isn't defined. Nor can we apply the quotient rule because the limit of the denominator is 0. Instead we factor the numerator as a

difference of squares:

 $\frac{x^2-1}{x-1} = \frac{(x-1)(x+1)}{x-1}$. The numerator and denominator have a common factor of x-1. When we take the limit as x approaches 1, we have $x \neq 1$ so $x - 1 \neq 0$. Therefore, we can cancel the common factor and

compute the limit as follows

$$
\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}
$$

$$
= \lim_{x \to 1} (x + 1)
$$

$$
= 1 + 1 = 2
$$

The Squeeze Theorem

If $f(x) \le g(x) \le h(x)$ when x is near a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$ then $\lim_{x\to a} g(x) = L$.

Example. Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

Solution: First note that we cannot use $\lim_{x\to 0} x^2 \sin{\frac{1}{x}} = 0 = \lim_{x\to 0} x^2 \cdot \lim_{x\to 0} \sin{\frac{1}{x}}$ because $\lim_{x\to 0} \sin{\frac{1}{x}}$ does not exist. However since $-1 \le \sin \frac{1}{r} \le 1$, Multiply all sides by x^2

$$
-x^2 \le x^2 \sin \frac{1}{x} \le x^2.
$$

We know that $\lim_{x \to 0} x^2 = 0$ and $\lim_{x \to 0} (-x^2) = 0$ Taking $f(x) = -x^2$, $g(x) = x^2 \sin(\frac{1}{x}), h(x) = x^2$ in the squeeze theorem, we obtain $\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$

The Precise Definition of a Limit

Let f be a function on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of $f(x)$ as x approaches a is L, and we write

 $\lim_{x\to a} f(x) = L$ if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that $|f(x)-L| < \varepsilon$ whenever $0 < |x-a| < \delta$.

Example prove that $\lim_{x\to 3} (4x-5) = 7$.

Solution

- Preliminary analysis of the problem (guessing a value for δ). Let ε be a given positive number. $1.$ We want to find a number δ such that
- $|(4x-5)-7| < \varepsilon$ whenever $0 < |x-3| < \delta$
- But $|(4x-5)-7|=|4x-12|=|4(x-3)|=4|x-3|$. Therefore, we want $4|x-3| < \varepsilon$ whenever $0 < |x-3| < \delta$ that is, $|x-3| < \frac{\varepsilon}{4}$ whenever $0 < |x-3| < \delta$. This suggests that we should choose $\delta = \frac{\varepsilon}{4}$.
	- 2. Proof (showing that this δ works). Given $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{4}$. If $0 < |x 3| < \delta$, then $|(4x-5)-7|=|4x-12|=|4(x-3)|=4|x-3|<4\delta=4(\frac{\varepsilon}{4})=\varepsilon$ Thus $|(4x-5)-7| < \varepsilon$ whenever $0 < |x-3| < \delta$ Therefore by definition of a limit $\lim_{x\to 3} (4x-5) = 7$.

Continuity

A function f is continuous at a number a if $\lim_{x\to a} f(x) = f(a)$

Notice that the definition implicitly requires three things if f is continuous at a:

- 1. $f(a)$ is defined (that is, a is in the domain of f)
- $\lim_{x\to a} f(x)$ exists. 2.
- 3. $\lim_{x \to a} f(x) = f(a)$

A function f is continuous on an interval if it is continuous at every number in the interval.

Example: Show that the function $f(x) = 1 - \sqrt{1 - x^2}$ is continuous on the interval [-1,1]. Solution: If $-1 \le a \le 1$, then using the Limit Laws, we have

$$
\lim_{x \to a} f(x) = \lim_{x \to a} (1 - \sqrt{1 - x^2})
$$

= $1 - \lim_{x \to a} \sqrt{1 - x^2}$
= $1 - \sqrt{\lim_{x \to a} (1 - x^2)}$
= $1 - \sqrt{1 - a^2}$
= f(a)

Therefore f is continuous on $[-1.1]$.

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a: 1. $f + g = 2$. $f - g = 3$. cf 4 fg 5. f/g if $g(a) \neq 0$

Any polynomial is continuous everywhere, that is it continuous on $\mathfrak{R} = (-\infty, \infty)$ Any rational function is continuous wherever it is defined, that is, it is continuous on its domain.

Intermediate Value Theorem

Suppose that f is continuous on the closed interval [a,b] and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number c in (a,b) such that $f(c) = N$.

Example. Using the Intermediate Value Theorem, let's Show that there is a root of the equation

 $4x^3 - 6x^2 + 3x - 2 = 0$ between 1 and 2.

Solution: let $f(x) = 4x^3 - 6x^2 + 3x - 2$. We are looking for a solution of the given equation, that is, a number c between 1 and 2 such that $f(c)=0$. Therefore, we take a=1, b=2, N=0. We have $f(1) = 4 - 6 + 3 - 2 = -1 < 0$

 $f(2) = 32 - 24 + 6 - 2 = 12 > 0$

Thus, $f(1) < 0 < f(2)$; that is, $N = 0$ is a number between $f(1)$ and $f(2)$. Now f is continuous since it is a polynomial, so the Intermediate Value Theorem says there is a number c between 1 and 2 such that $f(c) = 0$. In other words, the equation $4x^3 - 6x^2 + 3x - 2 = 0$ has at least one root c in the interval (1,2).

References:

Calculus, James Stewart 5th edition