Limit of a function

 $\lim_{x\to a} f(x) = L$ if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a but not equal to a.

Example: Let $f(x) = \frac{\sqrt{t^2 + 9} - 3}{t^2}$. Discuss the behavior of the values of f(x) when x is close to 0.

Solution: Make a table to see the behavior...

t	$\frac{\sqrt{t^2+9}-3}{t^2}$
±1.0	0.16228
±0.5	0.16553
±0.1	0.16662
±0.05	0.16666

As t approaches 0, the values of the function seem to approach 0.16666...

$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} = 0.16666$$

One-Sided Limits

Definition: We write $\underset{x \to a^{-}}{Lim} f(x) = L$ and say the **left-hand limit** of f(x) as x approaches a is equal to L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and less than a i.e. x approaches a from the left.

Definition: We write $\lim_{x\to a^+} f(x) = L$ and say the **right-hand limit** of f(x) as x approaches a is equal to L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and **greater** than a i.e x approaches a from the right

$$\lim_{x \to a} f(x) = L \text{ if and only if } \lim_{x \to a^{-}} f(x) = L \text{ and } \lim_{x \to a^{+}} f(x) = L$$

Infinite limits

Definition: Let f be a function defined on both sides of a. Then

 $\lim_{x\to a} f(x) = \infty$ means that the values of f(x) can be made arbitrarily large by taking x sufficiently close to a, but not equal to a.

Definition: Let f be a function defined on both sides of a. Then

 $\lim_{x\to a} f(x) = -\infty$ means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

Vertical Asymptotes

Definition: The line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements is true:

$$\lim_{x\to a} f(x) = \infty$$

$$\lim_{x\to a^-} f(x) = \infty$$

$$\lim_{x\to a^+} f(x) = \infty$$

$$\lim_{x\to a} f(x) = -\infty$$

$$\lim_{x\to a^-} f(x) = -\infty$$

$$\lim_{x \to a^+} f(x) = -\infty$$

Example: Find the vertical asymptotes of $f(x) = \tan x$

Solution: Because $\tan x = \frac{\sin x}{\cos x}$

There are potential vertical asymptotes where $\cos x = 0$. In fact, since $\cos x \to 0^+$ as $x \to (\pi/2)^-$ and $\cos x \to 0^-$ as $x \to (\pi/2)^+$, whereas $\sin x$ is positive when x is near $\pi/2$, we have $\lim_{x \to (\pi/2)^-} \tan x = \infty$ and $\lim_{x \to (\pi/2)^+} \tan x = -\infty$. This shows that the line $x = \pi/2$ is a vertical asymptote.

Similar reasoning shows that the lines $x = (2n+1)\frac{\pi}{2}$, (odd multiples of $\frac{\pi}{2}$), where n is an integer, are all vertical asymptotes of $f(x) = \tan x$.

Calculating Limits Using the Limit Laws

Suppose that c is a constant and the limits

$$\lim_{x\to a} f(x)$$
 and $\lim_{x\to a} g(x)$ exist. Then

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} if \lim_{x \to a} g(x) \neq 0$$

6.
$$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$$
 where n is a positive integer.

7.
$$\lim_{x \to a} c = c$$
 8. $\lim_{x \to a} x = a$

9.
$$\lim_{x\to a} x^n = a^n$$
, where n is a positive integer.

10.
$$\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$$
, where n is a positive integer.

11.
$$\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$$
, where n is a positive integer.

Evaluate
$$\lim_{x \to 2} \frac{x^3 + 2x^2 - 1}{5 - 3x}.$$

Solution:
$$\lim_{x \to 2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{\lim_{x \to 2} (x^3 + 2x^2 - 1)}{\lim_{x \to 2} (5 - 3x)}$$
$$= \frac{\lim_{x \to 2} x^3 + 2 \lim_{x \to 2} x^2 - \lim_{x \to 2} 1}{\lim_{x \to 2} 5 - 3 \lim_{x \to 2} x}$$
$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)}$$
$$= -\frac{1}{11}$$

Example. Find
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$

Solution: Let $f(x) = \frac{x^2 - 1}{x - 1}$. We can't find the limit by substituting x=1 because f(1) isn't defined. Nor can

we apply the quotient rule because the limit of the denominator is 0. Instead we factor the numerator as a difference of squares:

$$\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1}$$
. The numerator and denominator have a common factor of x-1. When we take

the limit as x approaches 1, we have $x \neq 1$ so $x - 1 \neq 0$. Therefore, we can cancel the common factor and compute the limit as follows

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1}$$
$$= \lim_{x \to 1} (x + 1)$$
$$= 1 + 1 = 2$$

The Squeeze Theorem

If $f(x) \le g(x) \le h(x)$ when x is near a and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \text{ then}$$

$$\lim_{x \to a} g(x) = L.$$

Example. Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$.

Solution: First note that we cannot use $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0 = \lim_{x\to 0} x^2 \cdot \lim_{x\to 0} \sin \frac{1}{x}$ because $\lim_{x\to 0} \sin \frac{1}{x}$ does

not exist. However since $-1 \le \sin \frac{1}{x} \le 1$,

Multiply all sides by x^2

$$-x^2 \le x^2 \sin \frac{1}{x} \le x^2.$$

We know that $\lim_{x\to 0} x^2 = 0$ and $\lim_{x\to 0} (-x^2) = 0$

Taking $f(x) = -x^2$, $g(x) = x^2 \sin(\frac{1}{x})$, $h(x) = x^2$ in the squeeze theorem, we obtain

$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

The Precise Definition of a Limit

Let f be a function on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of f(x) as x approaches a is L, and we write

 $\lim_{x\to a} f(x) = L$ if for every number $\varepsilon > 0$ there is a number $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - a| < \delta$.

Example prove that $\lim_{x\to 3} (4x - 5) = 7$.

Solution

1. Preliminary analysis of the problem (guessing a value for δ). Let ε be a given positive number. We want to find a number δ such that

$$|(4x-5)-7| < \varepsilon$$
 whenever $0 < |x-3| < \delta$

But
$$|(4x-5)-7|=|4x-12|=|4(x-3)|=4|x-3|$$
. Therefore, we want $4|x-3|<\varepsilon$ whenever $0<|x-3|<\delta$ that is, $|x-3|<\frac{\varepsilon}{4}$ whenever $0<|x-3|<\delta$. This suggests that we should choose $\delta=\frac{\varepsilon}{4}$.

2. Proof (showing that this δ works). Given $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{4}$. If $0 < |x-3| < \delta$, then

$$\left|(4x-5)-7\right| = \left|4x-12\right| = \left|4(x-3)\right| = 4\left|x-3\right| < 4\delta = 4\left(\frac{\varepsilon}{4}\right) = \varepsilon$$

Thus
$$|(4x-5)-7| < \varepsilon$$
 whenever $0 < |x-3| < \delta$

Therefore by definition of a limit

$$\lim_{x \to 3} (4x - 5) = 7.$$

Continuity

A function f is continuous at a number a if

$$\lim_{x \to a} f(x) = f(a)$$

Notice that the definition implicitly requires three things if f is continuous at a:

- 1. f(a) is defined (that is, a is in the domain of f)
- 2. $\lim_{x \to a} f(x)$ exists.
- $3. \quad \lim_{x \to a} f(x) = f(a)$

A function f is continuous on an interval if it is continuous at every number in the interval.

Example: Show that the function $f(x) = 1 - \sqrt{1 - x^2}$ is continuous on the interval [-1,1]. Solution: If -1 < a < 1, then using the Limit Laws, we have

$$\lim_{x \to a} f(x) = \lim_{x \to a} (1 - \sqrt{1 - x^2})$$

$$= 1 - \lim_{x \to a} \sqrt{1 - x^2}$$

$$= 1 - \sqrt{\lim_{x \to a} (1 - x^2)}$$

$$= 1 - \sqrt{1 - a^2}$$

$$= f(a)$$

Therefore f is continuous on [-1.1].

If f and g are continuous at a and c is a constant, then the following functions are also continuous at a: $\frac{1}{2}$

1.
$$f + g$$
 2. $f - g$ 3. cf 4 fg 5. f/g if $g(a) \neq 0$

Any polynomial is continuous everywhere, that is it continuous on $\Re = (-\infty, \infty)$

Any rational function is continuous wherever it is defined, that is, it is continuous on its domain.

Intermediate Value Theorem

Suppose that f is continuous on the closed interval [a,b] and let N be any number between f(a) and f(b), where $f(a) \neq f(b)$. Then there exists a number c in (a,b) such that f(c) = N.

Example. Using the Intermediate Value Theorem, let's

Show that there is a root of the equation

$$4x^3 - 6x^2 + 3x - 2 = 0$$
 between 1 and 2.

Solution: let $f(x) = 4x^3 - 6x^2 + 3x - 2$. We are looking for a solution of the given equation, that is, a number c between 1 and 2 such that f(c) = 0. Therefore, we take a=1, b=2, N=0.

We have f(1) = 4 - 6 + 3 - 2 = -1 < 0

$$f(2) = 32 - 24 + 6 - 2 = 12 > 0$$

Thus, f(1) < 0 < f(2); that is, N = 0 is a number between f(1) and f(2). Now f is continuous since it is a polynomial, so the Intermediate Value Theorem says there is a number c between 1 and 2 such that f(c) = 0.

In other words, the equation $4x^3 - 6x^2 + 3x - 2 = 0$ has at least one root c in the interval (1,2).

References:

Calculus, James Stewart 5th edition