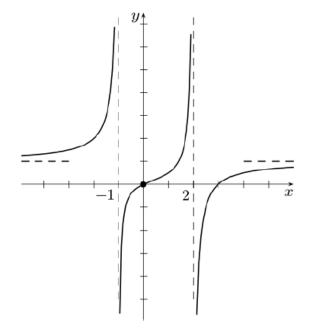

Limits Set 5


... Answers are after each page of problems

WORKSHEET: LIMITS

1. Use the graph of the function f(x) to answer each question. Use ∞ , $-\infty$ or DNE where appropriate.

- (a) f(0) =
- (b) f(2) =
- (c) f(3) =
- (d) $\lim_{x \to 0^-} f(x) =$
- (e) $\lim_{x \to 0} f(x) =$
- $\text{(f)} \quad \lim_{x \to 3^+} f(x) =$
- (g) $\lim_{x \to 3} f(x) =$
- (h) $\lim_{x \to -\infty} f(x) =$
- 2. Use the graph of the function f(x) to answer each question. Use ∞ , $-\infty$ or DNE where appropriate.

- (a) f(0) =
- (b) f(2) =
- (c) f(3) =
- (d) $\lim_{x \to -1} f(x) =$
- (e) $\lim_{x \to 0} f(x) =$
- $(f) \quad \lim_{x \to 2^+} f(x) =$
- (g) $\lim_{x \to \infty} f(x) =$

Limits Set 5 ... Answers are after each page of problems

Answers

- 1. (a) DNE (b) 0 (c) 3 (d) $-\infty$ (e) DNE (f) 2 (g) DNE (h) 1
- 2. (a) 0 (b) DNE (c) 0 (d) DNE (e) 0 (f) $-\infty$ (g) 1

Limits Set 5

... Answers are after each page of problems

3. Evaluate each limit using algebraic techniques. Use ∞ , $-\infty$ or DNE where appropriate.

(a)
$$\lim_{x \to 0} \frac{x^2 - 25}{x^2 - 4x - 5}$$

(b)
$$\lim_{x \to 5} \frac{x^2 - 25}{x^2 - 4x - 5}$$

(c)
$$\lim_{x \to 1} \frac{7x^2 - 4x - 3}{3x^2 - 4x + 1}$$

(d)
$$\lim_{x \to -2} \frac{x^4 + 5x^3 + 6x^2}{x^2(x+1) - 4(x+1)}$$

(e)
$$\lim_{x \to -3} |x+1| + \frac{3}{x}$$

(f)
$$\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x^2 - 9}$$

(g)
$$\lim_{x \to 3} \frac{\sqrt{x^2 + 7} - 3}{x + 3}$$

(h)
$$\lim_{x \to 2} \frac{x^2 + 2x - 8}{\sqrt{x^2 + 5} - (x + 1)}$$

(i)
$$\lim_{y\to 5} \left(\frac{2y^2+2y+4}{6y-3}\right)^{1/3}$$

(j)
$$\lim_{x\to 0} \sqrt[4]{2\cos(x) - 5}$$

(k)
$$\lim_{x \to 0} \frac{\frac{1}{3+x} - \frac{1}{3-x}}{x}$$

(1)
$$\lim_{x \to -6} \frac{\frac{2x+8}{x^2-12} - \frac{1}{x}}{x+6}$$

(m)
$$\lim_{x \to \infty} \sqrt{x^2 - 2} - \sqrt{x^2 + 1}$$

(n)
$$\lim_{x \to -\infty} \sqrt{x-2} - \sqrt{x}$$

(o)
$$\lim_{x \to 7} \sqrt[6]{2x - 14}$$

$$(p) \quad \lim_{x \to 1^-} \sqrt{3 - 3x}$$

$$(q) \quad \lim_{x \to \infty} \frac{x^4 - 10}{4x^3 + x}$$

(r)
$$\lim_{x \to -\infty} \sqrt[3]{\frac{x-3}{5-x}}$$

(s)
$$\lim_{x \to \infty} \frac{3x^3 + x^2 - 2}{x^2 + x - 2x^3 + 1}$$

$$(t) \quad \lim_{x \to \infty} \frac{x+5}{2x^2+1}$$

(u)
$$\lim_{x \to -\infty} \cos \left(\frac{x^5 + 1}{x^6 + x^5 + 100} \right)$$

$$(v) \quad \lim_{x \to 2} \frac{2x}{x^2 - 4}$$

(w)
$$\lim_{x \to -1} \frac{3x}{x^2 + 2x + 1}$$

(x)
$$\lim_{x \to -1} \frac{x^2 - 25}{x^2 - 4x - 5}$$

(y)
$$\lim_{x \to 3} \frac{\sqrt{x^2 - 5} + 2}{x - 3}$$

$$(z) \quad \lim_{x \to 0} \frac{2^x + \sin(x)}{x^4}$$

(A)
$$\lim_{x \to 1^{-}} \frac{1}{x - 1} + e^{x^2}$$

(B)
$$\lim_{x \to \infty} 2x^2 - 3x$$

(C)
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2-x}}{x}$$

(D)
$$\lim_{x \to 0^+} \frac{e^x}{1 + \ln(x)}$$

$$(E) \quad \lim_{x \to \infty} \sqrt{x^2 + 1} - 2x$$

(F)
$$\lim_{x \to 1} \frac{\sqrt[3]{x} - 1}{\sqrt{x} - 1}$$

Limits Set 5 ... Answers are after each page of problems

Answers

3.

(a) 5

(b) $\frac{5}{3}$

(c) 5

(d) 1

(e) 1

(f) $\frac{1}{24}$

(g) $\frac{1}{6}$

(h) -18

(i) $\frac{4}{3}$

(j) DNE

(k) $-\frac{2}{9}$

(l) $\frac{1}{36}$

(m) 0

(n) DNE

(o) DNE

(p) 0

(q) ∞

(r) -1

(s) $-\frac{3}{2}$

(t) 0

(u) 1

(v) DNE

 $(w)\ -\infty$

(x) DNE

(y) DNE

(z) ∞

(A) $-\infty$

(B) ∞

(C) $\frac{1}{\sqrt{2}}$

(D) 0

(E) $-\infty$

(F) $\frac{2}{3}$

Limits Set 5

... Answers are after each page of problems

- 4. Find the following limits involving absolute values.

 - (a) $\lim_{x \to 1} \frac{x^2 1}{|x 1|}$ (b) $\lim_{x \to -2} \frac{1}{|x + 2|} + x^2$ (c) $\lim_{x \to 3^-} \frac{x^2|x 3|}{x 3}$
- 5. Find the value of the parameter k to make the following limit exist and be finite. What is then the value of the limit?

$$\lim_{x \to 5} \frac{x^2 + kx - 20}{x - 5}$$

- 6. Answer the following questions for the piecewise defined function f(x) described on the right hand side.
 - (a) f(1) =
 - (b) $\lim_{x \to 0} f(x) =$
 - (c) $\lim_{x \to 1} f(x) =$

$$f(x) = \begin{cases} \sin(\pi x) & \text{for } x < 1, \\ 2^{x^2} & \text{for } x > 1. \end{cases}$$

- 7. Answer the following questions for the piecewise defined function f(t) described on the right hand side.
 - f(-3/2) =(a)
 - (b) f(2) =
 - (c) f(3/2) =
 - (d) $\lim_{t \to -2} f(t) =$
 - (e) $\lim_{t \to -1^+} f(t) =$
 - (f) $\lim_{t \to 2} f(t) =$
 - (g) $\lim_{t \to 0} f(t) =$

$$f(t) = \begin{cases} t^2 & \text{for } t < -2\\ \frac{t+6}{t^2 - t} & \text{for } -1 < t < 2\\ 3t - 2 & \text{for } t \ge 2 \end{cases}$$

Limits Set 5 ... Answers are after each page of problems

Answers

- 4. (a) DNE (b) ∞ (c) -9
- 5. k = -1, limit is then equal to 9
- 6. (a) DNE (b) 0 (c) DNE
- 7. (a) DNE (b) 4 (c) 10 (d) DNE (e) $\frac{5}{2}$ (f) 4 (g) DNE
- 8. (a) 0 (b) 0 (c) $\frac{5}{3}$