
WORKSHEET 1 ON LIMITS

Work the following. No calculator.

1. The graphs of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

Limits Set 2

... Answers are after each page of problems

Answers

Worksheet 1 on Limits

- 1. (a) 2
 - (b) dne
 - (c) 0
 - (d) undefined
 - (e) 16
 - (f) 2

Find the following limits. Show all steps.

2. $\lim_{x \to 0} \frac{\sin(2x)}{x}$ 3. $\lim_{x \to 0} \frac{\sin x}{2x^2 - x}$ 4. $\lim_{x \to 0} \frac{x + \sin x}{x}$ 5. $\lim_{x \to 0} \frac{\sin^2 x}{x}$ 6. $\lim_{x \to 0} \frac{3\sin(4x)}{\sin(3x)}$

$$7. \lim_{x \to 0} \frac{x^2}{1 - \cos x}$$

Answers

Worksheet 1 on Limits

- 2.2
- 3.1
- 4.2
- 5.0
- 6.4
- 7.2

8. Graph y = |x|, y = -|x|, and $y = x \cos\left(\frac{50\pi}{x}\right)$ on the same graph over the *x*-interval from -1 to 1, and use the Squeeze Theorem to find $\lim_{x \to 0} x \cos\left(\frac{50\pi}{x}\right)$.

9. Sketch the graphs of $y=1-x^2$, $y=\cos x$, and y=f(x), where *f* is any continuous function that satisfies the inequality $1-x^2 \le f(x) \le \cos x$ for all *x* in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. What can you say about the limit of f(x) as $x \to 0$? Explain your reasoning.

10. If $3x \le f(x) \le x^3 + 2$, evaluate $\lim_{x \to 1} f(x)$.

Answers

Worksheet 1 on Limits

8.0

- 9. $\lim_{x \to 0} f(x) = 1$ by the Squeeze Theorem.
- 10. $\lim_{x \to 1} f(x) = 3$ by the Squeeze Theorem.

Evaluate. Show all steps.

11. $\lim_{x \to -3} \frac{x^2 - 2x - 15}{x^2 + 4x + 3}$ 12. $\lim_{x \to 7} \frac{\sqrt{x + 2} - 3}{x - 7}$ 13. $\lim_{x \to 0} \frac{\frac{1}{5 + x} - \frac{1}{5}}{x}$ 14. $\lim_{x \to 4} \frac{x^3 - 64}{x - 4}$

Answers

Worksheet 1 on Limits

11. 4 12. $\frac{1}{6}$ 13. $-\frac{1}{25}$ 14. 48