1. Which of the following is indeterminate at x = 1?

$$\frac{x^2+1}{x-1}$$
, $\frac{x^2-1}{x+2}$, $\frac{x^2-1}{\sqrt{x+3}-2}$, $\frac{x^2+1}{\sqrt{x+3}-2}$

SOLUTION At x=1, $\frac{x^2-1}{\sqrt{x+3}-2}$ is of the form $\frac{0}{0}$; hence, this function is indeterminate. None of the remaining functions is indeterminate at x=1: $\frac{x^2+1}{x-1}$ and $\frac{x^2+1}{\sqrt{x+3}-2}$ are undefined because the denominator is zero but the numerator is not, while $\frac{x^2-1}{x+2}$ is equal to 0.

- 2. Give counterexamples to show that these statements are false:
- (a) If f(c) is indeterminate, then the right- and left-hand limits as $x \to c$ are not equal.
- **(b)** If $\lim_{x \to c} f(x)$ exists, then f(c) is not indeterminate.
- (c) If f(x) is undefined at x = c, then f(x) has an indeterminate form at x = c.

SOLUTION

(a) Let $f(x) = \frac{x^2 - 1}{x - 1}$. At x = 1, f is indeterminate of the form $\frac{0}{0}$ but

$$\lim_{x \to 1-} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1-} (x + 1) = 2 = \lim_{x \to 1+} (x + 1) = \lim_{x \to 1+} \frac{x^2 - 1}{x - 1}.$$

(b) Again, let $f(x) = \frac{x^2-1}{x-1}$. Then

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 2$$

but f(1) is indeterminate of the form $\frac{0}{0}$.

- (c) Let $f(x) = \frac{1}{x}$. Then f is undefined at x = 0 but does not have an indeterminate form at x = 0.
- 3. The method for evaluating limits discussed in this section is sometimes called "simplify and plug in." Explain how it actually relies on the property of continuity.

SOLUTION If f is continuous at x = c, then, by definition, $\lim_{x\to c} f(x) = f(c)$; in other words, the limit of a continuous function at x = c is the value of the function at x = c. The "simplify and plug-in" strategy is based on simplifying a function which is indeterminate to a continuous function. Once the simplification has been made, the limit of the remaining continuous function is obtained by evaluation.

Exercises

In Exercises 1–4, show that the limit leads to an indeterminate form. Then carry out the two-step procedure: Transform the function algebraically and evaluate using continuity.

1.
$$\lim_{x \to 6} \frac{x^2 - 36}{x - 6}$$

SOLUTION When we substitute x = 6 into $\frac{x^2 - 36}{x - 6}$, we obtain the indeterminate form $\frac{0}{0}$. Upon factoring the numerator and simplifying, we find

$$\lim_{x \to 6} \frac{x^2 - 36}{x - 6} = \lim_{x \to 6} \frac{(x - 6)(x + 6)}{x - 6} = \lim_{x \to 6} (x + 6) = 12.$$

2.
$$\lim_{h\to 3} \frac{9-h^2}{h-3}$$

SOLUTION When we substitute h = 3 into $\frac{9-h^2}{h-3}$, we obtain the indeterminate form $\frac{0}{0}$. Upon factoring the denominator and simplifying, we find

$$\lim_{h \to 3} \frac{9 - h^2}{h - 3} = \lim_{h \to 3} \frac{(3 - h)(3 + h)}{h - 3} = \lim_{h \to 3} -(3 + h) = -6.$$

3.
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x + 1}$$

SOLUTION When we substitute x = -1 into $\frac{x^2 + 2x + 1}{x + 1}$, we obtain the indeterminate form $\frac{0}{0}$. Upon factoring the numerator and simplifying, we find

$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x + 1} = \lim_{x \to -1} \frac{(x + 1)^2}{x + 1} = \lim_{x \to -1} (x + 1) = 0.$$

4.
$$\lim_{t \to 9} \frac{2t - 18}{5t - 45}$$

SOLUTION When we substitute t = 9 into $\frac{2t-18}{5t-45}$, we obtain the indeterminate form $\frac{0}{0}$. Upon dividing out the common factor of t-9 from both the numerator and denominator, we find

$$\lim_{t \to 9} \frac{2t - 18}{5t - 45} = \lim_{t \to 9} \frac{2(t - 9)}{5(t - 9)} = \lim_{t \to 9} \frac{2}{5} = \frac{2}{5}.$$

In Exercises 5-34, evaluate the limit, if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

5.
$$\lim_{x \to 7} \frac{x-7}{x^2-49}$$

SOLUTION
$$\lim_{x \to 7} \frac{x-7}{x^2-49} = \lim_{x \to 7} \frac{x-7}{(x-7)(x+7)} = \lim_{x \to 7} \frac{1}{x+7} = \frac{1}{14}.$$

6.
$$\lim_{x \to 8} \frac{x^2 - 64}{x - 9}$$

SOLUTION
$$\lim_{x\to 8} \frac{x^2-64}{x-9} = \frac{0}{-1} = 0$$

7.
$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x + 2}$$

SOLUTION
$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x + 2} = \lim_{x \to -2} \frac{(x+1)(x+2)}{x+2} = \lim_{x \to -2} (x+1) = -1.$$

8.
$$\lim_{x \to 8} \frac{x^3 - 64x}{x - 8}$$

SOLUTION
$$\lim_{x \to 8} \frac{x^3 - 64x}{x - 8} = \lim_{x \to 8} \frac{x(x - 8)(x + 8)}{x - 8} = \lim_{x \to 8} x(x + 8) = 8(16) = 128.$$

9.
$$\lim_{x \to 5} \frac{2x^2 - 9x - 5}{x^2 - 25}$$

SOLUTION
$$\lim_{x \to 5} \frac{2x^2 - 9x - 5}{x^2 - 25} = \lim_{x \to 5} \frac{(x - 5)(2x + 1)}{(x - 5)(x + 5)} = \lim_{x \to 5} \frac{2x + 1}{x + 5} = \frac{11}{10}.$$

10.
$$\lim_{h\to 0} \frac{(1+h)^3-1}{h}$$

SOLUTION

$$\lim_{h \to 0} \frac{(1+h)^3 - 1}{h} = \lim_{h \to 0} \frac{1 + 3h + 3h^2 + h^3 - 1}{h} = \lim_{h \to 0} \frac{3h + 3h^2 + h^3}{h}$$
$$= \lim_{h \to 0} (3 + 3h + h^2) = 3 + 3(0) + 0^2 = 3.$$

11.
$$\lim_{x \to -\frac{1}{2}} \frac{2x+1}{2x^2+3x+1}$$

SOLUTION
$$\lim_{x \to -\frac{1}{2}} \frac{2x+1}{2x^2+3x+1} = \lim_{x \to -\frac{1}{2}} \frac{2x+1}{(2x+1)(x+1)} = \lim_{x \to -\frac{1}{2}} \frac{1}{x+1} = 2.$$

12.
$$\lim_{x \to 3} \frac{x^2 - x}{x^2 - 9}$$

SOLUTION As $x \to 3$, the numerator $x^2 - x \to 6$ while the denominator $x^2 - 9 \to 0$; thus, this limit does not exist. Checking the one-sided limits, we find

$$\lim_{x \to 3-} \frac{x^2 - x}{x^2 - 9} = \lim_{x \to 3-} \frac{x(x-1)}{(x-3)(x+3)} = -\infty$$

while

$$\lim_{x \to 3+} \frac{x^2 - x}{x^2 - 9} = \lim_{x \to 3+} \frac{x(x-1)}{(x-3)(x+3)} = \infty.$$

13.
$$\lim_{x\to 2} \frac{3x^2-4x-4}{2x^2-8}$$

SOLUTION
$$\lim_{x \to 2} \frac{3x^2 - 4x - 4}{2x^2 - 8} = \lim_{x \to 2} \frac{(3x + 2)(x - 2)}{2(x - 2)(x + 2)} = \lim_{x \to 2} \frac{3x + 2}{2(x + 2)} = \frac{8}{8} = 1.$$

14.
$$\lim_{h\to 0} \frac{(3+h)^3-27}{h}$$

SOLUTION

$$\lim_{h \to 0} \frac{(3+h)^3 - 27}{h} = \lim_{h \to 0} \frac{27 + 27h + 9h^2 + h^3 - 27}{h} = \lim_{h \to 0} \frac{27h + 9h^2 + h^3}{h}$$
$$= \lim_{h \to 0} (27 + 9h + h^2) = 27 + 9(0) + 0^2 = 27.$$

15.
$$\lim_{t \to 0} \frac{4^{2t} - 1}{4^t - 1}$$

SOLUTION
$$\lim_{t \text{ to } 0} \frac{4^{2t}-1}{4^t-1} = \lim_{t \text{ to } 0} \frac{(4^t-1)(4^t+1)}{4^t-1} = \lim_{t \to 0} (4^t+1) = 2.$$

16.
$$\lim_{h\to 4} \frac{(h+2)^2-9h}{h-4}$$

$$\text{SOLUTION} \quad \lim_{h \to 4} \frac{(h+2)^2 - 9h}{h-4} = \lim_{h \to 4} \frac{h^2 - 5h + 4}{h-4} = \lim_{h \to 4} \frac{(h-1)(h-4)}{h-4} = \lim_{h \to 4} (h-1) = 3.$$

17.
$$\lim_{x \to 16} \frac{\sqrt{x} - 4}{x - 16}$$

SOLUTION
$$\lim_{x \to 16} \frac{\sqrt{x} - 4}{x - 16} = \lim_{x \to 16} \frac{\sqrt{x} - 4}{(\sqrt{x} + 4)(\sqrt{x} - 4)} = \lim_{x \to 16} \frac{1}{\sqrt{x} + 4} = \frac{1}{8}.$$

18.
$$\lim_{t \to -2} \frac{2t+4}{12-3t^2}$$

SOLUTION
$$\lim_{t \to -2} \frac{2t+4}{12-3t^2} = \lim_{t \to -2} \frac{2(t+2)}{-3(t-2)(t+2)} = \lim_{t \to -2} \frac{2}{-3(t-2)} = \frac{1}{6}$$

19.
$$\lim_{y \to 3} \frac{y^2 + y - 12}{y^3 - 10y + 3}$$

SOLUTION
$$\lim_{y \to 3} \frac{y^2 + y - 12}{y^3 - 10y + 3} = \lim_{y \to 3} \frac{(y - 3)(y + 4)}{(y - 3)(y^2 + 3y - 1)} = \lim_{y \to 3} \frac{(y + 4)}{(y^2 + 3y - 1)} = \frac{7}{17}.$$

20.
$$\lim_{h\to 0} \frac{\frac{1}{(h+2)^2} - \frac{1}{4}}{h}$$

SOLUTION

$$\begin{split} \lim_{h \to 0} \frac{\frac{1}{(h+2)^2} - \frac{1}{4}}{h} &= \lim_{h \to 0} \frac{\frac{4 - (h+2)^2}{4(h+2)^2}}{h} = \lim_{h \to 0} \frac{\frac{4 - (h^2 + 4h + 4)}{4(h+2)^2}}{h} = \lim_{h \to 0} \frac{\frac{-h^2 - 4h}{4(h+2)^2}}{h} \\ &= \lim_{h \to 0} \frac{h \frac{-h - 4}{4(h+2)^2}}{h} = \lim_{h \to 0} \frac{-h - 4}{4(h+2)^2} = \frac{-4}{16} = -\frac{1}{4}. \end{split}$$

21.
$$\lim_{h\to 0} \frac{\sqrt{2+h}-2}{h}$$

SOLUTION $\lim_{h \to 0} \frac{\sqrt{h+2}-2}{h}$ does not exist.

• As
$$h \to 0+$$
, we have $\frac{\sqrt{h+2}-2}{h} = \frac{\left(\sqrt{h+2}-2\right)\left(\sqrt{h+2}+2\right)}{h(\sqrt{h+2}+2)} = \frac{h-2}{h(\sqrt{h+2}+2)} \to -\infty.$
• As $h \to 0-$, we have $\frac{\sqrt{h+2}-2}{h} = \frac{\left(\sqrt{h+2}-2\right)\left(\sqrt{h+2}+2\right)}{h(\sqrt{h+2}+2)} = \frac{h-2}{h(\sqrt{h+2}+2)} \to \infty.$

• As
$$h \to 0$$
—, we have $\frac{\sqrt{h+2}-2}{h} = \frac{(\sqrt{h+2}-2)(\sqrt{h+2}+2)}{h(\sqrt{h+2}+2)} = \frac{h-2}{h(\sqrt{h+2}+2)} \to \infty$.

22.
$$\lim_{x \to 8} \frac{\sqrt{x-4}-2}{x-8}$$

22.
$$\lim_{x \to 8} \frac{\sqrt{x-4}-2}{x-8}$$

SOLUTION

$$\lim_{x \to 8} \frac{\sqrt{x-4}-2}{x-8} = \lim_{x \to 8} \frac{(\sqrt{x-4}-2)(\sqrt{x-4}+2)}{(x-8)(\sqrt{x-4}+2)} = \lim_{x \to 8} \frac{x-4-4}{(x-8)(\sqrt{x-4}+2)}$$
$$= \lim_{x \to 8} \frac{1}{\sqrt{x-4}+2} = \frac{1}{\sqrt{4}+2} = \frac{1}{4}.$$

23.
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x}-\sqrt{8-x}}$$

SOLUTION

$$\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - \sqrt{8 - x}} = \lim_{x \to 4} \frac{(x - 4)(\sqrt{x} + \sqrt{8 - x})}{(\sqrt{x} - \sqrt{8 - x})(\sqrt{x} + \sqrt{8 - x})} = \lim_{x \to 4} \frac{(x - 4)(\sqrt{x} + \sqrt{8 - x})}{x - (8 - x)}$$

$$= \lim_{x \to 4} \frac{(x - 4)(\sqrt{x} + \sqrt{8 - x})}{2x - 8} = \lim_{x \to 4} \frac{(x - 4)(\sqrt{x} + \sqrt{8 - x})}{2(x - 4)}$$

$$= \lim_{x \to 4} \frac{(\sqrt{x} + \sqrt{8 - x})}{2} = \frac{\sqrt{4} + \sqrt{4}}{2} = 2.$$

24.
$$\lim_{x \to 4} \frac{\sqrt{5-x}-1}{2-\sqrt{x}}$$

SOLUTION

$$\lim_{x \to 4} \frac{\sqrt{5 - x} - 1}{2 - \sqrt{x}} = \lim_{x \to 4} \left(\frac{\sqrt{5 - x} - 1}{2 - \sqrt{x}} \cdot \frac{\sqrt{5 - x} + 1}{\sqrt{5 - x} + 1} \right) = \lim_{x \to 4} \frac{4 - x}{(2 - \sqrt{x})(\sqrt{5 - x} + 1)}$$
$$= \lim_{x \to 4} \frac{(2 - \sqrt{x})(2 + \sqrt{x})}{(2 - \sqrt{x})(\sqrt{5 - x} + 1)} = \lim_{x \to 4} \frac{2 + \sqrt{x}}{\sqrt{5 - x} + 1} = 2.$$

25.
$$\lim_{x \to 4} \left(\frac{1}{\sqrt{x} - 2} - \frac{4}{x - 4} \right)$$

SOLUTION
$$\lim_{x \to 4} \left(\frac{1}{\sqrt{x} - 2} - \frac{4}{x - 4} \right) = \lim_{x \to 4} \frac{\sqrt{x} + 2 - 4}{(\sqrt{x} - 2)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\sqrt{x} - 2}{(\sqrt{x} - 2)(\sqrt{x} + 2)} = \frac{1}{4}$$

26.
$$\lim_{x\to 0+} \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x^2 + x}} \right)$$

$$\lim_{x \to 0+} \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x^2 + x}} \right) = \lim_{x \to 0+} \frac{\sqrt{x + 1} - 1}{\sqrt{x}\sqrt{x + 1}} = \lim_{x \to 0+} \frac{\left(\sqrt{x + 1} - 1\right)\left(\sqrt{x + 1} + 1\right)}{\sqrt{x}\sqrt{x + 1}\left(\sqrt{x + 1} + 1\right)}$$

$$= \lim_{x \to 0+} \frac{x}{\sqrt{x}\sqrt{x + 1}\left(\sqrt{x + 1} + 1\right)} = \lim_{x \to 0+} \frac{\sqrt{x}}{\sqrt{x + 1}\left(\sqrt{x + 1} + 1\right)} = 0.$$

27.
$$\lim_{x\to 0} \frac{\cot x}{\csc x}$$

SOLUTION
$$\lim_{x\to 0} \frac{\cot x}{\csc x} = \lim_{x\to 0} \frac{\cos x}{\sin x} \cdot \sin x = \cos 0 = 1.$$

28.
$$\lim_{\theta \to \frac{\pi}{2}} \frac{\cot \theta}{\csc \theta}$$

29.
$$\lim_{t \to 2} \frac{2^{2t} + 2^t - 20}{2^t - 4}$$

SOLUTION
$$\lim_{t\to 2} \frac{2^{2t}+2^t-20}{2^t-4} = \lim_{t\to 2} \frac{(2^t+5)(2^t-4)}{2^t-4} = \lim_{t\to 2} (2^t+5) = 9.$$

30.
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{2}{1-x^2} \right)$$

30.
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{2}{1-x^2} \right)$$

SOLUTION
$$\lim_{x \to 1} \left(\frac{1}{1-x} - \frac{2}{1-x^2} \right) = \lim_{x \to 1} \frac{(1+x)-2}{(1-x)(1+x)} = \lim_{x \to 1} \frac{-1}{1+x} = -\frac{1}{2}.$$

31.
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\tan x - 1}$$

SOLUTION
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{\tan x - 1} \cdot \frac{\cos x}{\cos x} = \lim_{x \to \frac{\pi}{4}} \frac{(\sin x - \cos x)\cos x}{\sin x - \cos x} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}.$$

32.
$$\lim_{\theta \to \frac{\pi}{2}} \left(\sec \theta - \tan \theta \right)$$

SOLUTION

$$\lim_{\theta \to \frac{\pi}{2}} \left(\sec \theta - \tan \theta \right) = \lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin \theta}{\cos \theta} \cdot \frac{1 + \sin \theta}{1 + \sin \theta} = \lim_{\theta \to \frac{\pi}{2}} \frac{1 - \sin^2 \theta}{\cos \theta \left(1 + \sin \theta \right)} = \lim_{\theta \to \frac{\pi}{2}} \frac{\cos \theta}{1 + \sin \theta} = \frac{0}{2} = 0.$$

33.
$$\lim_{\theta \to \frac{\pi}{4}} \left(\frac{1}{\tan \theta - 1} - \frac{2}{\tan^2 \theta - 1} \right)$$

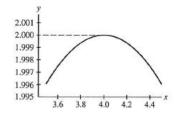
$$\text{SOLUTION} \quad \lim_{\theta \to \frac{\pi}{4}} \left(\frac{1}{\tan \theta - 1} - \frac{2}{\tan^2 \theta - 1} \right) = \lim_{\theta \to \frac{\pi}{4}} \frac{(\tan \theta + 1) - 2}{(\tan \theta + 1)(\tan \theta - 1)} = \lim_{\theta \to \frac{\pi}{4}} \frac{1}{\tan \theta + 1} = \frac{1}{2}.$$

34.
$$\lim_{x \to \frac{\pi}{3}} \frac{2\cos^2 x + 3\cos x - 2}{2\cos x - 1}$$

$$\lim_{x \to \frac{\pi}{3}} \frac{2\cos^2 x + 3\cos x - 2}{2\cos x - 1} = \lim_{x \to \frac{\pi}{3}} \frac{(2\cos x - 1)(\cos x + 2)}{2\cos x - 1} = \lim_{x \to \frac{\pi}{3}} \cos x + 2 = \cos\frac{\pi}{3} + 2 = \frac{5}{2}.$$

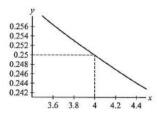
35. GU Use a plot of $f(x) = \frac{x-4}{\sqrt{x}-\sqrt{8-x}}$ to estimate $\lim_{x\to 4} f(x)$ to two decimal places. Compare with the answer obtained algebraically in Exercise 23.

SOLUTION Let $f(x) = \frac{x-4}{\sqrt{x}-\sqrt{8-x}}$. From the plot of f(x) shown below, we estimate $\lim_{x\to 4} f(x) \approx 2.00$; to two decimal places, this matches the value of 2 obtained in Exercise 23.



36. GU Use a plot of $f(x) = \frac{1}{\sqrt{x}-2} - \frac{4}{x-4}$ to estimate $\lim_{x\to 4} f(x)$ numerically. Compare with the answer obtained algebraically in Exercise 25.

SOLUTION Let $f(x) = \frac{1}{\sqrt{x-2}} - \frac{4}{x-4}$. From the plot of f(x) shown below, we estimate $\lim_{x \to 4} f(x) \approx 0.25$; to two decimal places, this matches the value of $\frac{1}{4}$ obtained in Exercise 25.



In Exercises 37-42, evaluate using the identity

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

37.
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$

SOLUTION
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{x - 2} = \lim_{x \to 2} (x^2 + 2x + 4) = 12.$$

38.
$$\lim_{x \to 3} \frac{x^3 - 27}{x^2 - 9}$$

SOLUTION
$$\lim_{x \to 3} \frac{x^3 - 27}{x^2 - 9} = \lim_{x \to 3} \frac{(x - 3)(x^2 + 3x + 9)}{(x - 3)(x + 3)} = \lim_{x \to 3} \frac{(x^2 + 3x + 9)}{x + 3} = \frac{27}{6} = \frac{9}{2}.$$

39.
$$\lim_{x \to 1} \frac{x^2 - 5x + 4}{x^3 - 1}$$

SOLUTION
$$\lim_{x \to 1} \frac{x^2 - 5x + 4}{x^3 - 1} = \lim_{x \to 1} \frac{(x - 1)(x - 4)}{(x - 1)(x^2 + x + 1)} = \lim_{x \to 1} \frac{x - 4}{x^2 + x + 1} = -1.$$

40.
$$\lim_{x \to -2} \frac{x^3 + 8}{x^2 + 6x + 8}$$

SOLUTION
$$\lim_{x \to -2} \frac{x^3 + 8}{x^2 + 6x + 8} = \lim_{x \to -2} \frac{(x+2)(x^2 - 2x + 4)}{(x+2)(x+4)} = \lim_{x \to -2} \frac{(x^2 - 2x + 4)}{x+4} = \frac{12}{2} = 6.$$

41.
$$\lim_{x \to 1} \frac{x^4 - 1}{x^3 - 1}$$

$$\lim_{x \to 1} \frac{x^4 - 1}{x^3 - 1} = \lim_{x \to 1} \frac{(x^2 - 1)(x^2 + 1)}{(x - 1)(x^2 + x + 1)} = \lim_{x \to 1} \frac{(x - 1)(x + 1)(x^2 + 1)}{(x - 1)(x^2 + x + 1)} = \lim_{x \to 1} \frac{(x + 1)(x^2 + 1)}{(x^2 + x + 1)} = \frac{4}{3}.$$

42.
$$\lim_{x \to 27} \frac{x - 27}{x^{1/3} - 3}$$

SOLUTION
$$\lim_{x \to 27} \frac{x - 27}{x^{1/3} - 3} = \lim_{x \to 27} \frac{(x^{1/3} - 3)(x^{2/3} + 3x^{1/3} + 9)}{x^{1/3} - 3} = \lim_{x \to 27} (x^{2/3} + 3x^{1/3} + 9) = 27$$

43. Evaluate
$$\lim_{h\to 0} \frac{\sqrt[4]{1+h}-1}{h}$$
. Hint: Set $x=\sqrt[4]{1+h}$ and rewrite as a limit as $x\to 1$.

SOLUTION Let
$$x = \sqrt[4]{1+h}$$
. Then $h = x^4 - 1 = (x-1)(x+1)(x^2+1)$, $x \to 1$ as $h \to 0$ and

$$\lim_{h \to 0} \frac{\sqrt[4]{1+h}-1}{h} = \lim_{x \to 1} \frac{x-1}{(x-1)(x+1)(x^2+1)} = \lim_{x \to 1} \frac{1}{(x+1)(x^2+1)} = \frac{1}{4}.$$

44. Evaluate
$$\lim_{h\to 0} \frac{\sqrt[3]{1+h}-1}{\sqrt[2]{1+h}-1}$$
. Hint: Set $x=\sqrt[6]{1+h}$ and rewrite as a limit as $x\to 1$.

SOLUTION Let
$$x = \sqrt[6]{1+h}$$
. Then $\sqrt[3]{1+h} - 1 = x^2 - 1 = (x-1)(x+1)$, $\sqrt{1+h} - 1 = x^3 - 1 = (x-1)(x^2 + x + 1)$, $x \to 1$ as $h \to 0$ and

$$\lim_{h \to 0} \frac{\sqrt[3]{1+h}-1}{\sqrt[2]{1+h}-1} = \lim_{x \to 1} \frac{(x-1)(x+1)}{(x-1)(x^2+x+1)} = \lim_{x \to 1} \frac{x+1}{x^2+x+1} = \frac{2}{3}.$$

In Exercises 45-54, evaluate in terms of the constant a.

45.
$$\lim_{x\to 0} (2a+x)$$

SOLUTION
$$\lim_{x\to 0} (2a+x) = 2a$$
.

46.
$$\lim_{h\to -2} (4ah + 7a)$$

SOLUTION
$$\lim_{h\to -2} (4ah + 7a) = -a$$
.

47.
$$\lim_{t \to -1} (4t - 2at + 3a)$$

SOLUTION
$$\lim_{t\to -1} (4t - 2at + 3a) = -4 + 5a.$$

48.
$$\lim_{h\to 0} \frac{(3a+h)^2-9a^2}{h}$$

SOLUTION
$$\lim_{h \to 0} \frac{(3a+h)^2 - 9a^2}{h} = \lim_{h \to 0} \frac{6ah + h^2}{h} = \lim_{h \to 0} (6a+h) = 6a.$$
49.
$$\lim_{h \to 0} \frac{2(a+h)^2 - 2a^2}{h}$$

49.
$$\lim_{h\to 0} \frac{2(a+h)^2-2a^2}{h}$$

SOLUTION
$$\lim_{h\to 0} \frac{2(a+h)^2 - 2a^2}{h} = \lim_{h\to 0} \frac{4ha + 2h^2}{h} = \lim_{h\to 0} (4a + 2h) = 4a.$$

50.
$$\lim_{x \to a} \frac{(x+a)^2 - 4x^2}{x-a}$$

SOLUTION

$$\lim_{x \to a} \frac{(x+a)^2 - 4x^2}{x - a} = \lim_{x \to a} \frac{(x^2 + 2ax + a^2) - 4x^2}{x - a} = \lim_{x \to a} \frac{-3x^2 + 2ax + a^2}{x - a}$$
$$= \lim_{x \to a} \frac{(a - x)(a + 3x)}{x - a} = \lim_{x \to a} (-(a + 3x)) = -4a.$$

51.
$$\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a}$$

SOLUTION
$$\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a} = \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{(\sqrt{x} - \sqrt{a})(\sqrt{x} + \sqrt{a})} = \lim_{x \to a} \frac{1}{\sqrt{x} + \sqrt{a}} = \frac{1}{2\sqrt{a}}.$$

52.
$$\lim_{h \to 0} \frac{\sqrt{a + 2h} - \sqrt{a}}{h}$$

$$\lim_{h \to 0} \frac{\sqrt{a+2h} - \sqrt{a}}{h} = \lim_{h \to 0} \frac{\left(\sqrt{a+2h} - \sqrt{a}\right)\left(\sqrt{a+2h} + \sqrt{a}\right)}{h\left(\sqrt{a+2h} + \sqrt{a}\right)}$$

$$= \lim_{h \to 0} \frac{2h}{h\left(\sqrt{a+2h} + \sqrt{a}\right)} = \lim_{h \to 0} \frac{2}{\sqrt{a+2h} + \sqrt{a}} = \frac{1}{\sqrt{a}}.$$

53.
$$\lim_{x \to 0} \frac{(x+a)^3 - a^3}{x}$$

SOLUTION
$$\lim_{x \to 0} \frac{(x+a)^3 - a^3}{x} = \lim_{x \to 0} \frac{x^3 + 3x^2a + 3xa^2 + a^3 - a^3}{x} = \lim_{x \to 0} (x^2 + 3xa + 3a^2) = 3a^2.$$

$$54. \lim_{h \to a} \frac{\frac{1}{h} - \frac{1}{a}}{h - a}$$

SOLUTION
$$\lim_{h \to a} \frac{\frac{1}{h} - \frac{1}{a}}{h - a} = \lim_{h \to a} \frac{\frac{a - h}{ah}}{h - a} = \lim_{h \to a} \frac{a - h}{ah} \frac{1}{h - a} = \lim_{h \to a} \frac{-1}{ah} = -\frac{1}{a^2}$$

Further Insights and Challenges

In Exercises 55-58, find all values of c such that the limit exists.

55.
$$\lim_{x \to c} \frac{x^2 - 5x - 6}{x - c}$$

55. $\lim_{x \to c} \frac{x^2 - 5x - 6}{x - c}$ SOLUTION $\lim_{x \to c} \frac{x^2 - 5x - 6}{x - c}$ will exist provided that x - c is a factor of the numerator. (Otherwise there will be an infinite discontinuity at x = c.) Since $x^2 - 5x - 6 = (x + 1)(x - 6)$, this occurs for c = -1 and c = 6.

56.
$$\lim_{x \to 1} \frac{x^2 + 3x + c}{x - 1}$$

SOLUTION $\lim_{x \to 1} \frac{x^2 + 3x + c}{x - 1}$ exists as long as (x - 1) is a factor of $x^2 + 3x + c$. If $x^2 + 3x + c = (x - 1)(x + q)$, then q - 1 = 3 and -q = c. Hence q = 4 and c = -4.

57.
$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{c}{x^3 - 1} \right)$$

SOLUTION Simplifying, we find

$$\frac{1}{x-1} - \frac{c}{x^3 - 1} = \frac{x^2 + x + 1 - c}{(x-1)(x^2 + x + 1)}.$$

In order for the limit to exist as $x \to 1$, the numerator must evaluate to 0 at x = 1. Thus, we must have 3 - c = 0, which implies c = 3.

Trigonometric Limits

Preliminary Questions

1. Assume that $-x^4 \le f(x) \le x^2$. What is $\lim_{x\to 0} f(x)$? Is there enough information to evaluate $\lim_{x\to \frac{1}{2}} f(x)$? Explain.

SOLUTION Since $\lim_{x\to 0} -x^4 = \lim_{x\to 0} x^2 = 0$, the squeeze theorem guarantees that $\lim_{x\to 0} f(x) = 0$. Since $\lim_{x\to \frac{1}{2}} -x^4 = -\frac{1}{16} \neq \frac{1}{4} = \lim_{x\to \frac{1}{2}} x^2$, we do not have enough information to determine $\lim_{x\to \frac{1}{2}} f(x)$.

2. State the Squeeze Theorem carefully.

SOLUTION Assume that for $x \neq c$ (in some open interval containing c),

$$l(x) \le f(x) \le u(x)$$

and that $\lim_{x\to c} l(x) = \lim_{x\to c} u(x) = L$. Then $\lim_{x\to c} f(x)$ exists and

$$\lim_{x \to c} f(x) = L.$$

3. If you want to evaluate $\lim_{h\to 0} \frac{\sin 5h}{3h}$, it is a good idea to rewrite the limit in terms of the variable (choose one):

(a)
$$\theta = 5h$$

(b)
$$\theta = 3h$$

(c)
$$\theta = \frac{5h}{3}$$

SOLUTION To match the given limit to the pattern of

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta},$$

it is best to substitute for the argument of the sine function; thus, rewrite the limit in terms of (a): $\theta = 5h$.