... Set 1

For each problem, find all points of relative minima and maxima.

1)
$$f(x) = -x^3 + 3x^2 - 2$$

2)
$$f(x) = x^4 - 2x^2 - 1$$

3)
$$f(x) = -x^3 + 6x^2 - 9x + 7$$

4)
$$f(x) = x^3 - 3x^2 - 3$$

5)
$$f(x) = -x^3 - 9x^2 - 24x - 21$$

6)
$$f(x) = -x^4 + 2x^2 + 4$$

7)
$$f(x) = x^3 - 3x^2 + 5$$

8)
$$f(x) = x^4 - 2x^2 + 4$$

For each problem, find the x-coordinates of all points of inflection and find the open intervals where the function is concave up and concave down.

9)
$$f(x) = -x^3 + 4x^2 - 2$$

10)
$$f(x) = -x^3 + x^2 + 5x - 3$$

11)
$$f(x) = -x^4 + x^3 + 3x^2 - 3$$

12)
$$f(x) = x^4 - 3x^3 + 5x + 1$$

13)
$$f(x) = \frac{2x}{x+1}$$

14)
$$f(x) = \frac{2}{x+1}$$

... Set 1

Answers

- 1) Relative minimum: (0, -2)Relative maximum: (2, 2)
- 3) Relative minimum: (1, 3) Relative maximum: (3, 7)
- 6) Relative minimum: (0, 4) Relative maxima: (-1, 5), (1, 5)
- 8) Relative minima: (-1, 3), (1, 3) Relative maximum: (0, 4)
- 2) Relative minima: (-1, -2), (1, -2)Relative maximum: (0, -1)
- 4) Relative minimum: (2, -7) 5) Relative minimum: (-4, -5) Relative maximum: (-2, -1)
 - 7) Relative minimum: (2, 1) Relative maximum: (0, 5)
 - 9) Inflection point at: $x = \frac{4}{3}$

Concave up: $\left(-\infty, \frac{4}{3}\right)$ Concave down: $\left(\frac{4}{3}, \infty\right)$

- 10) Inflection point at: $x = \frac{1}{3}$ Concave up: $\left(-\infty, \frac{1}{3}\right)$ Concave down: $\left(\frac{1}{3}, \infty\right)$
- 11) Inflection points at: $x = -\frac{1}{2}$, 1

 Concave up: $\left(-\frac{1}{2}, 1\right)$ Concave down: $\left(-\infty, -\frac{1}{2}\right)$, $\left(1, \infty\right)$
- 12) Inflection points at: $x = 0, \frac{3}{2}$ Concave up: $(-\infty, 0), \left(\frac{3}{2}, \infty\right)$ Concave down: $\left(0, \frac{3}{2}\right)$
- 13) No inflection points exist. Concave up: $(-\infty, -1)$ Concave down: $(-1, \infty)$
- 14) No inflection points exist. Concave up: $(-1, \infty)$ Concave down: $(-\infty, -1)$

... Set 1

For each problem, find all points of relative minima and maxima.

15)
$$f(x) = -x^4 + 2x^2 + 3$$

For each problem, find the open intervals where the function is increasing and decreasing.

16)
$$f(x) = -x^4 + 4x^2$$

For each problem, use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y.

17)
$$5x + y^3 = 3y$$

18)
$$2y^2 = 2x^3 + 2y$$

19)
$$5y = 5x^2 - 3y^3$$

20)
$$2v = 2x^2 - v^3$$

21)
$$-4y^3 + 2xy = 5x^3$$

22)
$$4x^2 - 2y^2 = 2x^3y^3$$

23)
$$2x = 2xy + 1$$

$$24) \ 2 = 3x - 2x^3y^2$$

For each problem, find the indicated derivative with respect to x.

25)
$$f(x) = -x^4 + x^3 + x$$
 Find f''

26)
$$f(x) = -3x^3$$
 Find $f^{(4)}$

27)
$$f(x) = -x^5 - x^4 + 3x^2$$
 Find f'''

28)
$$f(x) = -4x^2$$
 Find f''

Differentiate each function with respect to x.

29)
$$f(x) = (-5x^3 - 3)(-3x^3 + 4)$$

30)
$$f(x) = \frac{3}{x^2 + 4}$$

3

... Set 1

Answers

15) Relative minimum: (0, 3)

Relative maxima: (-1, 4), (1, 4)16) Increasing: $(-\infty, -\sqrt{2})$, $(0, \sqrt{2})$ Decreasing: $(-\sqrt{2}, 0)$, $(\sqrt{2}, \infty)$

17)
$$\frac{dy}{dx} = -\frac{5}{3y^2 - 3}$$
 18) $\frac{dy}{dx} = \frac{3x^2}{2y - 1}$

$$18) \ \frac{dy}{dx} = \frac{3x^2}{2y - 1}$$

19)
$$\frac{dy}{dx} = \frac{10x}{5 + 9y^2}$$
 20) $\frac{dy}{dx} = \frac{4x}{2 + 3y^2}$

20)
$$\frac{dy}{dx} = \frac{4x}{2 + 3y^2}$$

21)
$$\frac{dy}{dx} = \frac{15x^2 - 2y}{-12y^2 + 2x}$$

21)
$$\frac{dy}{dx} = \frac{15x^2 - 2y}{-12y^2 + 2x}$$
 22) $\frac{dy}{dx} = \frac{3x^2y^3 - 4x}{-2y - 3y^2x^3}$

$$23) \frac{dy}{dx} = \frac{-y+1}{x}$$

23)
$$\frac{dy}{dx} = \frac{-y+1}{x}$$
 24) $\frac{dy}{dx} = \frac{3-6x^2y^2}{4x^3y}$

25)
$$f''(x) = -12x^2 + 6x$$

26)
$$f^{(4)}(x) = 0$$

27)
$$f'''(x) = -60x^2 - 24x$$

28)
$$f''(x) = -8$$

29)
$$f'(x) = (-5x^3 - 3) \cdot -9x^2 + (-3x^3 + 4) \cdot -15x^2$$

= $90x^5 - 33x^2$

30)
$$f'(x) = -\frac{3 \cdot 2x}{(x^2 + 4)^2}$$

= $-\frac{6x}{x^4 + 8x^2 + 16}$