Working with Power Functions ... Set 2

GUIDED PRACTICE for Examples 1, 2, and 3

Write an exponential function $y = ab^x$ whose graph passes through the given points.

4. WHAT IF? In Examples 2 and 3, how would the exponential models change if the scooter sales were as shown in the table below?

Year, x	1	2	3	4	5	6	7
Number of scooters sold, y	15	23	40	52	80	105	140

WRITING POWER FUNCTIONS Recall from Lesson 6.3 that a power function has the form $y = ax^b$. Because there are only two constants (a and b), only two points are needed to determine a power curve through the points.

EXAMPLE 4 Write a power function

Write a power function $y = ax^b$ whose graph passes through (3, 2) and (6, 9).

Solution

STEP 1 Substitute the coordinates of the two given points into $y = ax^b$.

$$2 = a \cdot 3^b$$
 Substitute 2 for y and 3 for x.

$$9 = a \cdot 6^b$$
 Substitute 9 for y and 6 for x.

STEP 2 Solve for *a* in the first equation to obtain $a = \frac{2}{3^b}$, and substitute this expression for a in the second equation.

$$9 = \left(\frac{2}{3^b}\right)^{6^b}$$
 Substitute $\frac{2}{3^b}$ for a in second equation.

$$9 = 2 \cdot 2^b$$
 Simplify.

$$4.5 = 2^b$$
 Divide each side by 2.

$$\log_2 4.5 = b$$
 Take \log_2 of each side.

$$\frac{\log 4.5}{\log 2} = b$$
 Change-of-base formula

$$2.17 \approx b$$
 Use a calculator.

STEP 3 Determine that
$$a = \frac{2}{3^{2.17}} \approx 0.184$$
. So, $y = 0.184x^{2.17}$.

Working with Power Functions ... Set 2

GUIDED PRACTICE for Example 4

Write a power function $y = ax^b$ whose graph passes through the given points.

- **5.** (2, 1), (7, 6)
- **6.** (3, 4), (6, 15)
- 7. (5, 8), (10, 34)
- 8. **REASONING** Try using the method of Example 4 to find a power function whose graph passes through (3, 5) and (3, 7). What can you conclude?