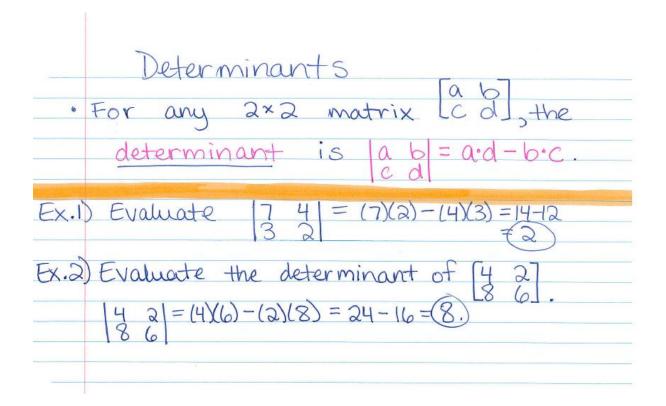
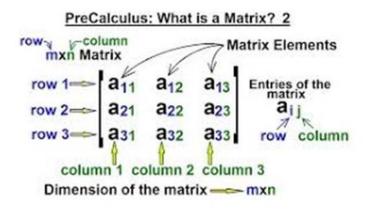
• an m×n matrix has
mrows and n columns.
 each <u>element</u> is identified as a;; where i is the row #= and j is the column #=.
row 1 a_{11} a_{12} a_{13} row 2 a_{21} a_{22} a_{33} row 3 a_{31} a_{32} a_{33} etc. f f $fcolumn 1 column 3 etc.$
a 1×1 matrix: [3] ** the elements can be anything a 1×2 matrix: [-1 4] a 2×1 matrix: [0] ** matrices can [5] be combined a 2×2 matrix: [-3 0] through addition [1-2] when they have a 3×2 matrix: [1 8] the same m×n [2 9] dimensions
a 1×3 matrix: [10 11 12] * you can also multiply certain * matrices can be matrices together multiplied by a constant

• Adding matrices of the same dimension Ex.1) $\begin{bmatrix} 7 & 0 \\ -2 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 1 \\ 8 & q \end{bmatrix} = \begin{bmatrix} 7+5 & 0+1 \\ -2+8 & 4+9 \end{bmatrix} = \begin{bmatrix} 12 & 1 \\ 6 & 13 \end{bmatrix}$
* you add the elements from each matrix that are in the same a; position.
$ \begin{array}{c} \text{Ex.a} \\ \hline 3 \\ 9 \\ 7 \\ -4 \\ \hline 3 \\ \hline \end{array} \begin{array}{c} -4 \\ -4 \\ -2 \\ \hline \end{array} \begin{array}{c} -4 \\ -2 \\ -2 \\ \hline \end{array} \begin{array}{c} -1 \\ -1 \\ -1 \\ -1 \\ \hline \end{array} \begin{array}{c} -2 \\ -2 \\ \hline \end{array} \begin{array}{c} -2 \\ -2 \\ \hline \end{array} \begin{array}{c} -1 \\ -1 \\ -1 \\ -2 \\ \hline \end{array} \begin{array}{c} -2 \\ -3 \\ \hline \end{array} \begin{array}{c} -2 \\ -6 \\ \end{array} \end{array} $
• Multiplyin matrices by a constant. EX.1) $\begin{bmatrix} 2 & 5 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 4 \cdot 2 & 4 \cdot 5 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} 8 & 20 \\ -3 & 4 \cdot 0 \end{bmatrix} = \begin{bmatrix} 4 \cdot -3 & 4 \cdot 0 \\ -12 & 0 \end{bmatrix} = \begin{bmatrix} 4 \cdot -3 & 4 \cdot 0 \\ -12 & 0 \end{bmatrix} = \begin{bmatrix} 4 \cdot -3 & 4 \cdot 0 \\ -12 & 0 \end{bmatrix} = \begin{bmatrix} 4 \cdot 2 & 4 \cdot 3 \\ -12 & 0 \end{bmatrix}$ * you multiply each element by the constant.
$E_{X,2} = 3 \begin{bmatrix} -1 & 2 & 1 \\ -3 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -6 & -3 \\ -9 & -i2 & 6 \end{bmatrix}$

· Multiplying matrices together * matrices can only be multiplied together when their dimensions are in the form mxn. mxm ** so the left matrix's # of columns should match the right matrix's # of rows. THIS IS THE EXACT WAY TO DETERMINE IF YOU CAN MULTIPLY 2 MATRICES!!! You can multiply: but you can't multiply: 3 c d 1 2×3 2×2 2×3 axa Ex.1) [1 5 $\begin{bmatrix} 2 & 3 & 0 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix} = \begin{bmatrix} -6 & -1 \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} -6 & -1 \\ 4 & 12 \end{bmatrix}$ (2×3 -> 2x2 V * check that you can multiply them * if yes, then the resulting matrix will be a 2×3. so the "outside" dimensions are for the new matrix if the (inside") dimensions match · For the new matrix elements: a, : take (row 1). (column 1) and add 4].[2] $|a_{11} = 1(a) + 4(-a) = -6$ az, : take (row 2). (coulumn I) and add $] a_{21} = 5(2) + 3(-2) = 4$





Basic Matrix Operations
Simplify. Write "undefined" for expressions that are undefined.

$$\int \begin{bmatrix} 3 & 6 \\ -1 & -3 \\ -5 & -1 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 6 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 3+0 & 6-1 \\ -1+6 & -3+0 \\ -5+2 & -1+3 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 5 & -3 \\ -3 & 2 \end{bmatrix}$$

$$2) \begin{bmatrix} -5 & 2 & -2 \\ 4 & -2 & 0 \end{bmatrix} - \begin{bmatrix} 6 & -5 & -6 \\ 1 & 3 & -3 \end{bmatrix}$$

$$= \begin{bmatrix} 3+0 & 6-1 \\ -1+6 & -3+0 \\ -5+2 & -1+3 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 5 & -3 \\ -3 & 2 \end{bmatrix}$$

$$3) -5 \begin{bmatrix} 5 & 6 & -4 \\ 4 & -2 & -1 \end{bmatrix}$$
each element
$$4) -5 \begin{bmatrix} -3 & 0 \\ 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} -25 & -30 & 20 \\ -20 & 10 & 5 \end{bmatrix}$$

$$5) \begin{bmatrix} 4 & 2 \end{bmatrix} + \begin{bmatrix} -2 & -6 \end{bmatrix}$$

$$6) 5 \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 4-2 & 2-6 \end{bmatrix}$$

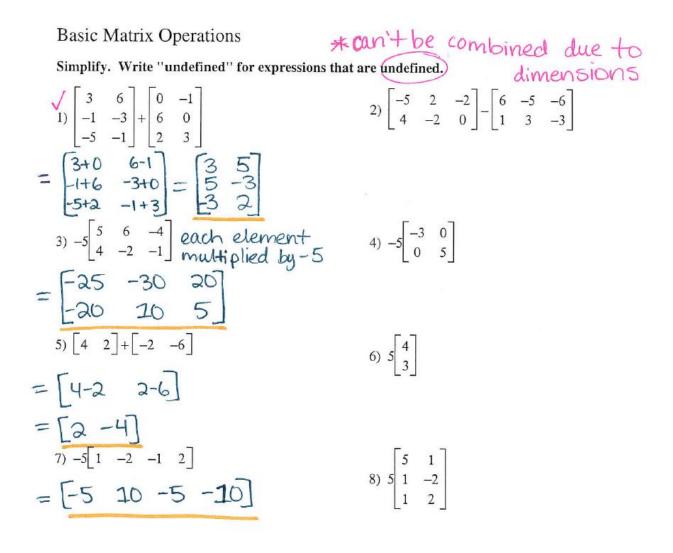
$$= \begin{bmatrix} 2 & -4 \\ 7) -5 \begin{bmatrix} 1 & -2 & -1 & 2 \end{bmatrix}$$

$$8) 5 \begin{bmatrix} 5 & 1 \\ 1 & -2 \\ 1 & 2 \end{bmatrix}$$

$$9) -2u[7u \quad 3w^{2} \quad 5u \quad 5] = [-14u^{2} - 6uw^{2} - 10u^{2} - 10u] = \begin{bmatrix} 2\\4 \end{bmatrix} + \begin{bmatrix} 5\\6 \end{bmatrix}$$

$$11) 4\begin{bmatrix} -4\\3\\-5 \end{bmatrix} = \begin{bmatrix} -16\\12\\-2D \end{bmatrix}$$

6

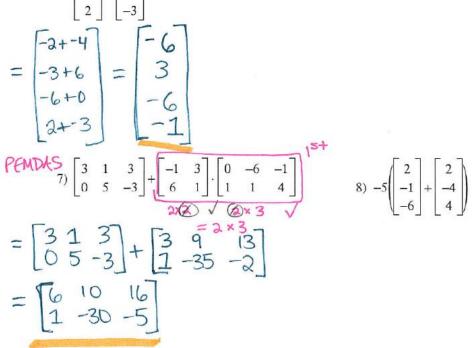


9)
$$-2u[7u \ 3w^2 \ 5u \ 5]$$

= $\begin{bmatrix} -14u^2 \ -6uw^2 \ -10u^2 \ -10u^2 \ -10u^2 \end{bmatrix}$
10) $\begin{bmatrix} 2\\4 \end{bmatrix} + \begin{bmatrix} 5\\6 \end{bmatrix}$
11) $4\begin{bmatrix} -4\\3\\-5 \end{bmatrix}$
12) $\begin{bmatrix} -4n \ n+m\\-2n \ -4n \end{bmatrix} + \begin{bmatrix} 4 \ -5\\3m \ 0 \end{bmatrix}$
 $\begin{bmatrix} -16\\12\\-20 \end{bmatrix}$

-

All Matrix Operations can't be combined due to Size Simplify. Write "undefined" for expressions that are <u>undefined</u>. 1) $\begin{bmatrix} 2 & -1 \\ -6 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 4 \\ -3 & -5 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = 2 \cdot \begin{bmatrix} 2 & 6 \\ -6 & 4 \end{bmatrix} \cdot \begin{bmatrix} 5 & 3 \\ -6 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$ 2X(2) $\cdot (2 \times 2 \vee 2 = 2 \times 2)$ $a_{11}: 2(4) + -1(-3) = 11$ row 2 and column 1 etc. $a_{12}: -b(4) + 1(-3) = -27$ row 2 and column 1 etc. $a_{12}: -b(4) + 1(-3) = -27$ $a_{11}: 5 - 5 \cdot \begin{bmatrix} -3 & 6 \\ -3 & 0 \end{bmatrix} \vee \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = 4) \begin{bmatrix} 1 & -6 \\ 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 5 \end{bmatrix} + \begin{bmatrix} -3 \\ 0 \\ 3 \\ -2 \end{bmatrix}$ $a_{11}: 5(-3) + 5(-3) = -12$ $a_{11}: 5(-3) + -5(-3) = 0$ $a_{12}: -1(6) + 5(0) = -6$ $a_{22}: 5(6) + -5(0) = 30$ $mx(n) \checkmark \begin{bmatrix} -2 \\ -3 \\ -6 \\ 1 \end{bmatrix} + \begin{bmatrix} -4 \\ 0 \\ -3 \\ -3 \end{bmatrix}$ $a_{12}: -1(6) + 5(0) = -6$ $a_{22}: 5(6) + -5(0) = 30$ $a_{12}: -1(6) + 5(0) = -6$ $a_{22}: 5(6) + -5(0) = 30$



Matrix Multiplication

Simplify. Write "undefined" for expressions that are undefined. 1) $\begin{bmatrix} 0 & 2 \\ -2 & -5 \end{bmatrix} \cdot \begin{bmatrix} 6 & -6 \\ 3 & 0 \end{bmatrix}$ 2) $\begin{bmatrix} 6 \\ -3 \end{bmatrix} \cdot \begin{bmatrix} -5 & 4 \end{bmatrix}$ = $\begin{bmatrix} 0 \cdot 6 + 2 \cdot 3 & 0 \cdot -6 + 2 \cdot 0 \\ -2 \cdot 6 + -5 \cdot 3 & -2 \cdot -6 + -5 \cdot 0 \end{bmatrix}$ = $\begin{bmatrix} 6 & 0 \\ -27 & (2) \\ 2 \times 2 & 2 \times 2 & = 2 \times 2 \end{bmatrix}$ 3) $\begin{bmatrix} -5 & -5 \\ -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} -2 & -3 \\ 3 & 5 \end{bmatrix}$ 4) $\begin{bmatrix} -3 & 5 \\ -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 6 & -2 \\ 1 & -5 \end{bmatrix}$ = $\begin{bmatrix} -5 & -10 \\ 8 & 13 \end{bmatrix}$

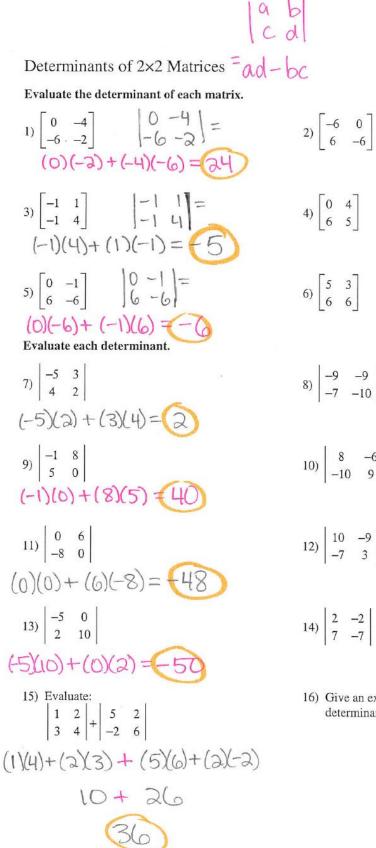
$$\begin{array}{c}
3x2 & 2x2 & = 3x2 \\
5) \begin{bmatrix} 0 & 5 \\ -3 & 1 \\ -5 & 1 \end{bmatrix} \cdot \begin{bmatrix} -4 & 4 \\ -2 & -4 \end{bmatrix} \\
= \begin{bmatrix} -10 & -20 \\ 10 & -16 \\ 18 & -24 \end{bmatrix}$$

$$6)\begin{bmatrix} 5 & 3 & 5 \\ 1 & 5 & 0 \end{bmatrix} \cdot \begin{bmatrix} -4 & 2 \\ -3 & 4 \\ 3 & -5 \end{bmatrix}$$

$$\sqrt{3 \times 2} = 3 \times 2$$
7) $\begin{bmatrix} -5 \\ 6 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 3 & -1 \end{bmatrix}$

$$= \begin{bmatrix} 5 \cdot 3 & -5 \cdot -7 \\ 6 \cdot 3 & 6 \cdot -1 \\ 0 \cdot 3 & 0 \cdot -1 \end{bmatrix} = \begin{bmatrix} -15 & 5 \\ 18 & -6 \\ 0 & 0 \end{bmatrix}$$

$$8) \begin{bmatrix} 3 & 2 & 5 \\ 2 & 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & -5 \\ 5 & -1 & 6 \end{bmatrix}$$



3	5]		
9 7	-9 -10		
8 -10	6 9		
10 -7	-9 3		
,	2		

 Give an example of a 2×2 matrix whose determinant is 13. 4.1