Solving Systems of Equations with Matrices

Set up and use matrices to solve the following systems of equations.

1)
$$x + y = 7$$

 $-5x - y = -27$

2)
$$-5x + 2y = 16$$

 $-4x - 6y = -10$

3)
$$-x + 4y = -3$$

 $-x + 2y = -3$

4)
$$-x + 6y = 14$$

 $-5x + 4y = -8$

5)
$$-2x + y = 2$$

 $4x - 2y = 18$

Answers

Solving Systems of Equations with Matrices

Set up and use matrices to solve the following systems of equations.

1)
$$x + y = 7$$

 $-5x - y = -27$
(5, 2)

2)
$$-5x + 2y = 16$$

 $-4x - 6y = -10$
 $(-2, 3)$

3)
$$-x + 4y = -3$$

 $-x + 2y = -3$
(3, 0)

4)
$$-x + 6y = 14$$

 $-5x + 4y = -8$
(4, 3)

5)
$$-2x + y = 2$$

 $4x - 2y = 18$

No unique solution

Use Cramer's Rule to solve each system of equations.

6)
$$-x + y = 0$$

 $x + 6y = 21$

7)
$$-2x - 2y = 2$$

 $-4x - 3y = 2$

8)
$$-6x - 6y = -30$$

 $x + y = 2$

9)
$$-6x + 3y = 6$$

 $-x - 5y = 23$

10) The school that Eduardo goes to is selling tickets to a play. On the first day of ticket sales the school sold 8 adult tickets and 3 child tickets for a total of \$97. The school took in \$82 on the second day by selling 2 adult tickets and 6 child tickets. Find the price of an adult ticket and the price of a child ticket.

Answers

Use Cramer's Rule to solve each system of equations.

$$6) -x + y = 0$$
$$x + 6y = 21$$

7)
$$-2x - 2y = 2$$

 $-4x - 3y = 2$

$$(1, -2)$$

8)
$$-6x - 6y = -30$$

 $x + y = 2$

9)
$$-6x + 3y = 6$$

 $-x - 5y = 23$

No unique solution

$$(-3, -4)$$

10) The school that Eduardo goes to is selling tickets to a play. On the first day of ticket sales the school sold 8 adult tickets and 3 child tickets for a total of \$97. The school took in \$82 on the second day by selling 2 adult tickets and 6 child tickets. Find the price of an adult ticket and the price of a child ticket.

adult ticket: \$8, child ticket: \$11