Definition of Derivative

Derivatives Definition and Notation

If y = f(x) then the derivative is defined to be $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

If y = f(x) then all of the following are equivalent notations for the derivative.

If y = f(x) all of the following are equivalent notations for derivative evaluated at x = a.

$$f'(x) = y' = \frac{df}{dx} = \frac{dy}{dx} = \frac{d}{dx}(f(x)) = Df(x)$$

$$f'(a) = y'\Big|_{x=a} = \frac{df}{dx}\Big|_{x=a} = \frac{dy}{dx}\Big|_{x=a} = Df(a)$$

Interpretation of the Derivative

If y = f(x) then,

- 1. m = f'(a) is the slope of the tangent line to y = f(x) at x = a and the equation of the tangent line at x = a is given by y = f(a) + f'(a)(x-a).
- 2. f'(a) is the instantaneous rate of change of f(x) at x = a.
- If f(x) is the position of an object at time x then f'(a) is the velocity of the object at x = a.