Matrices and Systems of Equations

State the dimensions of each matrix.

1) [1]

This matrix has ____ row and ____ columns. The dimension of the matrix is ____ \times ____.

$$3) \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

This matrix has ____ row and ____ columns. The dimension of the matrix is ____ \times ____.

$$5)\begin{bmatrix}1\\2\\3\\4\end{bmatrix}$$

This matrix has ____ row and _____ columns. The dimension of the matrix is ____ \times ____.

Examples of Matrices

7) Row Matrix:

 $2) \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$

This matrix has ____ row and ____ columns. The dimension of the matrix is ____ \times ___.

 $4) \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$

This matrix has ____ row and ____ columns. The dimension of the matrix is ____ \times ____.

 $6) \begin{bmatrix} 1 & 5 & 9 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 4 & 8 & 12 \end{bmatrix}$

This matrix has ____ row and ____ columns. The dimension of the matrix is ____ \times ___.

Column Matrix:

System:

Augmented Matrix:

Coefficient Matrix:

Constant Matrix:

Writing an Augmented Matrix: Write the augmented matrix for the system of equations.

- 8) x + 3y = 9-y + 4z = -2x 5z = 0
- 10) x + 3z = 2 -2y + z = -56x + 4y = 7

Elementary Row Operations

- 12) Interchange the first and second rows.
 - $\begin{bmatrix} 0 & 1 & 3 & 4 \\ -1 & 2 & 0 & 3 \\ 2 & -3 & 4 & 1 \end{bmatrix}$
- 14) Multiply the first row by $\frac{1}{2}$.
 - $\begin{bmatrix} 2 & -4 & 6 & -2 \\ 1 & 3 & -3 & 0 \\ 5 & -2 & 1 & 2 \end{bmatrix}$
- 16) Add –2 times the first row of the matrix to the third row.
 - $\begin{bmatrix} 1 & 2 & -4 & 3 \\ 0 & 3 & -2 & -1 \\ 2 & 1 & 5 & -2 \end{bmatrix}$

9) x + y + z = 2 2x - y + 3z = -1 -x + 2y - z = 411) -3y - z = 12x + 3y + 9z = 0

5x - 2z = -3

- 13) Interchange the first and third rows.
 - $\begin{bmatrix} 1 & 3 & 4 & 0 \\ 0 & 3 & -1 & 2 \\ 1 & 2 & -3 & 4 \end{bmatrix}$
- 15) Multiply the second row by $\frac{1}{2}$.
 - $\begin{bmatrix} 1 & 0 & 3 & 6 \\ 2 & -8 & 4 & 0 \\ 5 & 7 & 9 & 4 \end{bmatrix}$
- 17) Add –3 times the first row of the matrix to the second row.
 - $\begin{bmatrix} 14 & 5 & 9 & -1 \\ 0 & 5 & 2 & 3 \\ -2 & 7 & -3 & 1 \end{bmatrix}$

Comparing Linear Systems with Matrix Operations: Solve each system.

18) $x - 2y + 3z = 9$	19) $x + 3y + 4z = 7$
-x + 3y + z = -2	2x + 7y + 5z = 10
2x - 5y + 5z = 17	3x + 10y + 4z = 27

20) $2x + 4y + z = 1$	21) $x + y + z = 6$
x - 2y - 3z = 2	2x - y + z = 3
x + y - z = -1	3x + y - z = 2

Row-Echelon Form

A matrix in row-echelon form has the following properties:

- 1. Any rows consisting entirely of zeros occur at the bottom of the matrix.
- 2. For each row that does not consist entirely of zeros, the first nonzero entry is 1. It's called a leading 1.
- 3. For two successive (nonzero) rows, the leading 1 in the higher row is farther to the left than the leading 1 in the lower row.

A matrix is row-echelon form is in reduced row-echelon form when every column that has a leading 1 has zeros in every position above and below its leading 1.

Determine whether each matrix is in row-echelon form. If it is, determine whether the matrix is in reduced row-echelon form.

$22) \begin{bmatrix} 1 & 2 & -1 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{bmatrix}$	$23) \begin{bmatrix} 1 & 2 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & -4 \end{bmatrix}$
$24) \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$25) \begin{bmatrix} 1 & -5 & 2 & -1 & 3 \\ 0 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
$26) \begin{bmatrix} 1 & 2 & -3 & 4 \\ 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -3 \end{bmatrix}$	$27) \begin{bmatrix} 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Gaussian Elimination with Back-Substitution: Solve each system of equations.

28) $y + z - 2w = -3$	29) $2x - y + z = 7$
x + 2y - z = 2	x + y - z + 3w = -4
2x + 4y + z - 3w = -2	x - 4y + 3z - 2w = 18
x - 4y - 7z - w = -19	y + z - w = 1

31) $x - 4y + 3z - 2w = 9$
3x - 2y + z - 4w = -13
-4x + 3y - 2z + w = -4
-2x + y - 4z + 3w = -10

Systems of Equations and Matrices ... Set 1

Gauss-Jordan Elimination: Use Gauss-Jordan elimination to solve each system.

32) $x - 2y + 3z = 9$	$33) \ 3x - 3y - 3z = 6$
-x + 3y + z = -2	5x + 3y + z = 18
2x - 5y + 5z = 17	3x - y + z = 8

34)
$$-x + 2y - 6z = 12$$
35) $y + 2z = 6$ $-x + 2y + 6z = -24$ $-2x - y - z = -5$ $-x + 6y - 4z = -18$ $3x - 6y + 2z = 9$

36) -6x - 2y + 6z = -8	37) -5x + 4y + 3z = -4
3x + 2y + z = -10	6x + 2y - 4z = -10
5x + 6y + 2z = -23	5x - 3y + 5z = 26

$38) \ 3x - 4y + 2z = -5$	$39) \ 5x - 4y - 3z = -13$
5x - 4y + 2z = -3	2x + y + 3z = 3
-3x + 6y - 3z = 9	-3x + 5y + 6z = 3

$40) \ -2x - 3y - z = 21$	41) $4x + y - 6z = -21$
-2x + 2y + 4z = 2	2x - 3y - 4z = -29
2x - 3y - 5z = 10	3x - y - 5z = -25