Geometric Sequences and Series

Determine if the sequence is geometric. If it is, find the common ratio, the 8th term, and the explicit formula.

- 1) -1, -3, -9, -27, ... 2) 2, $\frac{1}{2}$, $\frac{1}{8}$, $\frac{1}{32}$, ...
- 3) 148, 1488, 14888, 14888, ... 4) 0.75, 3, 12, 48, ...

Given the explicit formula for a geometric sequence find the common ratio, the term named in the problem, and the recursive formula.

5)
$$a_n = -3 \cdot \left(\frac{1}{2}\right)^{n-1}$$

Find a_{11}
6) $a_n = -1.5 \cdot (-2)^{n-1}$
Find a_{10}

Given two terms in a geometric sequence find the common ratio, the explicit formula, and the recursive formula.

7)
$$a_4 = -\frac{1}{4}$$
 and $a_1 = 2$
8) $a_5 = -24$ and $a_4 = -12$

Find the missing term or terms in each geometric sequence.

9) ..., 4, ___, __, 108, ... 10) ..., -25, __, __, __,
$$-\frac{1}{25}$$
, ...

Answers

Geometric Sequences and Series

Determine if the sequence is geometric. If it is, find the common ratio, the 8th term, and the explicit formula.

1) -1, -3, -9, -27, ... Common Ratio: r = 3 $a_8 = -2187$ Explicit: $a_n = -3^{n-1}$ 2) 2, $\frac{1}{2}$, $\frac{1}{8}$, $\frac{1}{32}$, ... Common Ratio: $r = \frac{1}{4}$ $a_8 = \frac{1}{8192}$ Explicit: $a_n = 2 \cdot \left(\frac{1}{4}\right)^{n-1}$

3) 148, 1488, 14888, 148888, ...

Not geometric

4) 0.75, 3, 12, 48, ...

Common Ratio:
$$r = 4$$

 $a_s = 12288$
Explicit: $a_s = 0.75 \cdot 4^{n-1}$

Given the explicit formula for a geometric sequence find the common ratio, the term named in the problem, and the recursive formula.

5) $a_n = -3 \cdot \left(\frac{1}{2}\right)^{n-1}$ Common Ratio: $r = \frac{1}{2}$ Find a_{11} $a_{11} = -\frac{3}{1024}$ Recursive: $a_n = a_{n-1} \cdot \frac{1}{2}$ $a_1 = -3$ 6) $a_n = -1.5 \cdot (-2)^{n-1}$ Find a_{10} Common Ratio: r = -2 $a_{10} = 768$ Recursive: $a_n = a_{n-1} \cdot -2$ $a_1 = -1.5$

Given two terms in a geometric sequence find the common ratio, the explicit formula, and the recursive formula.

7)
$$a_4 = -\frac{1}{4}$$
 and $a_1 = 2$ Common Ratio: $r = -\frac{1}{2}$
Explicit: $a_n = 2 \cdot \left(-\frac{1}{2}\right)^{n-1}$
Recursive: $a_n = a_{n-1} \cdot -\frac{1}{2}$
 $a_1 = -1.5$
(8) $a_5 = -24$ and $a_4 = -12$
Common Ratio: $r = 2$
Explicit: $a_n = -1.5 \cdot 2^{n-1}$
Recursive: $a_n = a_{n-1} \cdot -\frac{1}{2}$
 $a_1 = -1.5$

Find the missing term or terms in each geometric sequence.

9) ..., 4, ___, __, 108, ...
12, 36
10) ..., -25, __, __, -
$$\frac{1}{25}$$
, ...
-5, -1, $-\frac{1}{5}$

Geometric Sequences and Series ... Set 1

Evaluate each geometric series described.

11)
$$-3 + 15 - 75 + 375..., n = 8$$

12) $2 + 8 + 32 + 128..., n = 8$

13)
$$a_1 = 1, r = 4, n = 7$$

14) $a_1 = 3, r = 2, n = 7$

15)
$$\sum_{k=1}^{8} -2 \cdot 6^{k-1}$$
 16) $\sum_{m=1}^{8} 32 \cdot \left(\frac{1}{2}\right)^{m-1}$

17)
$$\sum_{i=1}^{10} 0.2 \cdot 5^{i-1}$$
 18) $\sum_{n=1}^{10} -2 \cdot 2^{n-1}$

Determine the number of terms *n* in each geometric series.

19)
$$\sum_{i=1}^{n} -4^{i-1} = -341$$
 20) $a_1 = -1, r = -5, S_n = 104$

Determine if each geometric series converges or diverges.

21) -1 + 2 - 4 + 8... 22) $-16 - 4 - 1 - \frac{1}{4}...$

23)
$$\sum_{k=1}^{\infty} -3 \cdot \left(\frac{2}{5}\right)^{k-1}$$
 24) $\sum_{i=1}^{\infty} 2 \cdot 2^{i-1}$

Evaluate each infinite geometric series described.

25) $\sum_{i=1}^{\infty} \left(\frac{1}{3}\right)^{i-1}$ 26) $\sum_{i=1}^{\infty} 0.4 \cdot 0.9^{i-1}$

27)
$$\sum_{m=1}^{\infty} \left(-\frac{2}{3}\right)^{m-1}$$
 28) $\sum_{k=1}^{\infty} -4^{k-1}$

Answers

Evaluate each geometric series described.

11) -3 + 15 - 75 + 375..., n = 812) 2 + 8 + 32 + 128..., n = 8195312 43690 13) $a_1 = 1, r = 4, n = 7$ 14) $a_1 = 3, r = 2, n = 7$ 5461 381 15) $\sum_{k=1}^{8} -2 \cdot 6^{k-1}$ 16) $\sum_{m=1}^{8} 32 \cdot \left(\frac{1}{2}\right)^{m-1}$ $\frac{255}{4}$ -671846 18) $\sum_{n=1}^{10} -2 \cdot 2^{n-1}$ 17) $\sum_{i=1}^{10} 0.2 \cdot 5^{i-1}$ 488281.2 -2046

Determine the number of terms *n* in each geometric series.

19) $\sum_{i=1}^{n} -4^{i-1} = -341$ 5 20) $a_1 = -1, r = -5, S_n = 104$ 4

Determine if each geometric series converges or diverges.

21) -1 + 2 - 4 + 8...Diverges 22) $-16 - 4 - 1 - \frac{1}{4}...$ Converges

23)
$$\sum_{k=1}^{\infty} -3 \cdot \left(\frac{2}{5}\right)^{k-1}$$

Converges 24) $\sum_{i=1}^{\infty} 2 \cdot 2^{i-1}$
Diverges

Evaluate each infinite geometric series described.

25)
$$\sum_{i=1}^{\infty} \left(\frac{1}{3}\right)^{i-1}$$

26) $\sum_{i=1}^{\infty} 0.4 \cdot 0.9^{i-1}$
4
27) $\sum_{m=1}^{\infty} \left(-\frac{2}{3}\right)^{m-1} \frac{3}{5}$
28) $\sum_{k=1}^{\infty} -4^{k-1}$
No sum