Sequences/Series Test Practice

If the sequence is arithmetic or geometric, find the next 3 terms.

1)
$$-5$$
, $-\frac{5}{4}$, $-\frac{5}{16}$, $-\frac{5}{64}$, $-\frac{5}{256}$, ...
2) 1, 3, 6, 10, 15, ...
3) -11 , 89, 189, 289, 389, ...
4) -38 , -36 , -34 , -32 , -30 , ...

Given the first term and the common difference of an arithmetic sequence find the term named in the problem.

5)
$$a_1 = -9$$
, $d = 2$
Find a_{20}
6) $a_1 = -14$, $d = -10$
Find a_{38}

Find the missing term or terms in each arithmetic sequence.

7) ..., -20, ___, __, 0, ... 8) ..., 26, __, __, __, 41, ...

Given the first term and the common ratio of a geometric sequence find the term named in the problem.

9) $a_1 = -4$, r = -2Find a_{10} 10) $a_1 = 2$, r = -2Find a_{11}

Find the missing term or terms in each geometric sequence.

11) ..., -1, ___, ___, -256, ... 12) ..., -2, ___, ___, ___, -2048, ...

Evaluate each arithmetic series described.

13)
$$\sum_{k=2}^{8} (2k+7)$$
 14) $\sum_{i=3}^{10} (5-3i)$

- 15) $a_1 = 16, d = 3, n = 5$ 16) $a_1 = 7, d = 7, n = 45$
- 17) 6 + 8 + 10 + 12..., n = 718) (-2) + 2 + 6 + 10..., n = 19

Answers

Sequences/Series Test Practice

1) $-\frac{5}{1024}$, $-\frac{5}{4096}$, $-\frac{5}{16384}$ 2) 21, 28, 36 3) 489, 589, 689 4) -28, -26, -24 5) $a_{20} = 29$ 6) $a_{38} = -384$ 7) -15, -10, -5 8) 29, 32, 35, 38 9) $a_{10} = 2048$ 10) $a_{11} = 2048$ 11) -4, -16, -64 or 4, -16, 64 12) -8, -32, -128, -512 13) 119 14) -116 15) 110 16) 7245 17) 84

Determine the number of terms n in each arithmetic series.

19)
$$a_1 = 26$$
, $a_n = 166$, $S_n = 1440$
20) $a_1 = 10$, $a_n = 451$, $S_n = 11525$

Evaluate each geometric series described.

21)
$$-3 + 15 - 75 + 375..., n = 6$$

22) $1 + 5 + 25 + 125..., n = 8$

23)
$$\sum_{i=1}^{9} -2 \cdot \left(\frac{1}{5}\right)^{i-1}$$
 24) $\sum_{i=1}^{7} 2 \cdot (-6)^{i-1}$

Evaluate each infinite geometric series described.

25)
$$\sum_{m=1}^{\infty} 108 \cdot \left(-\frac{4}{3}\right)^{m-1}$$
 26) $\sum_{n=1}^{\infty} -2 \cdot \left(\frac{1}{2}\right)^{n-1}$

27)
$$6 - \frac{3}{2} + \frac{3}{8} - \frac{3}{32}$$
... 28) $2 - \frac{2}{3} + \frac{2}{9} - \frac{2}{27}$...

Determine the number of terms *n* in each geometric series.

29)
$$a_1 = -2, r = -6, S_n = 13330$$

30) $a_1 = -3, r = -6, S_n = 555$

Given the recursive formula for an arithmetic sequence find the first five terms.

- 31) $a_{n+1} = a_n + n$ $a_1 = 7$ 32) $a_{n+1} = a_n - a_{n+1}$ $a_1 = 2$ $a_2 = 3$
- 33) $a_{n+1} = a_n + n$ $a_1 = 3$ 34) $a_{n+1} = a_n + n$ $a_1 = -10$
- 35) $a_{n+1} = a_n + n$ $a_1 = -9$ 36) $a_{n+1} = a_n + 9$ $a_1 = -13$
- 37) $a_{n+1} = a_n \cdot 4$ $a_1 = -2$ 38) $a_{n+1} = a_n \cdot -5$ $a_1 = 3$

Answers

	19) 15	20) 50	21) 7812
22) 97656	$23) -\frac{976562}{390625}$	24) 79982	25) No sum
26) -4	27) $\frac{24}{5}$	28) $\frac{3}{2}$	29) 6
30) 4	31) 7, 12, 17, 22, 27	32) 2, 3, -1, 4, -5	33) 3, 5, 8, 12
34) -10, -8, -5, -1	35) -9, -7, -4, 0	36) -13, -4, 5, 14	
37) -2, -8, -32, -128, -	-512 38) 3, -15, 75,	-375, 1875	

Sequences/Series Test Practice

If the sequence is arithmetic or geometric, find the next 3 terms.

1) 4, -8, 16, -32, 64, ...2) 3,
$$\frac{5}{4}$$
, $\frac{7}{9}$, $\frac{9}{16}$, $\frac{11}{25}$, ...3) 3, 15, 75, 375, 1875, ...4) 1, 4, 9, 16, 25, ...

Given the first term and the common difference of an arithmetic sequence find the term named in the problem.

5)
$$a_1 = 6, d = 2$$

Find a_{22}
6) $a_1 = -39, d = -3$
Find a_{39}

Find the missing term or terms in each arithmetic sequence.

7) ..., 32, ___, ___, 8, ... 8) ..., 1, ___, ___, ___, 501, ...

Given the first term and the common ratio of a geometric sequence find the term named in the problem.

9) $a_1 = -1, r = -2$	10) $a_1 = -4, r = 3$
Find a_{11}	Find a_{11}

Find the missing term or terms in each geometric sequence.

11) ..., 2, ___, ___, ___, 15552, ... 12) ..., 3, ___, ___, ___, 9375, ...

Evaluate each arithmetic series described.

- 13) $\sum_{k=3}^{10} (7k-12)$ 14) $\sum_{m=5}^{10} (8m-5)$
- 15) $a_1 = -10, \ d = -10, \ n = 13$ 16) $a_1 = 6, \ d = -2, \ n = 9$
- 17) (-4) + (-2) + 0 + 2..., n = 818) 17 + 20 + 23 + 26..., n = 7

Determine the number of terms *n* in each arithmetic series.

19)
$$a_1 = 5$$
, $a_n = 65$, $S_n = 455$
20) $a_1 = 15$, $a_n = 35$, $S_n = 150$

Answers

Sequences/Series Test Practice

1) -128, 256, -512	2) $\frac{13}{36}$, $\frac{15}{49}$, $\frac{17}{64}$	3) 9375, 46875, 234375	
4) 36, 49, 64	5) $a_{22} = 48$	6) $a_{39} = -153$	7) 26, 20, 14
8) 101, 201, 301, 401	9) $a_{11} = -1024$	10) $a_{11} = -236196$	11) 12, 72, 432, 2592
12) 15, 75, 375, 1875	13) 268	14) 330	15) -910
16) -18	17) 24	18) 182	19) 13

20) 6

Evaluate each geometric series described.

21)
$$-4 - 24 - 144 - 864..., n = 6$$

22) $-\frac{1}{4} + \frac{1}{8} - \frac{1}{16} + \frac{1}{32}..., n = 7$
23) $\sum_{n=1}^{9} 4^{n-1}$
24) $\sum_{m=1}^{8} 5^{m-1}$

Evaluate each infinite geometric series described.

25)
$$\sum_{m=1}^{\infty} \frac{27}{32} \cdot \left(\frac{4}{3}\right)^{m-1}$$
 26) $\sum_{n=1}^{\infty} -\frac{27}{2} \cdot \left(\frac{2}{3}\right)^{n-1}$

27)
$$3 + \frac{3}{4} + \frac{3}{16} + \frac{3}{64}$$
... 28) $-1.3 - 1.04 - 0.832 - 0.6656$...

Determine the number of terms *n* in each geometric series.

29)
$$a_1 = -4$$
, $r = -6$, $S_n = -124$
30) $a_1 = -1$, $r = 2$, $S_n = -7$

Given the recursive formula for an arithmetic sequence find the first five terms.

31) $a_{n+1} = a_n - 7$ 32) $a_{n+1} = a_n - 2$ $a_1 = 30$ $a_1 = -40$ 33) $a_{n+1} = \frac{2+a_n}{2}$ 34) $a_{n+1} = a_n + n$ $a_1 = -6$ $a_1 = -22$ 35) $a_{n+1} = a_n \cdot 2$ 36) $a_{n+1} = na_n$ $a_1 = 1$ $a_1 = -1$ 38) $a_{n+1} = a_n \cdot -5$ 37) $a_{n+1} = a_n \cdot -4$ $a_1 = -3$ $a_1 = 1$

Answers

	21) -37324	22) $-\frac{43}{256}$	23) 87381
24) 97656	25) No sum	26) $-\frac{81}{2}$	27) 4
28) -6.5	29) 3	30) 3	
31) -40, -47, -54, -61,	-68 32) 30, 28, 26,	24, 22 33) -22, -10, -4	4, -1
34) -6, -4, -1, 3	35) 1, 2, 4, 8	36) -1, -2, -6, -24	
37) 1, -4, 16, -64, 256	38) -3, 15, -75,	, 375, -1875	

Sequences/Series Test Practice

If the sequence is arithmetic or geometric, find the next 3 terms.

1) 4, 16, 36, 64, 100,	2) 6.2, 9.1, 12, 14.9, 17.8,
$3) -\frac{1}{3}, \frac{7}{6}, \frac{8}{3}, \frac{25}{6}, \frac{17}{3}, \dots$	4) $3, -\frac{3}{5}, \frac{3}{25}, -\frac{3}{125}, \frac{3}{625}, \dots$

Given the first term and the common difference of an arithmetic sequence find the term named in the problem.

5) $a_1 = 7, \ d = -3$ Find a_{20} 6) $a_1 = -38, \ d = -4$ Find a_{20}

Find the missing term or terms in each arithmetic sequence.

7) ..., 33, ___, ___, ___, 83, ... 8) ..., -39, ___, ___, ___, ___, -79, ...

Given the first term and the common ratio of a geometric sequence find the term named in the problem.

9) $a_1 = -2, r = -3$ Find a_{12} 10) $a_1 = 2, r = -2$ Find a_{12}

Find the missing term or terms in each geometric sequence.

11) ..., -3, ___, ___, -243, ... 12) ..., 3, ___, ___, ___, 3072, ...

Evaluate each arithmetic series described.

13)
$$\sum_{m=2}^{7} (16 - 9m)$$
 14) $\sum_{m=3}^{11} (1 - 8m)$

15) $a_1 = 30, d = 6, n = 15$ 16) $a_1 = 33, d = 9, n = 11$

17) 18 + 28 + 38 + 48..., n = 2018) 25 + 34 + 43 + 52..., n = 10

Determine the number of terms *n* in each arithmetic series.

19) $a_1 = 32$, $a_n = 344$, $S_n = 7520$ 20) $a_1 = 10$, $a_n = 58$, $S_n = 238$

Answers

1) 144, 196, 256	2) 20.7, 23.6, 26.5	3) $\frac{43}{6}$, $\frac{26}{3}$, $\frac{61}{6}$	
4) $-\frac{3}{3125}$, $\frac{3}{15625}$, $-\frac{3}{781}$	$a_{20} = -50$	6) $a_{20} = -114$	
7) 43, 53, 63, 73	8) -47, -55, -63, -71	9) $a_{12} = 354294$	10) $a_{12} = -4096$
11) -9, -27, -81	12) 12, 48, 192, 768	13) -147	14) -495
15) 1080	16) 858	17) 2260	18) 655
19) 40	20) 7		

Evaluate each geometric series described.

21)
$$2 - \frac{2}{3} + \frac{2}{9} - \frac{2}{27} \dots, n = 7$$
 22) $-2 - 10 - 50 - 250 \dots, n = 7$

23)
$$\sum_{m=1}^{7} 3^{m-1}$$
 24) $\sum_{k=1}^{10} 3^{k-1}$

Evaluate each infinite geometric series described.

25)
$$\sum_{m=1}^{\infty} -9.1 \cdot 0.2^{m-1}$$
 26) $\sum_{i=1}^{\infty} 7.7 \cdot (-0.6)^{i-1}$

27)
$$-\frac{6}{5} + \frac{2}{5} - \frac{2}{15} + \frac{2}{45}$$
... 28) $5.9 + 9.44 + 15.104 + 24.1664$...

Determine the number of terms *n* in each geometric series.

29) $a_1 = 4, r = -4, S_n = 52$ 30) $a_1 = -1, r = -5, S_n = 104$

Given the recursive formula for an arithmetic sequence find the first five terms.

31) $a_{n+1} = a_n + 100$ 32) $a_{n+1} = a_n + 3$ $a_1 = -21$ $a_1 = 6$ 33) $a_{n+1} = a_n + 7$ 34) $a_{n+1} = a_n + 4$ $a_1 = 35$ $a_1 = 11$ 35) $a_{n+1} = na_n$ 36) $a_{n+1} = a_n + \frac{3}{2}$ $a_{1} = 1$ $a_1 = -\frac{12}{7}$ 38) $a_{n+1} = a_n \cdot -5$ 37) $a_{n+1} = a_n \cdot -4$ $a_1 = 1$ $a_1 = 2$

Answers

		21) $\frac{1094}{729}$	22) -39062
23) 1093	24) 29524	25) -11.375	26) 4.8125
27) $-\frac{9}{10}$	28) No sum	29) 3	30) 4
31) 6, 106, 206, 306, 40	6 32) -21, -18, -1	15, -12, -9 33) 11,	18, 25, 32
34) 35, 39, 43, 47	35) 1, 2, 6, 24	$36) -\frac{12}{7}, -\frac{3}{14}, \frac{9}{7}, \frac{39}{14}$	
37) 1, -4, 16, -64, 256	38) 2, -10, 50,	-250, 1250	

Sequences/Series Test Practice

If the sequence is arithmetic or geometric, find the next 3 terms.

 1) 3, -6, 12, -24, 48, ...
 2) -0.5, 1, -2, 4, -8, ...

 3) 0, 2, 6, 14, 30, ...
 4) -1, -2, -6, -24, -120, ...

Given the first term and the common difference of an arithmetic sequence find the term named in the problem.

5) $a_1 = 33$, d = 30Find a_{39} 6) $a_1 = 18$, d = -4Find a_{32}

Find the missing term or terms in each arithmetic sequence.

7) ..., -40, ___, ___, ___, ___, -1040, ... 8) ..., -30, ___, ___, ___, ___, -75, ...

Given the first term and the common ratio of a geometric sequence find the term named in the problem.

9) $a_1 = -3, r = -4$	10) $a_1 = -1, r = 2$
Find a_{10}	Find a_9

Find the missing term or terms in each geometric sequence.

11) ..., 3, ___, ___, 9375, ... 12) ..., -1, ___, ___, -16, ...

Evaluate each arithmetic series described.

- 13) $\sum_{k=2}^{21} (5k-10)$ 14) $\sum_{m=2}^{11} (9m-1)$
- 15) $a_1 = 4, \ d = 2, \ n = 30$ 16) $a_1 = 8, \ d = 3, \ n = 6$
- 17) 6 + 9 + 12 + 15..., n = 1718) 10 + 12 + 14 + 16..., n = 20

Answers

1) -96, 192, -384	2) 16, -32, 64	3) 62, 126, 254	
4) -720, -5040, -40320	5) $a_{39} = 1173$	6) $a_{32} = -106$	
7) -240, -440, -640, -8	40 8) -39, -48, -5	7, -66 9) $a_{10} = 786432$	
10) $a_9 = -256$	11) 15, 75, 375, 1875	12) -2, -4, -8	13) 950
14) 575	15) 990	16) 93	17) 510
18) 580			

Determine the number of terms n in each arithmetic series.

19)
$$a_1 = -6, a_n = -84, S_n = -630$$
 20) $a_1 = 5, a_n = 61, S_n = 297$

Evaluate each geometric series described.

21)
$$-1 - 3 - 9 - 27..., n = 8$$

22) $1 - 5 + 25 - 125..., n = 9$

23)
$$\sum_{m=1}^{7} -3 \cdot 3^{m-1}$$
 24) $\sum_{k=1}^{7} 3^{k-1}$

Evaluate each infinite geometric series described.

25)
$$\sum_{m=1}^{\infty} -\frac{6}{5} \cdot \left(-\frac{1}{2}\right)^{m-1}$$
 26) $\sum_{n=1}^{\infty} -6 \cdot \left(\frac{3}{5}\right)^{n-1}$

27)
$$-2 - 1 - \frac{1}{2} - \frac{1}{4}$$
... 28) $-4.5 + 0.9 - 0.18 + 0.036$...

Determine the number of terms *n* in each geometric series.

29)
$$a_1 = -1, r = -6, S_n = -1111$$
 30) $a_1 = 1, r = 5, S_n = 31$

Given the recursive formula for an arithmetic sequence find the first five terms.

- 31) $a_{n+1} = a_n + 10$ $a_1 = -8$ 32) $a_{n+1} = a_n - 200$ $a_1 = 0$
- 33) $a_{n+1} = a_n \cdot -4$ $a_1 = -1$ 34) $a_{n+1} = a_n \cdot 6$ $a_1 = 4$
- 35) $a_{n+1} = a_n \cdot 5$ $a_1 = -3$ 36) $a_{n+1} = a_n + n$ $a_1 = 5$
- 37) $a_{n+1} = a_n \cdot -2$ $a_1 = 3$ 38) $a_{n+1} = a_n \cdot 3$ $a_1 = 2$

Answers

	19) 14	20) 9	21) -3280
22) 325521	23) -3279	24) 1093	25) $-\frac{4}{5}$
26) -15	27) -4	28) -3.75	29) 5
30) 3	31) -8, 2, 12, 22, 32	32) 0, -200, -400, -600,	, -800
33) -1, 4, -16, 64	34) 4, 24, 144, 864	35) -3, -15, -75, -375	
36) 5, 7, 10, 14	37) 3, -6, 12, -24, 48	38) 2, 6, 18, 54	, 162