Reciprocal Identities

$$\csc \theta = \frac{1}{\sin \theta}$$
 $\sec \theta = \frac{1}{\cos \theta}$ $\cot \theta = \frac{1}{\tan \theta}$

$$\sin \theta = \frac{1}{\csc \theta}$$
 $\cos \theta = \frac{1}{\sec \theta}$ $\tan \theta = \frac{1}{\cot \theta}$

Ratio Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

Pythagorean Identities

$\cos^2\theta + \sin^2\theta = 1$	$\sin^2\theta = 1 - \cos^2\theta$	$\cos^2\theta = 1 - \sin^2\theta$
$1 + \tan^2 \theta = \sec^2 \theta$	$\tan^2\theta = \sec^2\theta - 1$	$-\tan^2\theta = 1 - \sec^2\theta$
$1 + \cot^2 \theta = \csc^2 \theta$	$\cot^2\theta = \csc^2\theta - 1$	$-\cot^2\theta = 1 - \csc^2\theta$

Write an expession for each

$\tan \theta =$	$\cot \theta =$

 $\csc \theta =$

 $\sec \theta =$

Write an expession for each

 $\cos^2\theta$

 $\sin^2\theta$

Use Trigonometric Identities to write each expression in terms of a single term or a constant.

a. $\tan\theta\cos\theta$ **b**. $\frac{1-\cos^2\theta}{\cos^2\theta}$

Use Trigonometric Identities to write each expression in terms of a single term or a constant.

a. $\cos\theta \csc\theta$

b. $\frac{\sin\theta\sec\theta}{\tan\theta}$

A Review of Trigonometric Definitions, Facts, and Identities Simplify the complex fraction.

a.
$$\frac{\frac{2}{3}}{\frac{4}{15}}$$
 b. $\frac{\frac{4}{5}}{\frac{4}{35}}$

Simplify the complex fraction.

a.
$$\frac{\frac{2}{5}}{\frac{3}{5}}$$
 b. $\frac{\frac{1}{2}}{2}$

Simplify the fraction.

a.
$$\frac{\csc\theta}{\cot\theta}$$
 b. $\frac{1-\cos^2\theta}{\tan^2\theta}$

Simplify the fraction.

	$\cos\theta \sec\theta$		$\sin \theta$
а.	$\tan \theta$	b.	$\csc \theta$

Use Trigonometric Identities to write each expression in terms of a single term or a constant.

a. $\cot\theta\sin\theta$ **b**. $\frac{1-\sin^2\theta}{\sin^2\theta}$

Use Trigonometric Identities to write each expression in terms of a single term or a constant.

a. $\sin\theta \sec\theta$ **b**. $\frac{\cos\theta\csc\theta}{\cot\theta}$

Simplify

-	$\sec\theta$		$1 - \sin^2 \theta$
d.	tan θ	D.	$\cot^2 \theta$

Simplify

 $\mathbf{a.} \ \frac{\sin\theta\csc\theta}{\cot\theta}$

b. $\frac{\cos\theta}{\sec\theta}$

Simplify

a.	$\frac{\tan\theta + \cot\theta}{\tan\theta}$	b . $\frac{\cos^2\theta}{1-\sin\theta}$
----	--	--

Simplify

a.
$$\frac{\sec^2\theta - 1}{\sec^2\theta}$$

b. $\tan\theta \csc\theta \cos\theta$

Simplify

 $(\sin\theta - \cos\theta)(\sin\theta + \cos\theta)$

Simplify

 $(\tan\theta + 1)^2$

Simplify

 $\sin^2\theta - 2\sin\theta + 1$

Use Trigonometric Identities to write each expression in terms of a single term or a constant.

a.
$$\frac{\csc\theta - \sin\theta}{\csc\theta}$$
 b. $\frac{\sin^2\theta}{1 + \cos\theta}$

Use Trigonometric Identities to write each expression in terms of a single term or a constant.

a.
$$\frac{\csc^2 \theta - 1}{\csc^2 \theta}$$
 b. $\tan \theta \sec \theta \sin \theta$

	$\frac{2}{2} + \frac{1}{2}$	L	1	1
а.	$\frac{-}{3} + \frac{-}{4}$	b.	$\frac{1}{\cos\theta}$ +	$\sin \theta$

Simplify

a.
$$\frac{1}{1-\cos\theta} + \frac{1}{1+\cos\theta}$$
 b. $\tan\theta - \frac{\sec^2\theta}{\tan\theta}$

a.
$$\frac{\tan\theta}{\cot\theta} + 1$$
 b. $\frac{1}{\cos\theta} + \frac{1}{\sin\theta}$

Simplify

2	$\frac{\sin\theta}{\pm}$	$\cos \theta$	b	$\csc^2\theta - 1$
a.	cscθ	$\sec heta$		$\cot \theta$

a.	$\frac{1}{1-\sin\theta}$ +	$\frac{1}{1+\sin\theta}$	b.	$\cot \theta - \frac{\csc^2 \theta}{\cot \theta}$
u.	$\frac{1}{1-\sin\theta}$ +	$1 + \sin \theta$	b.	$\cot \theta - \frac{1}{\cot \theta}$

a.
$$\frac{1}{1-\sin\theta} + \frac{1}{1+\sin\theta}$$
 b. $\cot\theta - \frac{\csc^2\theta}{\cot\theta}$